
Vol.:(0123456789)1 3

Bulletin of Environmental Contamination and Toxicology (2019) 103:175–180 
https://doi.org/10.1007/s00128-018-2397-2

Mercury Complexation with Dissolved Organic Matter Released 
from Thirty-Six Types of Biochar

Peng Liu1,2 · Carol J. Ptacek2 · David W. Blowes2

Received: 9 May 2018 / Accepted: 6 July 2018 / Published online: 14 July 2018 
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Previous studies show mercury (Hg) can be effectively removed from solution by biochar, but limited attention was paid on 
the complexation between Hg and components released from biochars, e.g. dissolved organic matter (DOM). Here, aque-
ous data from batch-style experiments were modeled using PHREEQC, incorporating thermodynamic constants between 
Hg and DOM, which was assumed to be composed of thiol, carboxylic, and phenolic functional groups. Modelling results 
suggest that > 99% Hg complexed with thiol groups in DOM. The modelled concentrations of Hg–DOM complexes from 
low-T (low-temperature, 300°C) biochars were greater than from high-T (600°C) biochars. The concentrations of Hg–DOM 
complexes were lower in wood-based than in agricultural residue- and manure-based biochars. Hg–DOM complexes may 
affect Hg speciation, bioavailability, transport, and methylation processes. This research describes a method to evaluate Hg–
DOM interactions, and the results indicate extra caution regarding Hg–DOM complex formation is required in the selection 
of biochar for Hg remediation.
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Biochar has been proposed as a reactive material for remov-
ing mercury (Hg) from aqueous solutions and as an additive 
to stabilize Hg in soils and sediments by co-blending (Bus-
san et al. 2016; Gomez-Eyles et al. 2013; Liu et al. 2017, 
2016; Shu et al. 2016; Zhang et al. 2018). A number of stud-
ies have documented moderate to high rates of Hg uptake 
by biochars (Boutsika et al. 2014; Gomez-Eyles et al. 2013; 
Tang et al. 2015). However, primary concerns related to the 
application of biochar for Hg removal are the facilitated Hg 
transport and the conversion of inorganic Hg to more toxic 
methyl Hg (MeHg).

The process of producing biochars leads to the stabiliza-
tion of carbon and other elements and also to the release 
of soluble constituents, including dissolved organic matter 
(DOM), anions, major cations, major nutrients, and trace 

elements (Jin et al. 2016; Liu et al. 2015, 2018; Xie et al. 
2016; Yargicoglu et al. 2015; Zornoza et al. 2016). These 
components released from biochar may affect Hg speciation, 
distribution, transport, and bioavailability. Further under-
standing of the complexation between Hg and released com-
ponents is required to assess the potential impacts of the use 
of biochar as a reactive material for removal of Hg and other 
contaminants.

Previous studies show DOC comprises < 0.1%–3% of the 
total C in biochar (Liu et al. 2015). These carbon forms can 
be utilized as electron donors by potential Hg methylators 
to convert Hg to MeHg (Desrochers et al. 2015; Kerin et al. 
2006; Paulson et al. 2016). DOM is also widely known to 
form strong complexes with Hg2+ ions, a process that can 
affect Hg speciation (Benoit et al. 2001). DOM can poten-
tially enhance the transport of Hg in flood plain soil, fresh 
water, and sediment pore water either by limiting adsorption 
onto solid phases or enhancing the solubility of Hg precipi-
tates (Haitzer et al. 2002; Ravichandran 2004; Wallschläger 
et al. 1996). Therefore, improved understanding of the for-
mation of Hg–DOM complexes can assist in understanding 
Hg complexation and bioavailability in aqueous solution.

Liu et  al. (2015, 2016) evaluated a series of biochars 
produced from a variety of feedstocks at different pyrolysis 
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temperatures. These studies focused on the effectiveness and 
mechanisms of Hg uptake by different groups of biochars, the 
forms of S and other functional groups in the biochars, and 
the release of soluble carbon and sulfur constituents from the 
biochars. The present study complements this previous work 
by modelling the potential formation of Hg–DOM and other 
complexes. These new findings are integrated with the results 
of Liu et al. (2015, 2016) with the overall goal of identify-
ing biochar types that optimize Hg uptake but have minimal 
impacts on aqueous Hg speciation.

Materials and Methods

Thirty-six biochar samples were evaluated for Hg complexa-
tion in batch-style experiments. The feedstocks included corn 
cobs (CC), corn stover (CS), cocoa husk (CA), cotton seed 
husk (CT), wheat shaft (GR2), spent hops (GR3), switchgrass 
(GR4), pine mulch and bark (SW), poultry (MP) and cattle 
(MB) manures, and mushroom soils (MU). The feedstocks 
were pyrolyzed at 300°C (low-T) or 600°C (high-T). In addi-
tion, three commercial products were purchased from Wicked 
Good Charcoal Co. (CL1), Cowboy Charcoal Co. (CL2), and 
Biochar Engineering Corp. (CL5). Two batches of activated 
carbon (AC1 and AC2) were used as benchmark materials 
(Sigma-Aldrich Corp.). The experiment was conducted by 
mixing 2 g of biochar with 150 mL (mass ratio as 1:75) of 
10 µg L−1 Hg-spiked water, representative of environmen-
tal Hg concentrations (Ranchou-Peyruse et al. 2009). The 
ratio is selected to differentiate the removal percentages of 
Hg using different biochars (Liu et al. 2016). No other metals 
were added and the mixture was reacted for 2 days. At the 
termination of the experiment, aqueous phase was analyzed 
for total Hg, anions, cations, DOC, nutrient, and trace ele-
ments. The ionic strength of the majority of the solutions were 
< 0.004 mol L−1. Details of the biochar preparation method 
and experiments are described elsewhere (Liu et al. 2015, 
2016).

Speciation modeling was conducted to assess the extent 
of complexation of Hg with inorganic species and thiol, car-
boxylic, and phenolic functional groups of DOM. The model 
calculations were executed with PHREEQCi (Parkhurst and 
Appelo 1999) using the MINTEQA2 database (Allison et al. 
1991). The database was modified by adding thermodynamic 
reaction constants for Hg2+ and other metals (Al3+, Mg2+, 
Ca2+, Cu2+, Zn2+, Fe3+, and Fe2+) with thiol, carboxylic, and 
phenolic ligands (Table 1). The pH, Eh, and concentrations 
of cations, anions, alkalinity, OAs, and DOC (Liu et al. 2015, 
2016) were used as model inputs.

The following equations were used to estimate the con-
centrations of thiol (Eq. 1), carboxylic (Eq. 2), and phenolic 
(Eq. 3) ligands in DOM using DOC concentrations:

where [DomsH], [DomcooH], and [DomoH] respectively 
represent the concentrations of thiol, carboxylic, and phe-
nolic ligands in mmol L−1; and [DOM] and [DOC] respec-
tively represent the concentrations of DOM and DOC in 
mg L−1. DOM concentrations are considered to be two times 
DOC concentrations by mass (Dong et al. 2010). In Eq. 1, 
F1 is the total sulfur content percentage in DOM by mass, 
F2 is the percentage of reduced sulfur content (thiol ligand) 
in total sulfur, F3 is the percentage of reactive thiol ligand 
in the reduced sulfur content, and WS is the atomic weight of 
sulfur. In Eqs. 2 and 3, C1 and C2 are the conversion factors 
for carboxylic and phenolic ligands from DOM, respectively. 
F1, F2, and F3 are taken to be 0.86% (Benoit et al. 2001; 
Dong et al. 2010; Haitzer et al. 2003), 50% (Haitzer et al. 
2003; Skyllberg et al. 2006), and 2% (Skyllberg et al. 2006), 
respectively. C1 and C2 are taken to be 9.5 and 4.1 mmol g−1 
DOC (Lu and Allen 2002). For samples with concentra-
tions below the method detection limit (MDL), a value of 
half MDL was entered for modelling purposes (Ettler et al. 
2007).

Results and Discussion

The results of the batch experiments in terms of DOC, 
SO4

2−, total Hg (tHg) concentrations and Hg removal are 
presented in Liu et al. (2015, 2016). Overall, Hg removal of 
> 95% was observed for the majority of the biochars. Sulfate 
concentrations ranged from 6.0 to 1000 mg L−1 in solutions 
mixed with the biochars and were elevated compared with 
the control. Concentrations of DOC varied as a function 
of pyrolysis temperature and raw materials. The highest 
concentration of DOC (148 mg L−1) was observed in the 
batch mixture containing high-T corn stover (CS1) biochar. 
Relatively high concentrations of DOC were observed in the 
batch mixtures containing low-T agricultural residue- and 
manure-based biochars.

The modelling results indicate that most of the Hg 
in the solution was bound to thiol groups (Doms− or 
DomscooDoms2−, > 99%) of DOM (Fig. 1). The modelled 
concentrations of Hg–DOM complexes were greater for 
low-T than for high-T biochars. The concentrations of 
Hg–DOM complexes were lower in charcoal and activated 
carbon than in other biochars as a result of low concentra-
tions of both Hg in the spiked river water samples and DOC 
in the charcoal and activated carbon biochars (Liu et al. 
2015, 2016). The only samples with Hg(OH)2(aq) as a major 
species were the control (river water) and high-T poultry 

(1)[DomsH] = [DOM] × F1 × F2 × F3∕WS
,

(2)[DomcooH] = C1 × [DOC]∕1000,

(3)[DomoH] = C2 × [DOC]∕1000,
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manure and mushroom soil biochars, likely due to low con-
centrations of DOC and high pH (Liu et al. 2015).

The predominance of Hg–DOM complexes is likely 
due to the low Hg concentrations and the presence of 
abundant thiol functional groups (Liu et al. 2016). The 
greater concentrations of Hg–DOM complexes in solutions 
mixed with low-T biochars vs. high-T biochars are likely 
due to the much greater DOC concentrations released by 
low-T biochars (Liu et al. 2015). The relative prevalence of 

Hg(OH)2(aq) species in high-T biochars may be due to the 
high pH values and low DOC concentrations. When bio-
char is used in the field for contaminated water remedia-
tion, the geochemical parameters, solid to solution ratio, 
and concentrations of tHg, DOC, cations, and anions are 
different than considered here. Therefore, the speciation of 
Hg in the resulting remediated water may also be different 
and must be modeled using the field data.

Table 1   Selected 
thermodynamic constants for 
Hg2+ and other metals with 
thiol, carboxylic, and phenolic 
ligands at a temperature of 
25°C, ionic strength of 0, and 
pressure of 105 Pa

a DomsH thiol functional group in DOM
b Doms− deprotonated thiol functional group in DOM
c DomcooH carboxylic functional group in DOM
d Domcoo− deprotonated carboxylic functional group in DOM
e DomoH phenolic functional group in DOM
f Domo− deprotonated phenolic functional group in DOM

Reactions log K References

DomsHa = Doms−,b + H+ − 10 Smith et al. (2004)
DomcooHc = Domcoo−,d + H+ − 5.12 Temminghoff et al. (2000)
DomoHe = Domo−,f + H+ − 9.78 Temminghoff et al. (2000)
Hg2+ + Doms− = HgDoms− 28.0 Dong et al. (2010)
Hg2+ + 2Doms− = Hg(Doms)2 34.0 Dong et al. (2010)
Hg2+ + Domcoo− = HgDomcoo+ 10.0 Dong et al. (2010), Gismera et al. (2007)
Hg2+ + Domo− = HgDomo+ 8.78 Gismera et al. (2007)
Hg2+ + Domcoo− + Doms− = DomcooHg-

Doms
31.6 Dong et al. (2010)

Doms− + Ca2+ = CaDoms+ 2.5 Smith et al. (2004)
Doms− + Mn2+ = MnDoms+ 4.75 Smith et al. (2004)
Doms− + Fe2+ = FeDoms+ 6.60 Smith et al. (2004)
Doms− + Co2+ = CoDoms+ 8.14 Smith et al. (2004)
Doms− + Ni2+ = NiDoms+ 9.79 Smith et al. (2004)
Doms− + Zn2+ = ZnDoms+ 9.11 Smith et al. (2004)
Doms− + Cd2+ = CdDoms+ 10.1 Smith et al. (2004)
Doms− + Cu2+ = CuDoms+ 14.1 Laglera and van den Berg (2003)
Doms− + Mg2+ = MgDoms+ 2.75 Smith et al. (2004)
Doms− + Pb2+ = PbDoms+ 12.2 Smith et al. (2004)
Fe3+ + Doms− = FeDoms2+ 12.3 Berthon (1995)
Mg2+ + Domcoo− = MgDomcoo+ 1.1 Bryan et al. (2002)
Al3+ + Domcoo− = AlDomcoo2+ 2.5 Bryan et al. (2002)
Ca2+ + Domcoo− = CaDomcoo+ 3.57 Temminghoff et al. (2000)
Cu2+ + Domcoo− = CuDomcoo+ 5.4 Temminghoff et al. (2000)
Fe2+ + Domcoo− = FeDomcoo+ 1.6 Bryan et al. (2002)
Fe3+ + Domcoo− = FeDomcoo2+ 2.4 Bryan et al. (2002)
Zn2+ + Domcoo− = ZnDomcoo+ 1.6 Bryan et al. (2002)
Mg2+ + Domo− = MgDomo+ 2.58 Bryan et al. (2002)
Al3+ + Domo− = AlDomo2+ 7.33 Bryan et al. (2002)
Fe2+ + Domo− = FeDomo+ 4.27 Bryan et al. (2002)
Fe3+ + Domo− = FeDomo2+ 6.99 Bryan et al. (2002)
Zn2+ + Domo− = ZnDomo+ 4.27 Bryan et al. (2002)
Ca2+ + Domo− = CaDomo+ 5.05 Temminghoff et al. (2000)
Cu2+ + Domo− = CuDomo+ 10.5 Temminghoff et al. (2000)
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The presence of Hg–DOM complexes may affect the 
speciation, transformation, and bioavailability of Hg. Com-
plexation between Hg and DOM may inhibit Hg2+ sorp-
tion onto surfaces of minerals and facilitate the transport 
of Hg from polluted soils and sediments to rivers, lakes, 

and groundwater (Haitzer et al. 2002, Hsu-Kim et al. 2013; 
Liang et al. 2013; Wallschläger et al. 1996). For example, a 
study on Hg at Matagami Lake, Québec (Canada) shows an 
increase of tHg content correlated well with an increase of 
organic matter in the sediment cores (Moingt et al. 2014). 
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Fig. 1   PHREEQC modeling results of Hg and DOM complexes in aqueous solution in batch tests containing biochar and river water spiked with 
Hg. Control represents Hg-spiked river water with no biochar added. * and ** Data not available for high-T and low-T biochar, respectively
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With respect to the biogeochemical role of DOM in Hg 
methylation, early findings indicate the bioaccumulation of 
Hg in food webs may be decreased by lowering the bio-
availability of Hg(II) for methylation (Benoit et al. 2001), 
because the DOM molecules are generally too large for 
microbial uptake. More recent findings suggest Hg–DOM 
complexes promote Hg methylation by increasing the solu-
bility of Hg compounds (Hsu-Kim et al. 2013) and providing 
carbon sources for Hg methylators (Chiasson-Gould et al. 
2014).

Constants, including F1, F2, F3, C1, and C2, were applied 
in the current study to calculate the concentrations of thiol, 
carboxylic and phenolic functional groups using the con-
centrations of DOM. The elemental composition of DOM 
from different sources (e.g. different types of biochar) may 
vary (Jamieson et al. 2014; Mancinelli et al. 2017), and the 
constants may also vary among the different DOM types. 
Therefore, future studies are required to characterize DOM 
and provide more data to measure or calculate the concentra-
tions of the functional groups.

In combination with the results of Hg removal and DOC 
release from previous batch experiments, wood- and agricul-
tural residue-based high-T biochars are promising reactive 
media for Hg removal from aqueous solution. These bio-
chars showed high Hg removal percentages, limited release 
of DOC, and lower Hg–DOM complexes than the other bio-
chars evaluated in this study.
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