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Abstract
Organic carbon (OC) and elemental carbon (EC) in PM2.5 were estimated to study the seasonal and inter-annual variability 
of atmospheric total carbonaceous aerosols (TCA) at an urban site of megacity Delhi, India for 5 years from January, 2012 
to December, 2016. The annual average (± standard deviation) concentrations of PM2.5, OC, EC and TCA were 128 ± 81, 
16.6 ± 12.2, 8.4 ± 5.8 and 34.5 ± 25.2 µg m−3, respectively. During the study, significant seasonal variations in mass con-
centrations of PM2.5, OC, EC and TCA were observed with maxima in winter and minima in monsoon seasons. Significant 
correlations between OC and EC, and OC/EC ratio suggested that vehicular emissions, fossil fuel combustion and biomass 
burning could be major sources of carbonaceous aerosols of PM2.5 at the sampling site of Delhi, India.
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Particulate matter (PM) has been recognized as a key pol-
lutant due to its potential effects on local and regional air 
quality, visibility, earth’s radiation budget and global climate 
(Fuzzi et al. 2015). There is an evidence that exposure to 
PM2.5 leads to negative impacts on human health, including 
respiratory and cardiovascular diseases, allergies and prema-
ture mortality (Pope and Dockery 2006; Dockery and Stone 
2007; Gauderman et al. 2015; Velali et al. 2016). Recent 
studies indicate that PM2.5 was responsible for over 3 million 
premature deaths per year worldwide (Jerret 2015; Lelieveld 
et al. 2015) and this will be increased in the coming years if 
preventive measures are not taken strictly. Ambient PM2.5 
consists of organics, mineral dust, major and trace metals 
as well as sea salt and inorganic pollutants (Ram and Sarin 
2010; Sharma and Mandal 2017). PM2.5 containing carbo-
naceous aerosols has important effects on climate as well 
as earth’s atmospheric system (Jacobson 2001). Therefore, 
quantification of total carbonaceous aerosols (TCA) in PM2.5 
is necessary to develop air quality improvement strategies 

to control and reduce ambient PM2.5 concentrations through 
targeted action (Sharma et al. 2017b; Waked et al. 2014).

Organics are a major component of ambient aerosols, 
containing up to 40% of the fine aerosol mass (Jacobson 
et al. 2000; Kanakidou et al. 2005). The major source of 
TCA includes biomass burning, combustion of bio and fos-
sil fuels and biogenic emissions (Venkataraman et al. 2005). 
The Asian continent has been inferred as a major source 
region of natural dust, pollution and biomass burning aero-
sols (Simoneit et al. 2004). Asian aerosols have a potential 
impact on tropospheric chemistry of the region as well as 
global climate forcing (Lawrence and Lelieveld 2010). Black 
carbon [also known as elemental carbon (EC)], organic 
carbon (OC) and sulphate aerosol particles significantly 
contribute to the atmospheric radiative forcing and climate 
change (Jones et al. 2005). Organic aerosols have potential to 
scatter sun’s radiation, to reduce the hygroscopicity of inor-
ganic species and cause variation in light scattering property 
of aerosols with change in relative humidity (Sjogren et al. 
2007). In this context, the long-term study of carbonaceous 
aerosols is essential over the south Asian region. In this 
study, we report the seasonal and inter-annual variability in 
concentrations of OC, EC and TCA of PM2.5 over a period 
of 5 years at an urban site of megacity Delhi, India. We have 
also highlighted the possible potential sources of OC, EC 
and TCA of PM2.5 in megacity Delhi, India.
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Materials and Methods

Delhi, the capital of India is surrounded by four differ-
ent climatic zones (Himalayas in the north, central hot 
plains in the south, the Thar desert in the west and the 
Indo Gangetic plain in the east), which influence its semi-
arid climate and is considered as one of the most polluted 
megacities in the world (Gupta et al. 2018). PM2.5 sam-
ples were collected at CSIR-National Physical Laboratory, 
New Delhi (28°38′N, 77°10′E; 218 m amsl) from January, 
2012 to December, 2016 (except July–December, 2012 
due to malfunctioning of the instrument). The sampling 
site represents a typical urban environment with heavy 
roadside traffic all around and agricultural fields in the 
southwest direction. The area is under the influence of 
air mass flow from north-east to north-west in winter and 
from south–east to south–west during summer. A vehicular 
growth rate with around 9.70 million registered vehicles 
in 2015–2016 is quite alarming (Directorate of Econom-
ics and Statistics 2016). The temperature of Delhi varied 
from maximum (48°C) in summer (March–June) to a mini-
mum (2°C) in winter (November–February). The average 
rainfall in Delhi during monsoon (July–September) was 
of the order of ~ 700–900 mm. A detailed description of 
sampling site is available in Sharma et al. (2016).

Ambient PM2.5 samples (n = 387: 22 samples in 2012; 
66 samples in 2013; 74 samples in 2014; 94 samples in 
2015 and 131 samples in 2016) were collected on pre-
combusted (at 550°C) and desiccator-stored quartz fiber 
filters (QM-A, Whatman, GE Healthcare UK Limited, 
Buckinghamshire, UK) by using a fine particle sampler 
(APM 550, Envirotech, Delhi, IN) at 10 m height above 
the ground level. Ambient air was passed through the 
quartz filter (47 mm) at a flow rate of 1 m3 h−1 (accu-
racy ± 2%) for 24 h. The filters were weighed before and 
after the sampling in order to determine the mass concen-
tration of PM2.5. Each filter was used for OC and EC analy-
sis in triplicate using OC/EC carbon analyzer (DRI 2001A, 
Atmoslytic Inc., Calabasas, CA, USA). The principle of 
the OC/EC analyzer is based on preferential oxidation of 
OC and EC at different temperatures (Chow et al. 2004). 
The principal function of the analyzer is to pyrolyze the 
sample and then to char the OC compounds into EC. The 
method analyses for OC fractions (OC1, OC2, OC3 and 
OC4 at 140, 280, 480 and 580°C), pyrolyzed carbon frac-
tion (OP) and EC fractions (EC1, EC2 and EC3 at 580, 
740 and 840°C), respectively (Chow et al. 2004). Detailed 
descriptions of the analytical methods, calibration proce-
dures, etc. are available in our previous paper and refer-
ence therein (Sharma et al. 2015). Statistical analysis of 
PM2.5, OC and EC data were carried out using standard 
recommended methods (Sharma et al. 2016). Statistically 

significant differences of chemical species of PM2.5 on a 
seasonal basis were analyzed by Chi square method using 
Monte Carlo statistics (non-parametric test using SPSS 
software) (Datta et al. 2010). TCA is calculated as the sum 
of organic matter (OM = 1.6 × OC) and elemental carbon 
of PM2.5 (Srinivas and Sarin 2014). A conversion factor 
of OC > 1.4 is suggested for urban / sub-urban aerosols 
(Zhang et al. 2005). The sampling site is considered as a 
typical urban location, hence we adopted 1.6 as a factor to 
convert OC to OM (1.6 × OC).

Results and Discussion

Figure  1 shows the time series of PM2.5, OC, EC and 
TCA  from January, 2012 to December, 2016. The concen-
trations of PM2.5 and its chemical constituents were highest 
during the months of December, 2013 and January, 2014 
while minimum during the month of September, 2014. The 
annual average concentrations of PM2.5, OC, EC and TCA 
with standard deviation (± SD) were 128 ± 81, 16.6 ± 12.2, 
8.4 ± 5.8 and 34.5 ± 25.2 µg m−3, respectively from January, 
2012 to December, 2016 (Table 1). The highest annual aver-
age concentration of PM2.5 was in 2013 (136 ± 91 µg m−3), 
whereas the minimum concentration of PM2.5 was in 2014 
(113 ± 96 µg m−3). Similarly, higher concentrations of OC 
(18.7 ± 10.6 µg m−3), EC (10.1 ± 6.4 µg m−3) and TCA 
(40.0 ± 23.2 µg m−3) were in 2013. In the present case, the 
annual average concentrations of OC, EC and TCA contrib-
uted to ~ 13%, ~ 7% and ~ 27%, respectively to PM2.5. Jain 
et al. (2017) reported the similar percentage contributions 
of OC (~ 14% of PM2.5) and EC (~ 8% of PM2.5) to PM2.5 at 
Delhi, whereas Mandal et al. (2014) reported higher per-
centage contributions of OC (28% of PM2.5) and EC (9% of 
PM2.5) to PM2.5 in an industrial area of Delhi.

The seasonal variations in mass concentrations of PM2.5, 
OC, EC and TCA along with their seasonal differences are 
summarized in Table 2. During winter, the concentrations of 
PM2.5, OC and EC were recorded more than twice as com-
pared to the summer and monsoon seasons (Table 2). This 
may be due to the source strength of PM2.5 and prevailing 
meteorological conditions at the sampling site. Significant 
lowering of mixing height of the boundary layer during the 
winter season may also contribute to the higher concentra-
tion of PM2.5 (Datta et al. 2010). The highest percentage 
contributions of OC (13.9%), EC (6.3%) and TCA (28.6%) 
to PM2.5 were recorded during winter season. Whereas dur-
ing summer and monsoon seasons, more or less similar 
percentage contributions of OC (10%), EC (5%) and TCA 
(20%–22%) to PM2.5 were observed (Table 2).

Monthly average variations in the concentrations of 
PM2.5, OC, EC and TCA from January, 2013 to Decem-
ber, 2016 are depicted in Fig.  2. The highest monthly 
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average concentrations of PM2.5, OC, EC and TCA were 
317 ± 25.9; 48.2 ± 19.1; 26.4 ± 8.1 and 104 ± 45.9 µg m−3, 
respectively during the winter month of January, 2014 
(Fig. 2). The minimum monthly average concentration of 
PM2.5 was 34.4 ± 15.7 µg m−3 in September, 2014. Con-
centrations of OC, EC and TCA were 4.8 ± 0.4; 1.5 ± 0.2 
and 9.2 ± 0.5 µg m−3, respectively in the monsoon month of 
August, 2013. Bisht et al. (2015) and Jain et al. (2017) also 

reported similar monthly variations in carbonaceous species 
(OC, EC and TCA) of PM2.5 at Delhi. Mandal et al. (2014) 
reported significant monthly as well as seasonal variations 
in carbonaceous species of PM2.5 in an industrial area of 
Delhi. Monthly as well as seasonal variations in mass con-
centrations of PM2.5, OC, EC and TCA may be due to the 
source strength and prevailing meteorological conditions at 
the sampling site of Delhi, India. The changes in mixing 

Fig. 1   Temporal variability in mass concentrations of PM2.5, OC, EC and TCA during 2012–2016
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height of the boundary layer during various seasons may 
also contribute to higher concentration of PM2.5 and its car-
bonaceous species (Datta et al. 2010).

Emissions from vehicles and combustion of biomass (cow 
dung, agricultural waste and wood burning) are known to 
contribute significantly to atmospheric OC and EC (Ram 
and Sarin 2010). A significant linear correlation between OC 
and EC is usually indicative of similar sources like vehicu-
lar emissions or biomass burning (Salma et al. 2004; Ram 
et al. 2010; Sharma et al. 2014; Jain et al. 2017). Conversely, 
weakly correlated values of OC and EC suggest the pres-
ence of secondary aerosols and signify favorable conditions 
for gas-to-particle conversion of VOCs via photochemical 
atmospheric reactions (Begum et al. 2004, 2006). Significant 
positive linear relationships between OC and EC during win-
ter (R2 = 0.57; at p < 0.05), summer (R2 = 0.79; at p < 0.05) 
and monsoon (R2 = 0.90; at p < 0.05) seasons were observed 
(Fig. 3) at the sampling site, indicating a degree of influence 
from either vehicular emissions or biomass burning.

Several studies have indicated that the ratios of chemical 
composition of PM2.5 may also give significant information 

about their sources (Novakov et al. 2000; Cheng et al. 2006; 
Ram et al. 2010). Fossil fuels (vehicular emission, indus-
trial activities and small scale generators) could also be the 
dominant sources of OC and EC in the megacity like Delhi. 
During the study, the average ratio of OC/EC of PM2.5 was 
2.11 whereas annual average ratios of OC/EC were 1.85, 
1.69, 1.75, 2.30 and 2.96 during 2012, 2013, 2014, 2015 and 
2016, respectively (Table 1). The OC/EC ratio also depends 
on both the proximity of the emissions and relative weight 
of road traffic and biomass burning. The OC/EC ratio of road 
traffic emissions generally varies between 1.4 and 4 (Amato 
et al. 2009; Salameh et al. 2015). Large values (between 4 
and 12) of this ratio are generally found for biomass burning 
emissions (Szidat et al. 2006). Average values of OC/EC 
proffer the evidences of emissions from vehicles along with 
biomass burning, accounting the dominant sources of carbo-
naceous species of PM2.5 at the sampling site of Delhi. Anal-
ysis of stable carbon isotopic composition of PM2.5 indicated 
that vehicular emissions and biomass burning are the major 
sources of PM over the Delhi region (Sharma et al. 2015; 
2017a). Jain et al. (2017) has shown that biomass burning 

Table 1   Annual average and 
percentage contributions of 
PM2.5, OC, EC, TCA in Delhi

± Standard deviation (n = 387 for 5 years); values in parentheses are ranges
a Significantly different (p < 0.05)
b Significantly not different (p < 0.05); (used Chi square: Monte Carlo method; at 95% confidence level)

Year PM2.5 OC EC TCA​ OC EC TCA​ OC/EC
(µg m−3) (%)

2012 133b ± 92 18.7b ± 10.6 10.1b ± 6.4 40.0b ± 23.2 14.1b 7.6b 30.1b 1.85
2013 136a ± 91 19.3a ± 13.9 11.4a ± 7.5 42.2a ± 29.4 14.2a 8.4b 31.1b 1.69
2014 113a ± 96 16.6a ± 14.5 9.5a ± 8.4 36.0a ± 31.4 14.6a 8.4b 31.8b 1.75
2015 123a ± 65 13.8a ± 9.1 6.0a ± 3.3 28.1a ± 17.6 11.2a 4.9b 22.8a 2.30
2016 134a ± 64 14.5a ± 13.2 4.9a ± 3.8 28.1a ± 24.6 10.8a 3.7a 21.0a 2.96
Mean 128 ± 81 16.6 ± 12.2 8.4 ± 5.8 34.5 ± 25.2 13.0 6.6 27.4 2.11

(17.4–429) (2.7–69.1) (0.78–35.3) (5.21–145.9)

Table 2   Seasonal variations 
in PM2.5, OC, EC, TCA 
concentrations and their 
percentage contribution

± Standard deviation
a Significantly different (p < 0.05)
b Significantly not different (p < 0.05)

Species Season Seasonal difference

Winter (W) (n = 142) Summer (S) (n = 131) Mon-
soon (M) 
(n = 114)

W–S W–M S–M

PM2.5 (µg m−3) 202.5 ± 76.5 99.7 ± 35.0 80.0 ± 42.6 102.8a 122.5a 19.7a

OC (µg m−3) 27.4 ± 13.7 9.3 ± 4.2 8.6 ± 6.6 18.1a 18.8a 0.7a

EC (µg m−3) 12.1 ± 7.0 4.9 ± 3.1 4.2 ± 4.0 7.2a 7.9a 0.7b

TCA (µg m−3) 56.0 ± 27.5 19.8 ± 9.5 18.0 ± 14.4 36.2a 38.0a 1.8b

OC (%) 13.9 ± 6.6 10.3 ± 5.6 10.8 ± 7.4 3.6a 3.1a − 0.5b

EC (%) 6.3 ± 3.9 5.5 ± 3.8 5.3 ± 4.5 0.8b 1.0b 0.2b

TCA (%) 28.6 ± 13.7 19.9 ± 12.6 22.5 ± 14.2 8.8a 6.1a − 2.6a
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and vehicular emissions are the major sources of OC and 
EC of PM2.5 in megacity Delhi. In urban areas, the number 
of vehicles, industries and influence of human activities are 

increasing with time and expected to increase in the near 
future, which is believed to augment the abundance of TCA 
over the region. The carbonaceous aerosols have significant 

Fig. 2   Monthly variation in concentrations of OC, EC and TCA of PM2.5 along with PM2.5 from 2012 to 2016
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impact on atmospheric chemistry, climate and environmen-
tal transport systems. Hence, there is a need to take neces-
sary mitigation measures to control/cut down the emissions 
of carbonaceous aerosols from various sources.
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