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stems mainly from livestock manures, atmospheric deposi-
tion, and fertilizers (Luo et  al. 2009). Because of its high 
rates of soil-to-plant transfer, Cd can easily be taken up by 
crops and limits their growth and productivity, potentially 
affecting human heath after consumption (Satarug et  al. 
2010; Yuan et al. 2014; Zhong et al. 2015). Therefore, it is 
prudent to limit the entrance of harvest from Cd-contam-
inated agricultural soil into the human food chain. Many 
researchers have suggested that utilizing the Cd-contam-
inated agricultural soil to produce bio-energy, which will 
generates economic and environment benefits (Meers et al. 
2010; Prasad 2015).

In this context soybeans, which are not only one of the 
most important crops in the human diet and animal feeds 
but also industrial products (Singh and Lee 2016), might 
be a sensible crop. However, previous studies have shown 
that the quality of soybean seeds and the agronomic traits 
of soybean plants are significantly affected on Cd-con-
taminated soils (Boggess et al. 1978; Ishikawa et al. 2005; 
Xue et  al. 2014a; Zhou et  al. 2013). Thus, it is important 
to develop soybean cultivars with increased Cd tolerance 
to increase yields when grown on Cd-contaminated soil. 
Wild soybean (Glycine soja Sieb. et Zucc.), the progeni-
tor of soybean, have more genetic diversity than cultivated 
soybean (Zhou et al. 2015). What’s more, there is no repro-
ductive barrier between wild and cultivated soybean (Lam 
et al. 2010). Therefore, it has been adopted as a germplasm 
source for soybean breeding to improve resistance of cul-
tivated soybean. Our previous studies demonstrated that 
halophyte of Dongying wild soybean (Glycine soja Sieb. 
et Zucc. ZYD 03262) can maintain higher photosynthetic 
activity under salt stress compared with cultivated soybean, 
which could be attributed to a mechanism that maintain 
low shoot Na+ concentration by accumulating it in the roots 
(Chen et al. 2013; Xue et al. 2014b). However, until now, 
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(PN), actual photochemical efficiency of PSII (ΦPSII), sto-
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it has not been clear if the wild soybean also has a stronger 
Cd resistance than the cultivated soybean.

It is well known that photosynthesis in higher plants is 
sensitive to Cd stress. Numerous studies have demonstrated 
that the decrease in photosynthetic rate might be a result of 
the reduced chlorophyll contents (Mobin and Khan 2007), 
the obstructed electron transport (Sigfridsson et al. 2004), 
as well as the perturbation of enzymatic process of Calvin 
Cycle (Dias et al. 2013; Krantev et al. 2008).

Thus, in this study, we compared the Cd tolerance 
between the Dongying wild soybean and a cultivated soy-
bean to explore the influence of different Cd concentration 
on photosynthetic activity in the two soybeans species. The 
possible mechanisms of Cd resistance in the wild soybean 
were also discussed.

Materials and Methods

Dongying wild soybean (DY-03262) seeds were collected 
from the estuaries of the Yellow River in Kenli County 
in the Shandong Province of China. The cultivated soy-
bean [Glycine max (L.) Merr. Shanning 11] (SN-11) was 
widely grown in Shandong Province of China. Because 
the seed coat of the wild soybean is very strong to prevent 
water from getting into the seed. The wild soybean seeds 
were soaked with concentrated sulphuric acid for 3 min to 
destroy the seed coat. Whereas, the cultivated soybean ger-
minates easily without any limitation by the seed coat, we 
did not treat it with concentrated sulphuric acid. Both seeds 
were germinated on vermiculite. The plants were grown 
in a greenhouse (the average quantum irradiance at mid-
day = 1200  μmol  m−2  s−1, the average day/night tempera-
tures = 30/22°C, the humidity = 75%–90%). After 12 days, 
the unanimous seedlings were transplant to pots (40  cm 
in height and 25  cm in diameter) containing quartz sand, 
which does not contain any other soluble minerals. There 
was one plant in each pot. The plants were supplied daily 
with Hoagland solution to avoid any potential nutrient and 
drought stresses. The Hoagland solution contained: 5 mM 
Ca(NO3)2·4H2O, 5  mM KNO3, 2  mM MgSO4·7H2O, 
1 mM KH2PO4, 0.1 mM EDTA-Fe, 47 μM H3BO3, 1 μM 
MnCl2·4H2O, 0.25 μM CuSO4·5H2O, 1 μM ZnSO4·7H2O, 
and 0.01 μM H2MoO4. The treatment solutions were pre-
pared with Cd(NO3)2·4H2O to give Cd concentrations of 
0, 50, 100 μM, approximately 0, 5.62 and 11.24 mg kg−1 
in the soil. Although the exposure concentrations of Cd 
have not been confirmed by chemical analysis, the sand 
in the pot was flushed with sufficient treatment solution 
(about double amount of the water that the sand in the pot 
can hold) daily and extra solution leaked through a hole 
in the bottom of each pot. Therefore, the Cd levels would 
maintain a consistent as our setting concentration during 

the whole period of the experiment. The treatments were 
started at 20 days after transferring the seedling to pots. 
There were eight replicates for each treatment. The treat-
ments continued for 10 days.

Three plants per treatment were randomly collected at 
the termination of the experiment to determine the length 
of shoots and roots. Then, the shoots and roots were 
weighed for the dry weight after drying at 80°C to a con-
stant mass, when the difference value between the last two 
weighing less than 0.1% of the final weight.

The photosynthetic rate (PN), stomatal conductance (gs), 
and intercellular CO2 concentration (Ci) were measured by 
a CIRAS-2 portable photosynthesis system (PP Systems, 
USA), connected with a PLC6(U) leaf cuvette. During each 
measurement, the photosynthetic photon flux density was 
maintained at 1200 μmol m−2 s−1, temperature at 25°C and 
CO2 concentration at 360 mmol mol−1 in the leaf cuvette. 
The light was provided by a red and blue LED source. Four 
replicate measurements were made for each treatment, and 
the results were averaged.

Chlorophyll fluorescence was measured using a FMS-2 
pulse-modulated fluorimeter (Hansatech, UK). A 0.8 s sat-
urating light of 8000 μmol m−2 s−1 was used for the dark-
adapted (20 min) leaves to determine the maximal fluores-
cence (Fm). Then, the leaves were illuminated by actinic 
light at 1200  μmol  m−2  s−1. When the leaves reached 
steady-state photosynthesis, the steady-state fluorescence 
value (Fs) was recorded, and a second 0.8 s saturating light 
of 8000 μmol m−2 s−1 was used to determine the maximal 
fluorescence (Fm′) in the light-adapted state. Then, the 
actinic radiation was then turned off for 3  s, the minimal 
fluorescence in the light-adapted state (Fo′) was determined 
by illumination of 3 s far red light. The following param-
eters were calculated: (1) the actual photochemical effi-
ciency of PSII, ΦPSII = 1–Fs/Fm′ (Genty et al. 1989); (2) the 
photochemical quenching, qP = (Fm′–Fs)/(Fm′–Fo′) (Baker 
2008). Six replicate measurements were made for each 
treatment, and the results were averaged.

The Cd concentrations in the plants were determined 
using an atomic absorption spectrophotometer (AA6300, 
Shimadzu, Japan), equipped with deuterium lamp back-
ground correction and an air-acetylene flame. A Cd hollow-
cathode lamp at a wavelength of 228.8 nm was used as a 
radiation source. The roots and leaves of the two soybean 
species for each treatment were separately harvested at the 
end of experiment, then rinsed with deionized water, dried 
to a constant mass at 80°C, and digested in concentrated 
nitric–perchloric acid (2:1, V/V). Three replicate measure-
ments were made for each treatment, and the results were 
averaged.

Data were subjected to two-way analysis of vari-
ance (ANOVA), using SPSS 22, and were tested for 
homogeneity of variance with the Levene’s test. Then 
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multiple-comparison test of the means values was deter-
mined through least significant difference (LSD) test with a 
significance level of p < 0.05.

Results and Discussion

It has been proved that the shoot Cd concentrations var-
ies not only among plant species (Li et al. 1997), but also 
among cultivars (Arao and Ae 2003; Florijn and Beusichem 
1993; Ishikawa et al. 2005; Yan et al. 2010). Arao and Ae 
(2003) reported that Cd levels in soybean plants ranged 
from 0.46 to 2.7  mg  kg−1 among 17 cultivars. Ishikawa 
et al. (2005) have suggested that the Cd concentrations in 
the shoot of younger soybean plant can be used to select 
low Cd-accumulation soybean cultivars. The Cd accumu-
lation capacity of roots, which are the first organ to con-
tact with Cd, determines the Cd concentrations in shoots 
(Sugiyama et  al. 2007). Hydroponic experiments have 
shown that root morphological traits are closely related to 
Cd tolerance at young seedlings under different Cd treat-
ments (0, 9, 23, 45, and 90 μM) (Wang et al. 2016). So Cd 
is strongly retained by plant roots and only a few fractions 
of the accumulated Cd can be transported to leaves (Cat-
aldo et al. 1981), which was also confirmed by this study. 
The Cd concentrations in the roots of DY-03262 was much 
higher than that of SN-11 (Fig. 1a), and the Cd concentra-
tions in DY-03262 leaves were 9.98 and 16.69 μg g−1 for 

50 and 100  μM treatment (Fig.  2a), which was 1.21 and 
1.72 times higher than that in SN-11. The ratio of Cd con-
centrations of the leaves to roots in DY-03262 was 0.021, 
0.014 in plants with 50 and 100 μM treatment, respectively, 
and 0.031, 0.025 in SN-11 with the same treatments in this 
study, which indicates that the ratio of Cd concentrations of 
leaves to roots in DY-03262 was lower than that in SN-11. 
The accumulation of Cd in shoots of soybeans may be 
affected by Cd translocation from root to shoot (Sugiyama 
et al. 2007), so more Cd absorbed by the roots of DY-03262 
might lead to more Cd translocated to the leaves.

It is known that the photosynthetic apparatus is par-
ticularly susceptible to Cd and the reduction of PN is the 
common response in plants exposed to Cd stress (Andresen 
and Küpper 2013; Xue et al. 2014a). In this study, the PN 
(Fig. 2a) and gs (Fig. 2b) in leaves of the two soybean spe-
cies decreased with increasing concentrations of Cd in the 
nutrient solution. Meanwhile, the decrease in DY-03262 
leaves were significantly greater than that in SN-11 
(p < 0.05). Compared with the changes of gs and PN, there 
were no significant changes of Ci in the leaves of the soy-
beans (Fig. 2), so the decrease of PN was mainly caused by 
the damage of the mesophyll rather than the stomata. The 
results demonstrated that the different Cd treatments sig-
nificantly decreased the dry weights of roots and shoots in 
both soybean species. The decrease in growth of the two 
soybean species after Cd treatments (Table  1) should be 
partly attributed to the significantly decreased PN in leaves 

Fig. 1   The Cd concentrations 
in roots (a) and leaves (b) of 
DY-03262 and SN-11 after 
treated with different concentra-
tions of Cd for 10 days. Values 
are the means ± SD (n = 3). The 
different letters present on top 
of bars indicate significant dif-
ferences at p < 0.05

Fig. 2   The PN (a), gs (b), and 
Ci (c) in the leaves of DY-03262 
and SN-11 after treated with 
different concentrations of Cd 
for 10 days. Values are the 
means ± SD (n = 4). The differ-
ent letters present on top of bars 
indicate significant differences 
at p < 0.05
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(p < 0.05). DY-03262 suffered a severer decrease in PN than 
SN-11, and the root length, shoot length, root biomass, and 
shoot biomass of DY-03262 decreased by 51%, 43%, 70%, 
62%, respectively under 100  μM Cd treatments, whereas, 
those of SN-11 decreased by 32%, 16%, 45%, 64%, respec-
tively. These results indicate that DY-03262 is more sensi-
tive to Cd stress than SN-11.

As shown in Fig. 3, the significantly correlation between 
the Cd concentrations and PN in the leaves of both soybean 
species (R2 = 0.96, p < 0.01) indicates that the PN of the 
both soybean species has a similar response to Cd concen-
trations in leaves. The greater decrease of PN in DY-03262 
is mainly attributed to the higher concentrations of Cd in 
DY-03262 leaves compared to that in SN-11.

Many studies have shown that Cd in the leaves could 
interfere with the activation Ribulose-1,5-bisphosphate 
carboxylase/oxygenase (Rubisco, EC 4.1.1.39), which is 
the key enzyme involved in carbon assimilation. This influ-
ence could decrease the activity of Rubisco and damage 
its structure by substituting Mg2+ ions (Dias et  al. 2013; 
Pietrini et al. 2003). The limitation of the CO2 assimilation 

decreases the consumption of ATP and NADPH, leading 
to feedback inhibition of electron transport in chloroplasts. 
The inhibition of electron transport in chloroplasts is sup-
ported by the serious reduction in ФPSII (Fig.  4a) and qP 
(Fig.  4b) in leaves of both soybean species. Meanwhile, 
the remarkable reduction of ФPSII and qP in DY-03262 
leaves compared with SN-11 indicates that less light energy 
was utilized by photochemical reaction and more exces-
sive excited energy was produced in DY-03262 leaves. 
Although Cd is a non-redox metal that is unable to par-
ticipate in Fenton and Haber–Weiss reactions, there are 
evidences that it can indirectly promote generation of reac-
tive oxygen species (ROS) (Domínguez et  al. 2010; San-
dalio et al. 2001). The generation of ROS has potential to 
cause significant damage to membrane and other cellular 
structures, and inhibit plant growth (Andresen and Küp-
per 2013; Apel and Hirt 2004). Therefore, the more gen-
eration of ROS would cause the damage to membrane and 
the reduction of Rubisco contents (Romero-Puertas et  al. 
2002). The decrease of the PN in leaves of the two soybean 
species with Cd treatments is partly due to the inhibition of 
Rubisco by the Cd (Dias et al. 2013; Pietrini et al. 2003). 

Table 1   Changes in root 
length, shoot length, root 
biomass, and shoot biomass 
of DY-03262 and SN-11 
after treated with different 
concentrations of Cd for 10 days

Data are the means ± SD (n = 3). The different letters present on the same column indicate significant dif-
ferences at p < 0.05

Cd treatment 
(μM)

Root length (m) Shoot length (m) Root biomass (g) Shoot biomass (g)

DY-03262
 0 0.21 ± 0.04a 0.96 ± 0.10a 1.93 ± 0.47b 3.43 ± 0.40ab
 50 0.14 ± 0.02b 0.67 ± 0.11b 1.21 ± 0.39c 2.37 ± 0.62bc
 100 0.10 ± 0.01cd 0.55 ± 0.04c 0.57 ± 0.12d 1.30 ± 0.19d

SN-11
 0 0.12 ± 0.01bc 0.19 ± 0.02d 2.91 ± 0.65a 4.10 ± 0.57a
 50 0.09 ± 0.01d 0.16 ± 0.01d 1.68 ± 0.01bc 3.03 ± 0.24b
 100 0.08 ± 0.01d 0.16 ± 0.01d 1.04 ± 0.10c 2.25 ± 0.37c

Fig. 3   Correlations between PN and Cd concentrations in the leaves 
of DY-03262 and SN-11 after treated with different concentrations of 
Cd for 10 days (n = 6)

Fig. 4   The ΦPSII (a) and qP (b) in the leaves of DY-03262 and SN-11 
after treated with different concentrations of Cd for 10 days. Values 
are the means ± SD (n = 6). The different letters present on top of bars 
indicate significant differences at p < 0.05
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So, compared with SN-11, the higher concentrations of Cd 
in DY-03262 leaves resulted in a greater decrease in PN.

It have been demonstrated that the DY-03262 has an 
ability to accumulate higher levels of Na+ in its roots, pre-
venting the accumulation of higher concentrations of Na+ 
in its leaves to protect the photosynthetic apparatus from 
salt damage (Xue et al. 2014b). Whereas, according to the 
results of this study, we conclude that the DY-03262 is not 
more resistant to Cd stress compared to the SN-11. This is 
because of the higher Cd concentrations in the DY-03262 
leaves. Through the ratio of Cd concentrations of leaves to 
roots in the DY-03262 is lower than that in the SN-11, the 
higher Cd level in the DY-03262 roots leading to more Cd 
translocation to the leaves. Therefore, the greater decrease 
of PN in DY-03262 is mainly attributed to the higher con-
centrations of Cd in DY-03262 leaves compared to that in 
SN-11. Then, we think that the mechanism of salt (NaCl) 
resistance in the DY-03262 is different from that of Cd 
resistance. It seems that the DY-03262 is not able to efflux 
Cd through the salt gland-like structures, which could 
secrete Na+ to maintain lower Na+ concentrations in leaves 
(Zhou and Zhao 2003).

However, why do the DY-03262 use different mecha-
nisms to deal with different metal ions, and why are Cd 
ions not be secreted by the salt gland-like structures in 
leaves? To elucidate these questions needs further studies.
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