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Air-borne particulate matter plays an important role in 
climate and atmospheric chemistry, as it contains vari-
ous harmful species that may affect human health (Talifu 
et al. 2015). In particular, the particulate matter with aero-
dynamic diameter less than 2.5  µm (PM2.5), attracts pub-
lic attention around the world, because it is deposited 
throughout the human respiratory tract, causing heart and 
lung diseases (Pui et al. 2014). Numerous publications have 
revealed that polycyclic aromatic hydrocarbons (PAHs) can 
be highly enriched in PM2.5 (Masih et al. 2012), due to their 
low solubility, low reactivity and moderate vapor pressure 
(Chang et  al. 2006). Particulate-phase PAHs are consid-
ered to be a significant hazard to human health (Hong et al. 
2007).

PAHs are compounds with two or more aromatic rings, 
which are mainly derived from the incomplete combustion 
of carbon enriched materials (Ma et  al. 2010a). Although 
some natural sources (volcanoes and forest fires) could 
contribute to the PAH burden, anthropogenic sources, such 
as combustion of fossil fuels, residential heating, and coke 
production are by far the major sources of PAHs (Li et al. 
2014).

Hefei is the capital city of Anhui province, China. In 
recent decades, Hefei has faced accelerated development 
of economy, industrial facilities, urban construction and 
public transportation. In this study, PM2.5 samples were 
collected systematically from Hefei city and their PAHs 
were measured. The main aims of this study are to: (1) 
investigate the spatial and seasonal variations of PAHs, (2) 
understand the controls of meteorological parameters on 
the enrichment and distribution of PAHs, and (3) identify 
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the possible sources of PAHs. We aimed to provide a case 
to understand the organic pollution in particulate matter at 
developing cities.

Materials and Methods

Hefei City (E117°27′, N 31°86′) is the economic and cul-
tural center of Anhui province. It is located in the middle 
of the province, covering an urban area of 1, 100 km2. It 
had 4.86 million residents and more than 1.2 million vehi-
cles in 2015 (Deng et  al. 2016). Hefei has a subtropical 
humid monsoon climate, with four seasons defined as fol-
lows: spring (March–April), summer (May–August), fall 
(September–November) and winter (December–Febru-
ary). PM2.5 was sampled simultaneously at two locations of 
Hefei: Site A (MS) located at a middle school, northeast 
of First Ring Rd, Yaohai district, adjacent to the residential 
area; Site B (ME) located at west section of Fanhua Ave-
nue, Shushan district, adjacent to a road with a very high 
traffic volume (Fig. 1).

A middle volume air sampler (LaoYing 2030, Laoshan 
Electronic Instrument, Qingdao, CN) was used to collect 
the PM2.5 on a quartz fiber filter (Whatman EPM2000, UK, 
diameter = 90 mm), at a flow rate of 100–120 L min−1 for 
approximately 20 h. In total, samples were collected at the 
time intervals of 20–28 May 2014 in summer, and 16–23 
January 2015 in winter. Before sampling, all filters were 
baked in a muffle furnace at 500°C for 4  h to eliminate 

the background organic matter. Filters were weighed on a 
microbalance to ±0.001 mg (Sartorius MSA 3.6P-000-DM, 
Gottingen, DE) on a clean bench before and after sampling 
to calculate the mass of collected PM2.5 samples. Upon col-
lection, the filters were stored in clean containers kept at 
4°C.

Each filter was cut into small pieces (1cm × 1 cm) using 
stainless steel scissors, and then was extracted for PAHs 
by dichloromethane (DCM) and acetone (chromatographi-
cally pure grade) in an accelerated solvent extraction 
apparatus (Dionex-ASE 350, Sunnyvale, CA, USA). The 
extracts were concentrated to 1 mL by automatic paral-
lel concentrator (MultiVap-8, LabTech, Hopkinton, MA, 
USA) before analysis with a gas chromatograph (GC, Agi-
lent Technologies 7890, Wilmington, DE, USA) equipped 
with a gas chromatograph Agilent HP-5MS, non-polar 
30 m × 0.25 mm capillary column in tandem with a mass 
spectrometer (MS, 5975 N).

The helium carrier gas was set at a flow rate of 1.0 mL 
min−1. Each sample run was programmed as follows: start-
ing temperature of 100°C for 2 min, ramping to 200°C at 
a rate of 20°C min−1, ramping to 300°C at a rate of 4°C 
min−1 and keeping for 10 min.

Sixteen priority PAH compounds specified by the 
Environmental Protection Agency, USA (USEPA), 
were analyzed, including: NAP—naphthalene; ANY—
acenaphthylene; ANA—acenaphthene; FL—fluorene; 
PHE—phenanthrene; An—anthracen; FLU—Fluoranthene; 
PYR—pyrene; BaA—benz[a]anthracene; CHR—chrysene; 

Fig. 1   Sketch map showing the PM2.5 sampling locations (ME, MS), Hefei, Anhui, China
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BbF—benzo[b]fluoranthene; BkF—benzo[k]fluoranthene; 
BaP—benzo[a]pyrene; IcdP—indeno[1,2,3-cd]pyrene; 
DBA—dibenzo[a,h]anthracene; and BghiP—benzo[ghi]
perylene.

Field blank, method blanks (solvent) and spiked blanks 
(standards spiked into solvent) were analyzed by the same 
procedure. There were no significant background interfer-
ences. In addition, surrogate standards were added to all 
the samples to monitor procedural performance and matrix 
effects consisting of phenanthrene-d10, chrysene-d12, and 
perylene-d12 (Aldrich Chemical, Gillingham, Dorset, UK). 
The mean recoveries (%) of the three surrogates in field 
samples were within the acceptable range (75%–128%). 
The calibration curves were linearly fitted with correlation 
coefficients (R2) from 0.996 to 1for all of the PAHs when 
conducting the external calibration. PAH concentrations 
were corrected for recovery efficiency during extraction.

Pearson correlation and principal component analysis 
(PCA) and correlation analysis were performed using SPSS 
version 17.0 software packages (IBM, Somers, NY, USA). 
Meteorological data were obtained from the Weather 
Bureau of Anhui Province, and are listed in Table 1.

Results and Discussion

At ME and MS sampling sites, the daily concentrations 
of PM2.5 reached 121.75 ± 26.96 and 104 ± 21.75 µg m−3 
in winter, whereas in summer, they were 100.44  ±  44.37 

and 64.89 ± 30.78 µg m−3, respectively. The average daily 
value of PM2.5 concentration was 96.88  ±  32.46  µg m−3, 
higher than the National Ambient Air Quality standard 
for PM2.5 (NAAQS-2012 24-h) of 35 µg m−3 (Chen et al. 
2015; You 2014). It was also higher than the China Ambi-
ent Air Quality Standard (GB3095-2012 24-h grade II) of 
75 µg m−3 (Brunner 1985; China 2012).

Mean concentrations of PM2.5-bound individual 
PAHs are shown in Table  2. During sampling times, 
the total mean ∑PAH concentrations ranged from 4.92 
to 71.00  ng  m−3 in Hefei, with a mean of 21.34  ng m−3. 
This mean is lower than those in other large Chinese cities 
such as Beijing (112.7 ng m−3 in 2003), Qingdao (87.5 ng 
m−3) and Guangzhou (117.4  ng  m−3), but is obviously 
higher than those in the developed countries/regions such 
as London (17.23 ng m−3), Hong Kong (7.42 ng m−3), and 
Los Angeles (2.46 ng m−3)(Baek et al. 1992; Fraser et al. 
1998; He et  al. 2006; Zheng and Fang 2000). Benzo(a)
pyrene has been categorized as a carcinogenic PAH, and 
is often used as an indicator of human PAH exposure. In 
this study, the mean BaP concentration was 0.46 to 2.31 ng 
m−3 (mean = 1.15 ng m−3), which was lower than the maxi-
mum allowable annual average BaP concentration of 2.5 ng 
m−3, according to the China Ambient Air Quality Stand-
ard (GB3095-2012) (China 2012). Our BaP concentration 
was comparable to the published results for other Chinese 
cities, and was lower than value for Beijing (17.8 ng m−3), 
Guangzhou (2.98  ng m−3) and Harbin (2.5  ng m−3) (Liu 
et al. 2015; Ma et al. 2010b; Wang et al. 2008).

The spatial and seasonal variations in PAH concentra-
tions for the two sampling sites are shown in Table 2. The 
overall mean ∑PAHs in the PM2.5 at ME site (27.23  ng 
m−3) was higher than that at MS site (18.20 ng m−3). This 
was largely due to the 2.2-fold higher winter values at site 
ME. This might relate to the locations of the sampling sites. 
The ME site is located in the economic development zone, 
the major industrial area of Hefei. The sampling site was 
adjacent to a road with a high volume of traffic. Miguel and 
Pereira (1989) noted that PAHs were the major components 
of vehicle exhausts, especially gasoline- and diesel-pow-
ered vehicles. On the other hand, the MS site was located at 
a middle school, where there was a mixture of residential, 
commercial and industrial areas, with less traffic volume 
and industrial activity than at site ME.

The seasonal variations of PAHs in PM2.5 of Hefei are 
presented in Table  2. At both sites combined, the mean 
concentration for ∑PAHs was higher in winter (31.38 ng 
m−3) than in summer (14.05 ng m−3). Similar seasonal con-
trasts in PM2.5-bound PAHs have been reported in other 
areas (Guo et  al. 2003; Wang et  al. 2015). For example, 
Guo et  al. (2003) found that the ratio of PAHs in winter 
to summer was in the range of 7.5–8.6. We speculate that 
this variation might relate to meteorological conditions 

Table 1   Meteorological parameters during PM2.5 sampling periods

Date Temperature 
(°C)

Relative humidity 
(%)

Wind 
speed (m 
s− 1)

20/05/2014 22.2 93.0 1.5
21/05/2014 24.0 74.0 1.0
22/05/2014 26.2 59.8 2.4
23/05/2014 24.0 66.0 2.0
24/05/2014 24.3 80.0 2.0
25/05/2014 26 82.1 2.1
26/05/2014 27.2 49.8 2.0
27/05/2014 26.5 51.9 2.4
28/05/2014 28 58.2 1.5
16/01/2015 6.1 76.5 1.6
17/01/2015 3.2 53.0 1.0
18/01/2015 4.0 62.1 1.5
19/01/2015 5.5 60.1 1.2
20/01/2015 9.4 44.9 1.6
21/01/2015 6.1 60.0 2.0
22/01/2015 4.1 55.0 1.0
23/01/2015 3.0 71.3 1.0
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and human activities. In summer, the high temperature and 
intense sunlight could enhance the degradation of PAHs in 
PM2.5, while in winter, the increased domestic heating and 
consumption of fuels could release PAHs to the atmosphere 
(He et al. 2006; Tang et al. 2005).

Correlations between meteorological parameters and 
the concentrations of individual PAHs were calculated 
to investigate possible relationships (Table  3), in order to 
investigate the influence of meteorological conditions on 
the distribution of PAHs. We found a negative correlation 
between the concentrations of PAHs and ambient tem-
perature. This was largely attributed to the influence of 
increased emissions during the winter season, with partic-
ulate-bound PAH concentrations increasing due to the con-
sumption of fuels associated with domestic heating (Tham 
et  al. 2008). This also can be ascribed to the degradation 
rate of PAHs commonly being faster under higher tempera-
tures and stronger solar radiation. In this study, the concen-
trations of PAHs have no significance correlations with the 
wind speed and relative humidity.

The PAHs of PM2.5 could derive from various emission 
sources. The possible sources of PAHs in air can be identi-
fied by diagnostic concentrations and PCA (principal com-
ponent analysis) of some marker PAH compounds.

The concentrations of a group of PAHs, or specific 
PAHs compounds, have been used to identify the emis-
sion sources (Yuan et al. 2015), such as BaA and CHR, An, 

Table 2   Mean concentrations 
(ng m− 3) of individual PAHs 
in PM2.5

nd non-detected, NAP naphthalene, ANY acenaphthylene, ANA acenaphthene, FL fluorene, PHE phen-
anthrene, An anthracen, FLU Fluoranthene, PYR pyrene, BaA benz[a]anthracene, CHR chrysene, BbF 
benzo[b]fluoranthene, BkF benzo[k]fluoranthene, BaP benzo[a]pyrene, IcdP indeno[1,2,3-cd]pyrene, DBA 
dibenzo[a,h]anthracene, BghiP—benzo[ghi]perylene

MS ME

Summer (n = 18) Winter (n = 16) Summer (n = 18) Winter (n = 16)

NAP 0.92 (0.92–1.00) 2.17 (0.75–2.92) 0.93 (0.12–1.50) 2.47 (2.25–2.83)
ANY nd (nd-nd) 0.03 (nd–0.08) nd (nd-nd) 0.08 (nd-0.17)
ANA 0.02 (nd–0.08) 0.22 (nd–0.08) 0.02 (nd-0.08) 0.03 (nd-0.08)
FL 0.10 (0.08–0.17) 0.11 (0.08–0.17) 0.10 (0.08–0.17) 0.25 (0.08–0.50)
PHE 0.77 (0.58–0.92) 1.05 (0.58–1.75) 0.69 (0.42-1.00) 2.28 (0.50–5.08)
An 0.04 (nd-0.08) 0.08 (0.08–0.08) 0.02 (nd-0.08) 0.11 (nd-0.25)
FLU 0.73 (0.50-1.00) 1.55 (0.83–2.08) 0.69 (0.25–1.25) 4.81 (0.58–11.17)
PYR 0.63 (0.5–0.83) 1.31 (0.67–1.83) 0.54 (0.33-1.00) 3.58 (0.50–7.83)
BaA 0.36 (0.25–0.43) 1.03 (0.42-2.00) 0.21 (0.17–0.33) 1.03 (0.42-2.00)
CHR 0.77 (0.58–0.92) 1.69 (0.83–2.75) 0.61 (0.25–0.92) 4.25 (0.50–7.75)
BbF 2.88 (1.08–4.08) 2.33 (1.08–4.25) 2.29 (0.25–3.75) 4.81 (2.67–7.75)
BkF 2.88 (1.08–4.09) 2.33 (1.08–4.25) 2.29 (0.25–3.75) 4.81 (2.67–7.75)
BaP 0.88 (0.50–1.33) 0.94 (0.67–1.33) 0.46 (0.25–0.67) 2.31 (0.67–3.33)
IcdP 2.77 (2.42–3.50) 2.58 (1.92-3.00) 1.31 (0.75–1.83) 7.22 (1.92–1.75)
DBA 0.85 (0.33–2.50) 0.31 (0.17–0.42) 0.19 (0.17–0.25) 0.67 (0.17–1.08)
BghiP 2.00 (1.83–2.5) 1.81 (1.42–2.08) 0.96 (0.50–1.33) 3.04 (1.08–6.62)
∑PAHs 16.68 (12.49–19.82) 19.71 (5.32–23.75) 11.41 (4.92–16.07) 43.04 (14.19-71.00)

Table 3   Correlations between concentrations of PAHs (ng m−3) and 
meteorological parameters

ns: not significant; **p < 0.01; *p < 0.05

R All samples(n = 28)

Temperature Wind speed Relative humidity

NAP −0.73** −0.39 −0.10
ANY −0.47* −0.30 −0.46
ANA −0.26 −0.13 −0.30
FL −0.30 −0.07 −0.21
PHE −0.31 −0.09 −0.45
An −0.42* −0.15 −0.38
FLU −0.38 −0.19 −0.41
PYR −0.42 −0.24 −0.41
BaA −0.58* −0.44 −0.38
CHR −0.51 −0.35 −0.41
BbF −0.15 −0.06 −0.51*
BkF −0.15 −0.06 −0.51*
BaP −0.49* −0.33 −0.39
IcdP −0.46* −0.28 −0.39
DBA −0.09 −0.26 −0.22
BghiP −0.36 −0.25 −0.16
∑PAHs −0.40* −0.01 −0.28
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FLU, PYR, for coal combustion; An, BaP and BghiP for 
coke production(Cai et al. 2014); FLU and PYR for com-
bustion of wood (Tekasakul et  al. 2008); and FLU for oil 
burning (Khalili et al. 1995). However, in different types of 
emission source profiles, some overlaps in similarity have 
been noted for these maker PAHs. (Hu et al. 2012).

Thus, we have used diagnostic ratios, such as (FLU/ 
[FLU + PYR], BaA/[BaA + CHR], An/[An + PHE], BaP/
BghiP and IcdP/[IcdP + BghiP]) to appoint the sources 
of PAHs in our case study (Table  4). Different values of 
each diagnostic ratio correspond to characterized emission 
sources. These diagnostic ratios are all indicators of human 
activities, with coal combustion and motor vehicle emis-
sions being the primary sources of PAHs in PM2.5 of Hefei.

Principal component analysis was used to aid in the 
interpretation of PAH emission sources by reducing the 
large number of variables to a smaller number of fac-
tors. Each of the factor from the PCA is associated with 
source characterization by its most representative PAH 
compound(s) (Saxena et al. 2014). Source groupings were 
determined by PCA with varimax rotation, and the reten-
tion of principal components having eigen values higher 
than 1 of the complete data set of PAHs concentrations. 
In addition, loadings determined the most representative 
PAH compounds in each factor, with values higher than 0.5 
being selected (Hu et al. 2012).

Three factors accounted for 84.03% of the total variance 
of the data (Table  5), with factor 1 explaining 63.26% of 
the variance. This factor showed high loading for ANY, FL, 
PYR, PHE, CHR, FLU, An and IcdP. Factor 2 explained 
11.82% of the variance, and showed a high loading for 
BghiP. As summarized by Harrison et  al. (1996), FLU, 
PYR and CHR are considered to be the tracers of coal 
combustion; and IcdP, PHE and BghiP to be the tracers of 
vehicle exhaust(Harrison et  al. 1996). The lower molecu-
lar weight PAHs, such as FL and An, might be formed in 
processes during the pyrolysis of fossil fuels (Dachs et al. 
2002; Jung et al. 2015). Therefore, this suggested that Fac-
tor 1 was representative of pyrogenic sources, including 
coal burning (power plants and space heating) and vehi-
cle emissions, and Factor 2 was representative of vehicle 

exhaust. The appointed sources of PCA analysis are con-
sistent with diagnostic ratios. Factor 3 only explained 
8.95% the variance. It showed a high loading for DbA, a 
tracer for coke oven sources (Simcik et al. 1999).

In conclusion, concentrations of 16 PAHs were meas-
ured in the PM2.5 of Hefei during the periods of 20–28 
May, 2014, and 16–20 January, 2015. The concentration 
of PAHs ranged from 12.49 to 23.75  ng m−3 at site MS 
and from 4.92 to 71.00 ng m−3 at site ME. A strong sea-
sonal trend in PAH concentration was observed during 
the sampling period, with a higher level in winter than in 
summer. Meteorological conditions influenced the PAH 

Table 4   Diagnostic ratios of 
PAHs in PM2.5 of Hefei

Reference source emission:FLU/(FLU + PYR) < 0.4: unburned petroleum, 0.4–0.5:combustion of fuel, 
>0.5 coal and wood; BaA/(BaA + CHR) > 0.35: combustion, 0.2–0.35:mixed sources, <0.2 petrogenic; An/
(An + PHE) > 0.1: combustion, <0.1:petroleum sources; BaP/BghiP 0.3–0.4:taffic, 0.4–0.9 traffic and com-
bustion, 0.9–6.6 coal combustion; IcdP/(IcdP + BghiP) < 0.4:traffic, >0.5:coal combustion

Diagnostic ratios Summer MS Summer ME Winter MS Winter ME

FLU/(FLU + PYR) 0.54 0.56 0.54 0.57
BaA/(BaA + CHR) 0.32 0.26 0.38 0.34
An/(An + PHE) 0.09 0.1 0.07 0.07
BaP/BghiP 0.44 0.48 0.52 0.76
IcdP/(IcdP + BghiP) 0.58 0.57 0.59 0.7

Table 5   Factorial weights matrix for the source analysis of PAHs in 
Hefei

Extraction Method: Principal Component Analysis
Rotation Method: Varimax with Kaiser Normalization
Eigenvalue > 1.00

PAHs Factor1 Factor2 Factor3

ANY 0.973 −0.026 −0.52
FL 0.967 −0.020 0.116
PYR 0.966 0.550 0.120
PHE 0.964 −0.152 0.084
CHR 0.940 0.280 0.079
FLU 0.889 −0.004 0.200
An 0.881 0.081 −0.118
IcdP 0.87 0.459 0.127
BaA 0.683 0.421 0.03
BaP 0.846 0.507 0.106
BbF 0.771 −0.206 0.467
BkF 0.771 −0.206 0.467
NAP 0.597 −0.081 −0.487
BghiP 0.172 0.809 −0.079
ANA 0.287 −0.614 −0.375
DBA 0.224 0.096 0.697
Variance% 63.26 11.82 8.95
Cumulative% 63.26 75.07 84.03
Possible source Pyrogenic 

sources
Vehicle exhaust Coke oven 

source
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concentrations, with air temperature and PAH concentra-
tion being inversely related. According to the analysis of 
emission source of PAHs based on diagnostic ratios and 
PCA, it was concluded that combustion of coal and vehicle 
exhaust were the predominant sources of PAHs in PM2.5 of 
Hefei.
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