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Abstract
The widespread contamination and persistence of the herbicide butachlor in the environment resulted in the exposure of 
non-target organisms. The present study investigated the toxicity effect of butachlor (1–15 µmol/L) and the protective effect 
of vitamin C (VC) against butachlor-induced toxicity in zebrafish. It was found that butachlor significantly increased the 
mortality and malformation rates in a dose-dependent manner, which caused elevation in reactive oxygen species (ROS) and 
malondialdehyde (MDA) after 72 h exposure. Compared with butachlor treatment group, the protective effect of VC against 
butachlor-induced toxicity were observed after adding 40, 80 mg/L VC respectively. VC significantly decreased the mortality, 
malformation rates, ROS, MDA, and normalized antioxidant enzymes activities of zebrafish after 72 h exposure. The result 
shows VC has mitigative effect on butachlor-induced toxicity and it can be used as an effective antioxidant in aquaculture.
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Butachlor (N-butoxymethyl-2-chloro-2′,6′-diethyl acetani-
lide) is a chloroacetanilide herbicide which inhibits protein 
synthesis in developing plant tissue and is widely used for 
pre-emergence or early post-emergence control of a variety 
of undesirable weeds in crops (Mohanty et al. 2001), and its 
consumption is nearly 4.5 × 107 kg per year in Asia alone 
(Abigail et al. 2015). With the widespread use of butachlor, 
it has been detected in the soil (Shi et al. 2011), ground-
water and surface water (Toan et al. 2013), and the residue 
concentrations range from 0.1 to 1.4 µg/L in surface water 
(Mamun et al. 2009), which has become one of the most 
serious environmental problems, pose a significant threat to 
aquatic ecosystems.

Like most other herbicides, butachlor has been identi-
fied as a possible carcinogen (Tu et al. 2013). Many studies 
have demonstrated the toxic effects of butachlor in aquatic 
animals, like earthworm (Chen et al. 2014), alga (He et al. 
2012), frog (Geng et al. 2005; Liu et al. 2011), fish (Tu 
et al. 2013; Anbumani et al. 2015; Xu et al. 2015) and even 
humans. Whereas studies of probing the protect effects 
of external antioxidant substances in this field are scarce. 
Thus, a reliable toxicity test and finding a way to provide 
the protective effect are needed to ensure aquatic organism 
and human safety.

Oxidative stress plays an important role in evaluating 
toxic effects (Xin et al. 2016). Many researchers have sug-
gested that toxic effects of pesticides could be associated 
with increased production of reactive oxygen species (Yu 
et al. 2008). ROS is the metabolic by products of oxygen 
(e.g., hydrogen peroxide and oxygen ions etc.) involving in 
cell signaling and homeostasis (Pandey et al. 2003). Previ-
ous studies were linked the toxic effects of butachlor with the 
oxidative stress that led to an imbalance between the antioxi-
dant defense system and the occurrence of ROS (Farombi 
et al. 2008). A significant increase in MDA was observed 
in the liver, kidney, gills and heart of African Catfish after 
exposure to different concentrations of butachlor (1, 2, 
2.5 mg/L) (Farombi et al. 2008). Although the toxicity of 
butachlor to aquatic organisms has been widely investigated, 
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the toxicity mechanism for the butachlor-induce oxidative 
stress on organism is not well elucidated.

There is an increasing evidence that VC has vital antioxi-
dant functions in aquatic organism. It is the most important 
free radical scavenger in extracellular fluids, trapping radi-
cals in the aqueous phase and protecting biomembranes from 
peroxidative damage (El-Neweshy et al. 2016; Padayatty 
et al. 2003). Moreover, the anticarcinogenic, anticlastogenic 
and even antimutagenic roles of VC have been tested in a 
variety of in vivo and in vitro systems exposed to radiation 
and pesticides (Durak et al. 2009; El-Sayed et al. 2016).

Zebrafish is a commonly used aquatic model for early-life 
stage toxicity evaluation of different environmental contami-
nants because of similarities with the human genome, low 
cost, diverse adaptability, short breeding cycle, high fecun-
dity, and transparent embryos (Dai et al. 2014; Hill et al. 
2005). To date, however, the effects of butachlor on zebrafish 
and the influence on butachlor toxicity of a well-known anti-
oxidant such as VC are yet to be understood.

Therefore, the aim of the present study is to evaluate the 
acute toxic effects of butachlor in zebrafish and to investi-
gate the possible protect effects of VC on butachlor-induced 
toxicity in zebrafish.

Materials and Methods

Butachlor (Purity > 98%) was purchased from Hangzhou 
Qingfeng agricultural chemicals company Ltd. DMSO and 
VC (Purity > 99%) were purchased from Aladdin industrial 
Inc. Shanghai. Butachlor stock solution was prepared by 
diluting butachlor by DMSO. All butachlor working solu-
tions were prepared in the Hank’s solution (137 mmol/L 
NaCl, 5.4  mmol/L KCl, 0.25  mmol/L Na2HPO4, 
0.44 mmol/L KH2PO4, 1.3 mmol/L CaCl2, 1.0 mmol/L 
MgSO4, and 4.2 mmol/L NaHCO3). MDA test kit was pur-
chased from Nanjing Jiancheng Engineering Research Insti-
tute. Milli-Q water was used to prepare all the solutions and 
suspensions. All chemicals used in the present study were 
at least of analytical grade.

Zebrafish embryos which used for chemical exposure 
were obtained from College of the Environment in Zhejiang 
University of Technology. According to the procedure speci-
fied by OECD (2011) Validation Report, the normal ferti-
lized embryos, 6 h post-fertilization (hpf), were randomly 
distributed in 50 mL beakers and were exposed to various 
concentrations of butachlor (0, 1, 2, 5, 10, 15 μmol/L), 
butachlor + 40 mg/L VC solution, butachlor + 80 mg /L VC 
solution, respectively, with 20 embryos per dose group at 
28 ± 1°C for a period of 72 h. The concentrations of buta-
chlor were selected from previous experiment according to 
the LC50 value (LC50-butachlor = 19.2 μmol/L). The Hank’s 
solution and hank’s solution @ VC were used as the control 

groups. Each experiment was performed independently 
in triplicate. Malformation, hatching delay and mortality 
were examined via inverted microscope (Nikon, Japan) and 
recorded daily. During exposure, dead embryos/larvae were 
promptly removed. The exposure solutions were renewed 
daily.

The test concentrations of VC and butachlor were meas-
ured by UV–vis spectrophotometer (Agilent Cary 100) and 
GC–MS (GC 2000-Mars 6100) respectively. The maximum 
absorption wavelength was 261 nm and the regression equa-
tion was y = 0.02731x + 0.0698 with correlation coefficient 
of 0.9941 when the VC content was 10–100 mg/L. The 
extraction procedures of butachlor exposure solution were 
based on the method developed by Mamun et al. (2009). The 
working conditions of the equipment were the following: 
Helium (purity 99.999%) was used as carrier gas, volume 
of injection 1 μL (splitless), injector temperature 280°C, 
ionization mode-electron impact at 70 eV, ion source tem-
perature was 180°C and transfer line temperature at 250°C, 
the column oven was programmed as follows: initial tem-
perature set at 80°C for 2 min, then it was increased to 280°C 
at 20 C min−1 (hold 10 min). Selected ion monitoring scan 
spectra were conducted for butachlor quantitative analysis 
with ion fragments of 176 and 160 (Wang et al. 2008). The 
detailed parameters were showed in the Table 1. 

Biochemical assays were performed for investigat-
ing the oxidative stress after 72 h exposure. ROS pro-
duction was measured by conversion of non fluorescent 
2′7′-dichlorofluorescin diacetate (DCFDA) to the higher 
f luorescent compound dichlorofluorescein (DCF) as 
described by Wang et al. (1999). Fluorescence intensi-
ties were measured by SpectraMax M5 Microplate Reader 
(Molecular Devices, USA) at 488 nm excited emission 
and 525 nm emission light. The concentration of MDA, a 
molecular indicator of lipid peroxidation, was evaluated 
using MDA assay kits according to the manufacturer’s 
protocol. Catalase (CAT) activity was measured accord-
ing to the method described by Sinha (1972). Glutathione 
S-transferase (GST) activity was based on the reaction 
of GST with p-nitrobenzyl chloride as described by 
Keen et al. (1976), which formed a complex with maxi-
mal absorbance at 310 nm. The activity of acid phos-
phatase (AcP) was determined by the method proposed by 

Table 1   Quantitative features of the method for butachlor pesticides

Linear 
range 
(µg/L)

Regression equation Corre-
lation 
coef-
ficient

LOD 
(µg/L)

LOQ 
(µg/L)

RSD 
(%) 
(n = 3)

5–500 y = 140.03x − 354.12 0.9993 0.2069 0.6896 0.71%–
5.59%
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Prazeres et al. (2004). Moreover, soluble protein content 
was determined according to the method of Marion and 
Bradford (1976) with bovine serum albumin as a stand-
ard. All biomarker concentrations were normalized to its 
protein content respectively. Each experiment was con-
ducted twice with three replicates. The calculated spe-
cific activities were then expressed relative to the average 
value of the controls. All zebrafish were maintained in 
accordance with the Guidelines for the Care of Labora-
tory Animals of the Ministry of Science and Technology 
of the People’s Republic of China.

Experimental data were analyzed by Origin pro 8 and 
SPSS statistical software (IBM SPSS, USA) packages. 
Each of the toxicity data sets was compared with its 

corresponding control followed by ANOVA. The differ-
ences were considered statistically significant at p < 0.05.

Results and Discussion

Pesticides provoked oxidative stress leading to the gen-
eration of free radicals and caused lipid peroxidation as 
molecular mechanism involved in pesticide-induced toxicity 
(Wang et al. 2013). Recent studies indicated that the toxic-
ity effect induced by butachlor might be associated with 
the increasing of ROS, which might provide an explanation 
for the multiple types of toxic responses (Farombi et al. 
2008). Butachlor were significantly (p < 0.05) lethal in a 

Fig. 1   Physical abnormalitied of 
zebrafish embryo/larvae caused 
by butachlor from 24 to 96 h 
(a–d 24 h; e–h 48 h; i–k 72 h; 
l–q 96 h. a, e, i, l-normal; j, k, 
p, q-pericardial edema; g, h, k, 
o, p, q-yolk sac edema; j, m, 
q-crooked body)
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dose dependent way to early zebrafish embryos. Similar 
responses to butachlor exposure were observed in zebrafish 
(Tu et al. 2013) like pericardial edema (J, K, P, Q), yolk sac 
edema (G, H, K, O–Q) and crooked body (J, M, Q) in the 
Fig. 1. The measured test concentrations of butachlor were 
between 80 and 100% of the nominal test concentrations 
during the exposure period (Fig. 2 a). The loss might be 
due to sorption or volatility (Peddinghaus et al. 2012). Mor-
tality and malformation rates of zebrafish were increased 
significantly with increasing concentrations of butachlor 
(Fig. 3). In the meantime, the hatching rate was significantly 
decreased. Butachlor promoted oxidative stress response 
in zebrafish as indicated by enhanced MDA and ROS con-
tents and induced CAT, SOD, GST and AcP (Fig. 4). The 
increasing of AcP and CAT activities were induced at the 
low concentrations of butachlor, while their activities were 
inhibited at high concentration (Fig. 4). The results indi-
cated that butachlor induced developmental toxicity in a 
dose dependent way.

Compared to the butachlor group, the mortality and 
malformation rates were significantly decreased after add-
ing VC (Fig. 3). The decrease in mortality was greater as 
the concentration was higher, especially when the con-
centration of butachlor was 15 µmol/L (Fig. 3a). But the 
hatching rate showed no significant change after adding 
VC. Those phenomenons indicated that VC might have a 
beneficial role in ameliorating butachlor toxicity. To the 

best of our knowledge, there are no reports on the protec-
tive effect of antioxidant in butachlor toxicity. However, 
the protective role of antioxidant in organophosphate (OP) 
toxicity has been investigated in previous research (Eroglu 
et al. 2013), such as dichlorvos-induced oxidative stress 
in human erythrocytes. VC and VE could ameliorate OP-
induced oxidative stress by decreasing lipid peroxidation in 
erythrocytes at certain doses of OP pesticides (Eroglu et al. 
2013). The similar result was obtained from our research. 
MDA contents were obviously decreased after adding VC 
(Fig. 4a). The MDA content directly manifests the lipid 
peroxidation and membrane disruptions in response to oxi-
dative stress. In addition, ROS contents were controlled at 
a low level after adding VC (Fig. 4b), which was signifi-
cantly at 5 and 10 μmol/L butachlor group. But MDA and 
ROS contents of zebrafish were increased when 15 μmol/L 
butachlor co-existed with VC. CAT and AcP activities of 
zebrafish increased and maintained at a higher level after 
adding VC (Fig. 4). CAT is the enzyme which can elimi-
nate H2O2 (Yu et al. 2008; Dale et al. 2017). VC might 
involve in the process of decomposition of H2O2 or O2 at 
the oxidative stress which was caused by butachlor. All the 
above demonstrated that VC could ameliorate butachlor-
induced toxicity.

It was worth noting that the mortality and malforma-
tion rates were increased when exposed to pure VC solu-
tion (40, 80 mg/L VC). The measured test concentrations 

Fig. 2   The test concentration of butachlor (a) and VC (b) in the Zebrafish embryo toxicity Test using a 24-h renewal semi-static design
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were significantly lower (between 0.2% and 18%) than the 
nominal test concentrations during the exposure (Fig. 2b). 
Compared to the control group, mortality and malforma-
tion rates increased by 6.67%, 5.83%, respectively, at a 
concentration of 40 mg/L of VC (Fig. 3). The other rose to 
11.67%, 13.33% respectively (Fig. 3). Besides, the contents 
of MDA, ROS, GST were also increased obviously when 
VC existed alone (Fig. 4). It meant VC might have adverse 

effect when it existed alone and that should be the point for 
further studies.

In conclusion, VC could ameliorate butachlor-induced 
toxicity, as indicated by the decrease of mortality, malforma-
tion rates and the reversion in the response of the biomark-
ers. As an effective antioxidant, it may play an important 
role in chemoprotection strategies during aquaculture for 
pesticide pollution.

Fig. 3   The mortality (a), hatching (b) and malformation (c) of zebrafish embryos after 72 hpf incubation of mixed solutions of butachlor and 
vitamin C. (The letter “B” meant butachlor. Means shared the same letter or asterisk are significantly different, p < 0.05)
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Fig. 4   Expression of biochemical parameters (a–e), a malondialdehyde, b 
reactive oxygen species, c catalase, d glutathion-S-transferase and e acid phos-

phatase in zebrafish after exposure to butachlor-VC mixed solutions for 72 hpf. 
(Means shared the same letter or asterisk are significantly different, p < 0.05)
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