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Abstract

Concentrations of PCDD/Fs, dioxin-like PCBs (dI-PCBs), PeCB and HCB were determined in flue gas, fly ash and bottom
ash samples collected from brick production, steel production, and zinc production plants, an industrial waste incinerator
and a medical waste incinerator in northern Vietnam to understand the contamination levels, accumulation patterns and
extent of emission. Total TEQs concentrations of PCDD/Fs and dI-PCBs in flue gas and ash samples from these industrial
plants ranged from 0.304 to 50.55 pg/Nm? and 1.43 to 440 pg/g, respectively. PeCB and HCB residues in flue gas samples
ranged from 0.839 to 46.59 ng/Nm? and 1.16 to 60.5 ng/Nm?, respectively. The emission factors of 4.8—740 ngTEQs/tonne
for PCDD/Fs and dI-PCBs, 67.12-240.7 pg/ton for PeCB and 11.64-889.3 ug/ton for HCB were obtained in flue gas samples.
This is among the first reports on the emission factor of PCDD/Fs, dI-PCBs, PeCB, HCB in brick production, zinc produc-

tion and waste incineration in Vietnam.
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Contamination of unintentionally produced persistent
organic pollutants (U-POPs) listed under the Stockholm
Convention are global concerns because of their extremely
environmental persistence, long-range transport, high toxic-
ity and bioaccumulation (Broman et al. 1992; Gouin et al.
2004; Van den Berg et al. 1998; Vorkamp and Riget 2014).
U-POPs released from industrial activities and thermal
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processes are difficult to control, especially in developing
countries like Vietnam because of being contaminated from
raw materials and fuels, low-level production and waste
treatment technologies. Emissions of U-POPs such as poly-
chlorinated dibenzo-p-dioxins/furans (PCDD/Fs), dioxin-
like polychlorinated biphenyls (dI-PCBs), hexachloroben-
zene (HCB) and pentachlorobenzene (PeCB) from thermal
processes were investigated for several industrial sectors like
waste incineration, open burning, metallurgy, coking and
chemical industry (Liu et al. 2009, 2013; Nie et al. 2011,
2012a; Zhang et al. 2011). In Vietnam, U-POPs monitoring
capability is still limited, hence the database of emission lev-
els and profiles of these contaminants are inadequate, espe-
cially for HCB and PeCB. Previous study reported concen-
trations of PCDD/Fs in stack gas and fly ash from some steel
production and cement kiln plants in Vietnam to estimate
their emission factors. Dioxin emission factor from the steel
production plants in Vietnam were markedly higher than
those from some developed European countries whereas
emission factors of some cement kilns were relatively low
(Thuong et al. 2014). Our recent study reported the first time
for the levels and emissions of PeCB and HCB in fly ash and
bottom ash from some waste incinerators and steel produc-
tion plants (Hue et al. 2016). However, no investigation has
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been conducted to simultaneously measure concentrations
of PeCB, HCB, PCDD/Fs and dI-PCBs in industrial samples
in Vietnam.

In this study, industrial samples including flue gas, fly
ash and bottom ash were collected from a brick production
plant, a steel production plant, a zinc production plant, an
industrial waste incinerator and a medical waste incinerator
in an industrial zone of northern Vietnam, and the concen-
trations of different groups of U-POPs such as PCDD/Fs,
dI-PCBs, HCB and PeCB were determined to understand
status of the contamination as well as characteristics and
extent of the emission. The study would contribute to update
on the national database of U-POPs in Vietnam for the effort
of the country to fulfill obligations under the Stockholm
Convention.

Materials and Methods

Relevant information on the industrial plants such as capac-
ity, operating time, and average emission flow is given in
Table 1. The industrial plants investigated in this study com-
prise brick production, steel production, zinc production,
industrial waste incinerators and medical waste incinerator
located in some industrial zones from northern Vietnam dur-
ing 2015. Flue gas samples were collected from the incinera-
tors and stack of brick, steel and zinc production plant based
on the isokinetic method given in the Method 23 of US EPA
(US EPA 2017). The duration time for collection of one
stack gas samples was approximately 5-6 h. For each flue
gas sample, both particulate and gas phase were collected
by a quartz fiber filter and a chamber containing Amberlite
XAD-2 adsorbent, respectively. Fly ash samples were col-
lected from the exhaust system or dust filtering bags of the
steel and zinc production plants. Bottom ash samples were
manually collected from the bottom of the incinerators and
exit door of the zinc production furnaces. A total of four
flue gas samples, two fly ash and four bottom ash samples
were collected. Details about number of industrial samples
collected in this study were given in Table 2.

PCDD/Fs and dI-PCBs were analyzed following the
EPA methods 1613B and 8290A (EPA 1994a, b, 2017).

Table 1 Information of the industrial plants investigated in this study

The '*C,,-labelled EDF-4053 was spiked as an extraction
standard, and EDF-4055 was spiked as a recovery standard
for PCDD/Fs, respectively. For flue gas samples, the XAD-2
resin and quartz fiber filter were combined for a representa-
tive sample. The samples were then Soxhlet extracted for
24 h with 200 mL of toluene. The fly ash samples were air
dried and sieved to less than 1 mm; 10 g of each sample was
then Soxhlet extracted with 200 mL of toluene for 24 h. The
extracts were then treated with concentrated H,SO,, KOH,
and subjected to a multi-layer clean up column consisting
of anhydrous Na,SO,, KOH-silica gel, H,SO,-silica gel, and
AgNO;-silica gel. PCDD/F congeners were separated from
PCBs congeners by activated carbon column, and further
cleaned up by alumina column. The final extract was spiked
with '*C,,-PCDD/Fs labelled internal standards, concen-
trated to 0.1 mL and injected into high resolution gas chro-
matography coupled with high resolution mass spectromet-
ric system (HRGC-HRMS) for quantification.

Concentrations of PCDD/Fs and dI-PCBs were quantified
by using Micromass Autospec Ultima system (Waters Co.
Ltd.) equipped with a 7890A gas chromatograph (Agilent
Co. Ltd.) using DB-5MS capillary column (60 m X 0.25 mm
LD, 0.25 pm film thickness, J&W Scientific Inc., Folsom,
CA). The mass spectrometer was operated at a resolution of
greater than 10,000 in positive electron impact mode (EI).
Data was obtained in the selected ion record (SIR) mode.
Quantification was based on isotope dilution method using
the labeled '*C,,-PCDD/Fs and dI-PCBs standards (EPA
1994a, 2008, 2017). TEQ values were calculated based on
the detected congeners and using the toxic equivalent factors
(TEFs) issued by WHO in 2005 (Van den Berg et al. 1998).
The recoveries of PCDD/Fs and dl-PCBs ranged from 85%
to 96%. For flue gas samples, the method detection limit
(MDL) was 0.05 pg/m? for tetra- to heptachlorinated diox-
ins, furan and dI-PCB congeners, and 0.5 pg/m? for OCDD/
Fs. The MDL for ash sample was 0.05 pg/g for tetra- to
heptachlorinated dioxin, furans, and dI-PCBs, and 0.1 pg/g
for OCDD/Fs.

Analytical procedure for PeCB and HCB was followed
to the method US EPA 8121 (US EPA 1994b). Samples
were extracted by Soxhlet system with a mixture solvent
of hexane and acetone (1:1, v/v) for 16 h. The clean-up

Capacity Average emission Technology, air pollution control device (APCD) Average operat-
(tonne/h) flow rate (Nm>/h) ing time (h/year)
Brick production plant 5.8 16,500 Tunnel kiln, circulating furnace 6530
Steel production plant 6.0 31,000 Blast oxygen furnace, bag filter 8040
Zinc production plant 1.0 14,700 Reverberatory furnace, electrostatic dust filter 7000
Industrial waste incinerator 0.25 20,000 Grate incinerator, semi-dry scrubber 2640
Medical waste incinerator 0.2 15,000 Grate incinerator, no APCD 1536
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experiments were conducted with silica gel containing 10%
~ (w/w) activated charcoal, and copper powder. PeCB and
§ e - HCB were quantified by using a gas chromatography cou-
& . u\é’ G RS A R pled with mass spectrometry (GC/MS) system using a SPB-
2 |2|¥S8S4¢S 608 ms column (30 m length X 0.25 mm 1.D x0.25 um film
g |[®|mVvVvvey thickness) and also quantified by isotope dilution method
; oo B using labeled 13C6-HCB and PeCB standards. The recovery
2Q gl @A a of HCB and PeCB was in the range of 89%-98%, and the
BIN|S|ITS55259Yw = oo

B|ZEIZ|SVVVS VRIS EES MDL was 0.1 ng/g dry wt.
en
S|E S 3
2l |als22223 : -
| E 212aSSSES Results and Discussion
= |8 |oc VV VoV
2 s}
g8~ = 2 4 = PeCB and HCB were detected in flue gas samples with con-
S5 |8lnE88E85822ch T ;
EleNn|8|8====8=c388%C centrations ranged of 0.839-46.59 ng/g and 1.16—60.5 ng/g,
AINE|IZE|aVVVSV3S33S~—«= g e &e
e respectively (Table 2). The patterns of the contaminants are
4 similar to PCDD/Fs with higher levels found in the steel and
= . . . . . .
ER zinc production plants. HCB residues in the brick production
B ;Tgﬁ 3 § :_Dr :o:r § g Yo% oo pla.nt were higher than in the .industrial waste incin(?rator,
ERESEER:) NS sSssasl3dedI while higher PeCB concentration were encountered in flue
8| gas from the steel production plant (Table 2). These data are
g é among the first on unintentionally produced PeCB and HCB
2|88 RN B BV in flue gas from Vietnam. PeCB levels from the steel plant
g | = &= n A0 Q 0 Qs 00— . . .
|85 I £55585858¢9 were higher than those reported in magnesium smelter and
Hlos= |V V Ve Ve oo~ - coking plants in China; copper and aluminum scrap smelt-
o ing in Poland (Nie et al. 2011; Liu et al. 2009; Grochowalski
§ - et al. 2007). HCB concentrations in flue gas from various
2 % R B plants in Vietnam varied considerably, from 1.1 to 60.5 ng/g
Z22- |zm2E88gaL80gFs (mean: 22.2 ng/g). These levels were similar to a magnesium
<3 Il E===28=528a8=x . . .
SEE |[SVVVSVSs33so smelting plant (Nie et al. 2011), but lower than those in scrap
. metal recycling plants (Nie et al. 2012b).
é - Concentrations of PCDD/Fs, and dl-PCBs from the flue
o=
&%‘“,: -8 BB 5 2 o o - gas,'ba.g filter dust and bottom ash samples.colle(.:ted frqm
EE51 2===2=2=325T2 the incinerators and the production plants in an industrial
N== |-V VvV Ve V=a=amn zone from northern Vietnam are presented in Table 2.
P Concentrations of PCDD/F and dI-PCBs in flue gas sam-
ol g oo g ples ranged from 3.804 to 270 pg/Nm? and 1.1 to 403.4 ng/
g %‘ Eﬁ _ana % e % oen Y TR Nm?, respectively. The total TEQ concentrations of PCDD/
BlEEL |833353852¢¢8 Fs and dI-PCBs were in the range of 0.304—50.5 pg/Nm’.
2. In general, PCDD/Fs and dl-PCBs concentrations were the
g é’ highest in flue gas samples collected from the zinc produc-
g g E _ O Q tion plant, followed by the steel production plant, the brick
o BT [RE€E€E€z8CagTg production plant and the industrial waste incinerator. Levels
2|58 & S=2=2=23 =28 o S n O .
LlAs= o VV VS Ve oo —~— of PCDD/Fs congeners were 2—3 orders of magnitude lower
- -3 than those of d1-PCBs. The contamination patterns of HCB
e § g E @ =2 in the investigated plants were similar to those of PCDD/
S o o é i Fs and dI-PCBs, showing higher levels in the zinc and steel
S 5 E g E 2 T " production plants and lower residues in the brick production
Q N . . . .
E £ ﬁ ' n .,‘“., § & plant and the waste incineration. Information of PCDD/Fs
g :, :, \:rt \:rt i:r» \:rr, 288 emission from flue gas in Vietnam is very limited. PCDD/
‘:’ NN AR R AR z % EJ Fs concentrations in flue gas from the zinc production plant
< Tadgaes88E¢g¢ in this study were comparable to those found in an electric
= sEREFE arc furnace (EAF) steel plant (0.234 ng/Nm?), but lower
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than a blast oxygen furnace (BOF) steel plant (0.557 ng/
Nm?) investigated in northern Vietnam (Thuong et al.
2014). These levels were few orders of magnitude lower
than those in flue gas collected from primary and secondary
copper smelters and scrap metal recycling plants in China
(0.2-1407 ng/Nm3, Nie et al. 2012a, b) and various ferrous
and non-ferrous foundries (copper, lead and zinc) in Korea
(0.001-32.401 ng TEQ/Nm3, Yu et al. 2006). However, com-
pared to a magnesium smelting plant in China (176 pg/Nm®
and 218 pg/Nm?, Nie et al. 2011), PCDD/Fs concentrations
in the steel production and zinc smelting plants in Vietnam
were in a similar range (106 and 270 pg/Nm?, Table 2). This
result suggests the potential release of dioxins and dioxin-
like compounds from metallurgy plants in northern Viet-
nam. PCDD/Fs and dI-PCBs in flue gas sample from the
industrial waste incinerator and the brick production plant
were relatively low (3.84 and 12.65 pg/Nm?, respectively),
and these levels were generally less than those reported in
flue gases from municipal waste incinerators from Korea,
China, Spain and France (Choi et al. 2008; Li et al. 2016,
2017; Ni et al. 2009; Abad et al. 2006; Nzihou et al. 2012).
The emission levels of PCDD/Fs and dl-like PCBs in flue
gas samples from waste incinerators were still lower than the
criteria level of 600 pg/Nm? in the Vietnamese regulation
on emission of industrial waste incinerator (Vietnam techni-
cal regulation on emission of industrial waste incinerators
2010).

The concentrations of PCDD/F and dI-PCB congeners
in fly ash from the zinc production plant (10.34 ng/g)
were much higher than from the steel production plant
(12.76 pg/g); and the total TEQ concentrations in these two
plants were 440 and 1.43 pg/g, respectively. While in bottom
ash, PCDD/Fs concentrations in the zinc production plant
were also remarkably lower than those in fly ash collected
from the bag filter. Fly ash is known to be potential media
for U-POPs releases in non-ferrous metallurgical processes
such as in copper smelting and production (Wang et al.
2015). Concentrations of PCDD/Fs and d1-PCBs in bottom
ash from the medical waste incinerator were higher than
those from the zinc production plant. The lack of air pollu-
tion control device in medical waste incinerator may result
in higher concentrations of PCDD/Fs and d1-PCBs in ash
samples. Compared to various metallurgical processes in
Korea, the levels of PCDD/Fs in ash samples from Vietnam
were higher than those in fly ash from ferrous foundries and
a lead production plant, but lower than those in copper, zinc
and aluminum production plants (Yu et al. 2006).

Overall, our result suggests the extent of contamina-
tion of PeCB and HCB is similar to some metallurgy pro-
cesses in China and Poland, while PCDD/Fs levels were in
lower range. This preliminary investigation is among the
first data on these U-POPs from industry in Vietnam. The
concentrations of U-POPs in ash samples in this study are
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still lower than the Vietnamese hazardous waste threshold
levels (3 mg/kg for PeCB, 0.15 mg/kg for HCB, 5 ug/kg for
PCDDs and 10 pg/kg for PCDFs) (Vietnam technical regula-
tion on hazardous waste thresholds 2009). The contamina-
tion profile of U-POPs in flue gas followed the order of the
zinc product plant > steel production plant > brick produc-
tion plant > industrial waste incinerator and similarly, these
compounds in ash samples also decreased in the order of
the zinc product plant > steel production plant or industrial
waste incinerator. In addition, the extent of contamination in
Vietnam were generally lower than those reported previously
for other countries, except for flue gas and fly ash samples
from the zinc production plants, where PCDD/F and PeCB
levels were comparable to those from some non-ferrous met-
allurgical processes in China (Nie et al. 2011).

Congener profiles of PCDD/Fs and dI-PCBs were evalu-
ated in term of both mass concentrations and TEQs of emis-
sions of these U-POPs (Figs. 1, 2). In flue gas samples, the
proportions of PCDFs congeners were generally higher than
PCDDs. In particular, some dibenzofuran congeners such
as 2,3,7,8-TCDF, 2,3,4,7,8-PeCDF, 2,3,4,6,7,8-HxCDF
were predominant, accounting for 10.1%—44.7% of the total
PCDD/Fs concentrations. The fractions of these congeners
were particularly high in flue gas from the steel and zinc
production plants (44.7% and 30.6% of the total PCDD/Fs
concentration, respectively). OCDD showed relatively high
fractions in the industrial waste incinerator and the brick
production plant. The patterns of OCDD were similar to
those reported from magnesium, copper smelting process
and EAF steel production furnace in China, Taiwan and
Korea (Nie et al. 2011, 2012a; Wang et al. 2009; Yu et al.
2006). In terms of TEQ congener pattern (Fig. 2), high
proportions of 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD were
observed due to higher TEF values. Similar to mass con-
centrations, 2,3,4,7,8-PeCDF also accounted for high TEQ
proportions for most of the samples analyzed. Risk assess-
ment should be considered for these congeners due to their
high contributions to total TEQs.

Congener profiles in fly ash samples of the zinc pro-
duction plant were different from those in bottom ash and
flue gas. In particular, two congeners of 1,2,3,4,6,7,8- and
1,2,3,4,7,8,9-HpCDF in the fly ash appeared predominant. In
contrast, OCDD, OCDF and 1,2,3,4,6,7,8-HpCDF accounted
for larger fractions in the bottom ash. Fly ash is an impor-
tant factor for estimating the formation of PCDD/Fs during
the thermal processes, and the predominance of hexa- and
hepta-dibenzofuran congeners in fly ash were documented
in many previous studies, be consistent with our study. Pro-
files of bottom ash from the zinc production plant and the
medical waste incineration showed some differences with
high proportion of OCDD in the zinc plant and the domi-
nance of PCDFs congeners in the incinerator (Fig. 1), sug-
gesting a different mechanism for the formation of PCDD/
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Fig. 1 Profiles of mass concentrations of PCDD/Fs in the flue gas, fly ash, and bottom ash samples from the investigated industrial sectors. Ver-

tical bars represent the mean PCDD/Fs mass concentrations

Fs congeners. The ratio of PCDFs/PCDDs concentrations is
often considered to explore the possible mechanisms of for-
mation of PCDD/F congeners in various industrial processes
(Everaert and Baeyens 2002; Anderson and Fisher 2002; Ba
et al. 2009a). The ratio of PCDFs/PCDDs in flue gas and ash
samples from this study ranged from 2.28 to 6.55 and 0.87
to 15.6, respectively. The ratio of more than one suggests
that de novo synthesis may be the main mechanism of the
formation of PCDD/Fs in metallurgical and waste incinera-
tion processes investigated in this study. Ba et al. (2009a)
also suggested that the de novo synthesis was major mecha-
nism for PCDD/Fs releases in a secondary zinc smelting
plant in China. In addition, temperature and the variations of
scrap metal feeds and industrial wastes among plants might
account for the differences in congener profiles (Wang et al.
2009). Further studies with larger number of samples are
needed to provide a better characterization of emission pro-
file of PCDD/Fs in these industrial facilities.

As for dl-like PCBs, the predominance of non-ortho
PCB-126 was observed in most of the samples analyzed in
term of both mass concentrations and TEQs (Table 2). This
is in agreement with a number of previous studies in some
metallurgical process and waste incineration (Nie et al. 2011,
2012a; Yu et al. 2006; Choi et al. 2008). Otherwise, the

pattern was different from those reported in a scrap metal
processing plant in China, showing the dominance of mono-
ortho coplanar congener PCB-105 and PCB-118 (Nie et al.
2012b).

The emission factors and emission amounts in flue gas
and fly ash from the investigated industrial plants were esti-
mated based on the TEQs concentrations (for PCDD/Fs and
dl-like PCBs), mass concentrations (for PeCB and HCB)
and the basic information of the plants, and are given in
Table 3. The concept of estimation of emission factor and
emission amount was similar to that described in previous
studies (Thuong et al. 2014; Hue et al. 2016). The emission
factors of PCDD/Fs and dI-PCBs estimated for flue gas sam-
ples ranged from 4.8 to 740 ng TEQ/tonne, with the highest
value observed for the zinc production plant (Table 3). These
values were much lower than those reported in magnesium
production, secondary copper and aluminum production in
China (Ba et al. 2009b; Nie et al. 2011, 2012a). Emission
factor for the zinc production plant in this study was higher
than ferrous and zinc foundries, but lower than lead and
aluminum plants investigated in Korea (Yu et al. 2006). The
emission factors estimated for fly ash and bottom ash were
remarkably lower than those in flue gas, ranging from 0.007
to 23.2 ng TEQ/ton. These levels were lower than those
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Fig.2 Profiles of TEQs concentrations of PCDD/Fs in the flue gas, fly ash, and bottom ash samples from the investigated industrial sectors. Ver-

tical bars represent the mean TEQ concentrations

estimated for fly ash in secondary lead and zinc production
in China (Ba et al. 2009a).

Emission factors of PeCB and HCB in the steel pro-
duction plant were 240.7 and 119.8 pg/ton, respectively
(Table 3). These levels were in similar range to the pri-
mary copper smelters based on ausmelt smelting furnace
and oxygen-enriched side-blown bath smelting furnace, but
lower range than the secondary smelters using reverberator
in China (Nie et al. 2012a). PeCB and HCB emission fac-
tors in this study were also lower than those in magnesium
production process in China (Nie et al. 2011). As for ash
samples, the emission factors ranged from 0.8 to 2260 ng/
tonne for PeCB and HCB, which were substantially lower
than those in flue gas. These levels were generally lower than
those reported in a coke plant in China, except for bottom
ash in the medical waste incinerator. The emission factors
for PeCB and HCB in bottom ash from the medical waste
incinerator were 716 and 2260 ng/tonne, respectively, which
were similar to those reported in the coke plant in China
(Liu et al. 2013).

The total emission amounts of U-POPs were also esti-
mated based on the emission factor and yearly activity
levels of the investigated industrial plants (Table 3). The
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emission amounts of PCDD/Fs and dI-PCBs were in the
range of 180-5200 ug TEQ/year for flue gas sample; and
1.33-32.22 pug TEQ/year for ash samples. Emissions of
PeCB (44.3-11610 mg/year) and HCB (61.35-6225 mg/
year) were much higher than those of PCDD/Fs and dl-
PCBs. The total TEQs emissions from flue gas of the zinc
and steel production plants were in the range to those
reported in zinc, lead and primary copper production, but
lower than secondary copper and magnesium production
plants in China (Ba et al. 2009a, b; Nie et al. 2012a, 2011).
The emission of PeCB and HCB from flue gas in this study
were still remarkably less than those reported for the magne-
sium production plant in China (653 and 403 g/year, respec-
tively) (Nie et al. 2011).

In summary, we conducted a preliminary survey to evalu-
ate the levels and patterns and extensions of unintentional
emission of PCDD/Fs, dI-PCBs, PeCB and HCB in flue gas
and ash samples of some industrial plants in northern Viet-
nam. Our results are among the first data reported for some
industrial processes in Vietnam including zinc production,
brick production and medical waste incinerators. The emis-
sion potential of these U-POPs was generally in lower or
comparable range to those reported for some industrialized
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