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Abstract Chemical characterization of PM2.5 [organic

carbon, elemental carbon, water soluble inorganic ionic

components, and major and trace elements] was carried out

for a source apportionment study of PM2.5 at an urban site

of Delhi, India from January, 2013, to December, 2014.

The annual average mass concentration of PM2.5 was

122 ± 94.1 lg m-3. Strong seasonal variation was

observed in PM2.5 mass concentration and its chemical

composition with maxima during winter and minima dur-

ing monsoon. A receptor model, positive matrix factor-

ization (PMF) was applied for source apportionment of

PM2.5 mass concentration. The PMF model resolved the

major sources of PM2.5 as secondary aerosols (21.3 %),

followed by soil dust (20.5 %), vehicle emissions (19.7 %),

biomass burning (14.3 %), fossil fuel combustion

(13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %).

Keywords PM2.5 � Organic carbon � Elemental carbon �
Positive matrix factorization

It is well documented that atmospheric particulate matter

(PM) significantly affects atmospheric chemistry, ambient

air quality, visibility and the earth’s radiation budget

(Ramgolam et al. 2009; Pope et al. 2009). Several studies

have revealed that aerosols, especially fine mode particles

(\2.5 lm) can lead to serious human health effects like

cardiovascular and respiratory disorders (Pope and Dock-

ery 2006). Therefore, identification of PM sources is

necessary to develop air quality improvement strategies in

order to be able to control and reduce ambient PM con-

centrations through targeted action (Waked et al. 2014). To

address this issue, many tools or receptor models have been

used for identification and quantification of PM sources

(Paatero 1997; Ulbrich et al. 2009).

In the recent past, receptor models have been applied in

many studies and have shown the ability to accurately

identify the potential emission sources of ambient PM at a

receptor site (Waked et al. 2014). The PMF model is highly

recommended when sources are not formally known, but it

requires post-treatment source identification. Recently, the

PMF model has been improved significantly and a new

approach was developed by Paatero and Tapper (1994),

using a least squares approach. PMF solves the problem

arising in factor analysis by integrating non-negativity

constraints in the optimization process and utilizing the

error estimates for each data value as a point-by-point

weight (Begum et al. 2004). The PMF model has been

applied successfully worldwide (Kim and Hopke 2004;

Karanasiou et al. 2009; Sharma et al. 2015). In this study,

we report the chemical characteristics and source appor-

tionment of PM2.5 at an urban site in Delhi, India. The PMF

model was applied for the source apportionment using

chemical composition (organic carbon, elemental carbon,

major ions, metals and trace elements) of PM2.5 mass.

Materials and Methods

PM2.5 samples were collected periodically at CSIR-Na-

tional Physical Laboratory, New Delhi (28�380N, 77�100E;
218 m amsl) from January, 2013, to December, 2014. The

sampling site is amenable to free wind flow from all the

directions and represents a typical urban atmosphere,
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surrounded by huge roadside traffic (*100 m) and agri-

cultural fields in the southwest direction (*500 m).

Roadside vehicles, industrial emission and biomass burn-

ing could be major sources of carbonaceous aerosols and

several other pollutants. The occasional occurrence of dust

storms may contribute the presence of mineral dust sig-

nificantly to the aerosol loading in summertime (Ram et al.

2010). The sampling area is under the influence of air mass

flow from north-east to north-west in winter and from

south-east to south-west in the summer. The temperature of

Delhi varied from maximum in summer (March to June) to

minimum in winter (November to February). The average

rainfall in Delhi during monsoon (July to October) was of

the order of *900 mm. A detailed description of sampling

site is available in Sharma et al. (2015).

PM2.5 samples (n = 140) were collected on pre-com-

busted (at 550�C) and dessicator-stored quartz fibre filters

(QM-A, Whatman, GE Healthcare UK Limited, Bucking-

hamshire, UK) by using a fine particle sampler (APM 550,

Envirotech, Delhi, IN) at 10 m height above ground level.

Ambient air was passed through the quartz filter (47 mm)

at a flow rate of 1 m3 h-1 (accuracy ±2 %) for 24 h. The

filters were weighed before and after the sampling during

the experiment in order to determine the mass of PM2.5

collected. The quantitative elemental analysis (Mg, Al, S,

Si, Cl, K, Ca, Ti, Cr, Mn, Fe, Zn, Cr, Br, As and Pb) of

PM2.5 samples was carried out first using non-destructive

X-ray fluorescence spectroscopy with a Rigaku ZSX Pri-

mus wavelength dispersive X-ray fluorescence spectrome-

ter (ZSX Primus WD-XRF, The Woodland, TX, USA).

Then 6.25 cm2 (2.5 9 2.5 cm2) of each filter was used for

analysis of water soluble inorganic ions (WSIC) by ion

chromatograph (Dionex ICS-3000, Sunnyvale, CA, USA).

The remainder of each filter was used for organic carbon

(OC)/elemental carbon (EC) analysis with a carbon ana-

lyzer (DRI 2001A, Atmoslytic Inc., Calabasas, CA, USA).

A more detailed description of the analytical methods,

calibration procedures, etc. are available in our earlier

paper (Sharma et al. 2015). Statistical analysis of PM2.5

and its chemical species data was done using standard

recommended methods and seasonal significance differ-

ence of chemical species of PM2.5 was analyzed by one-

way ANOVA test (Datta et al. 2010).

In the present study, PMF (v3.0) was used to quantify

the contribution of various emission sources to PM2.5 mass

concentration (USEPA 2008). The model requires two

input files: one of the measured concentrations of the

species and another for the estimated uncertainty of the

concentration. A detailed description of the PMF model has

been presented in Paatero and Tapper (1994); Paatero

(1997). A speciated data set can be viewed as a data matrix

X of i by j dimensions, in which i number of samples and j

chemical species are measured. The aim of multivariate

receptor modeling (e.g., PMF) is to identify a number of

factors p, the species profile f of each source, and the

amount of mass g contributed by each factor to each

individual sample which is given as:

Xij ¼
Xp

k¼1

gik fkj þ eij ð1Þ

where eij is the residual for each sample/species.

Results are constrained so that no sample can have a

negative source contribution. PMF allows each data point

to be individually weighed. This feature allows the analyst

to adjust the influence of each data point, depending on the

confidence in the measurement. For example, data below

the detection limit can be retained for use in the model,

with the associated uncertainty adjusted so these data

points have less influence on the solution than measure-

ments above the detection limit. The PMF solution mini-

mizes the object function Q, based upon these uncertainties

(u) as follows.

Q ¼
Xn

i¼1

Xm

j¼1

X
ij�
Pp

k¼1
gikfkj

uij

" #2

ð2Þ

where Xij are the measured concentration (in lg m-3), uij
are the estimated uncertainty (in lg m-3), n is the number

of samples, m is the number of species and p is the number

of sources including in the analysis. In this study, infor-

mation on chemical properties of 140 PM2.5 samples has

been used as input to the PMF model for a total of 23

parameters. Categorization of quality of data was based on

the signal to noise ratio (S/N) and the percentage of sample

method detection limit (MDL). Those species which have

S/N C 2 were categorized as strong in data quality. Those

with S/N between 0.2 and 2 were categorized as weak in

quality. These species are not likely to provide enough

variation in concentration and therefore contribute to the

noise in the results. Those species with an S/N ratio below

0.2 are classified as bad values and were thus excluded

from further analysis. In the present case, signal to noise

ratio (S/N) estimated as[0.6 and the model performance in

a base run showed determination coefficient (R2) between

the modeled and experimental concentration of PM2.5, OC,

and EC of 0.97, 0.94 and 0.96, respectively and most of the

other chemical species are also well reconstructed. These

results are within the range of those presented in many

PMF studies. For example, R2 values of 0.71 were reported

for a study in Spain (Cusack et al. 2013) and of 0.96 for a

study in Germany (Beuck et al. 2011) for PM2.5 mass

reconstruction. Scaled residuals between -3 and ?3 were

obtained for all of the major components, and the value of

Q robust is strictly identical to the value of Q true, all of

these showing that no specific event was affecting the

results and that the base run could be regarded as stable.
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Results and Discussion

The temporal variation in mass concentration of PM2.5,

OC, EC and inorganic ions during the study are depicted in

Fig. 1. The average concentration of PM2.5 was

122 ± 94.1 lg m-3 (range 25.1–430 lg m-3) from Jan-

uary, 2013, to December, 2014. The mass concentrations of

almost all the chemical constituents were highest during

the months of January, 2013, and January, 2014. The

seasonal variation and average mass concentrations of OC,

EC, WSIC and major and trace elements (Na, Mg, Al, S,

Cl, K, Si, Ca, Cr, Ti, Fe, Zn, Mn, Br and Pb) of PM2.5 with

maxima and minima are summarized in Table 1. The

average concentration of OC and EC of PM2.5 was recor-

ded as 19.9 ± 14.3 lg m-3 (*15 % of PM2.5) and

10.4 ± 8.0 lg m-3 (*8 % of PM2.5), respectively. The

annual average of total carbon (TC = OC ? EC) concen-

tration contributed *23 % of PM2.5. Perrino et al. (2011)

reported similar percentage contributions of OC (*12 %

of PM10) and EC (*3 % of PM10) of PM10 at Delhi,

Fig. 1 Time series of OC, EC

and WSIC in PM2.5 along with

PM2.5 mass
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whereas Mandal et al. (2014) reported higher percentage

contributions of OC (28 % of PM2.5) and EC (9 % of

PM2.5) of PM2.5 in an industrial area of Delhi. In the pre-

sent study, the average concentration of major and trace

elements in PM2.5 was recorded as 29.0 ± 2.3 lg m-3

(22.3 % of PM2.5).

The mass concentrations of PM2.5, OC and EC varied

significantly during winter, summer and monsoon seasons

at Delhi (Table 1). During winter, the concentrations of

PM2.5, OC and EC were recorded as being more than twice

the concentrations during the summer and monsoon sea-

sons. This may be due to the source strength and prevailing

meteorological conditions at the sampling site. Significant

lowering of mixing height of the boundary layer during

winter season may also contribute to the higher concen-

tration of PM2.5 during winter (Datta et al. 2010). Strong

positive linear relationships between OC and EC

(R2 = 0.91; at p\ 0.05), OC versus PM2.5 (R2 = 0.87)

and EC versus PM2.5 (R
2 = 0.82) were recorded during the

study. A significant linear correlation between OC and EC

of PM2.5 is usually indicative of their common sources like

vehicular traffic and biomass burning (Salma et al. 2004;

Sharma et al. 2014).

The average concentration of WSIC and its seasonal

variability are summarized in Table 1. During the study,

the concentrations of NH4
?, SO4

2- and NO3
- of PM2.5

was recorded as 9.4 ± 8.6, 12.9 ± 8.1 and 10.0 ± 9.8

lg m-3, respectively. The water soluble inorganic ionic

species (WSIC) accounted for *40 % of PM2.5 concen-

tration during the study with seasonal variability (Table 1).

The study revealed positive linear correlations of molar

mass between NH4
? and SO4

2- (R2 = 0.65), NH4
? and

NO3
- (R2 = 0.69) of PM2.5, as well as for charge balance

between SO4
2- and NH4

?; NO3
- and NH4

?; SO4
2-, NO3

-

and NH4
?; and SO4

2-, NO3
-, Cl- and NH4

?. The above

correlations indicate the possible formation of secondary

aerosols [(NH4)2SO4, NH4NO3 and NH4Cl] at the sampling

site. NH4
? generally combines with NO3

- and SO4
2- in

the atmosphere to form NH4NO3 and (NH4)2SO4, respec-

tively. Figure 2 shows the charge balance between SO4
2-

and NH4
? (R2 = 0.58); NO3

- and NH4
? (R2 = 0.67);

SO4
2-, NO3

- and NH4
? (R2 = 0.67); SO4

2-, NO3
-, Cl-

Table 1 The average

concentrations of particulate

matter (PM2.5), OC, EC, WSIC

and trace elements of PM2.5

(lg m-3) in Delhi

Species Average (n = 140) Range Seasons

Winter (n = 48) Summer (n = 45) Monsoon (n = 47)

PM2.5 122 ± 94.1 25.1–430 216a ± 93.2 81.8a ± 24.9 67.9a ± 56.1

OC 17.9 ± 14.3 3.25–69.1 31.0a ± 15.0 11.4a ± 3.72 10.1a ± 9.10

EC 10.4 ± 8.04 0.85–35.3 17.9a ± 7.77 7.15a ± 3.05 5.58a ± 5.41

F- 0.91 ± 0.69 0.05–3.72 1.06b ± 0.80 0.89b ± 0.51 0.74b ± 0.72

Cl- 7.77 ± 5.72 0.89–31.3 10.9a ± 6.68 5.64a ± 3.00 6.48a ± 5.19

SO4
2- 12.9 ± 8.08 1.97–56.2 16.9b ± 11.2 10.3b ± 3.85 11.3b ± 5.13

NO3
- 10.0 ± 9.82 0.21–52.2 18.9a ± 11.4 5.82a ± 2.03 4.18a ± 3.16

NH4
? 9.40 ± 8.59 0.17–45.3 16.2a ± 10.4 8.34a ± 2.97 3.43a ± 3.75

Na? 5.05 ± 3.09 0.94–18. 7 5.10b ± 2.85 3.84b ± 1.74 6.09b ± 3.84

K? 4.10 ± 2.70 0.31–16.8 5.21b ± 2.51 4.05b ± 2.44 2.94b ± 2.60

Mg 0.96 ± 0.88 0.11–4.28 1.32b ± 1.60 0.44b ± 0.25 1.06b ± 0.63

Ca 2.83 ± 2.21 0.35–13.7 3.40b ± 2.76 2.99b ± 1.73 2.05b ± 1.69

Al 2.86 ± 0.97 0.27–5.29 3.43b ± 0.82 2.39b ± 0.80 2.70b ± 1.06

S 2.81 ± 1.62 0.13–5.62 3.41a ± 1.59 1.27a ± 0.98 1.36a ± 0.84

Si 1.74 ± 0.66 0.42–4.64 2.17a ± 0.55 1.52a ± 0.59 1.27a ± 0.47

Cr 0.04 ± 0.13 0.03–0.92 0.09b ± 0.19 0.02b ± 0.01 0.01b ± 0.01

Ti 0.12 ± 0.22 0.01–0.98 0.22b ± 0.31 0.05b ± 0.04 0.05b ± 0.11

Fe 0.25 ± 0.43 0.08–2.01 0.49b ± 0.58 0.11b ± 0.17 0.06b ± 0.14

Zn 0.13 ± 0.21 0.02–1.36 0.27b ± 0.27 0.03b ± 0.02 0.04b ± 0.08

Mn 0.02 ± 0.02 0.002–0.12 0.02b ± 0.02 0.01b ± 0.02 0.01b ± 0.02

Cu 0.04 ± 0.06 0.002–0.13 0.08b ± 0.20 0.01b ± 0.02 0.01b ± 0.02

As 0.06 ± 0.16 0.002–0.68 0.13b ± 0.23 0.01b ± 0.02 0.01b ± 0.02

Br 0.03 ± 0.11 0.003–0.41 0.06b ± 0.17 0.01b ± 0.01 0.04b ± 0.06

Pb 0.02 ± 0.03 0.001–0.14 0.04b ± 0.03 0.01b ± 0.01 0.01b ± 0.06

± Standard deviation
a Significantly different (p\ 0.05)
b Not significantly different (p[ 0.05)
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and NH4
? (R2 = 0.73) in Delhi during the study. The

charge balance (in Fig. 3 a-c) is well below a 1:1 rela-

tionship, indicating an excess of NH4
? compared to anions

(Behra and Sharma 2010). The charge balance between

SO4
2-, NO3

-, Cl- and NH4
? (R2 = 0.73) in Fig. 3d was

closer to the 1:1 line confirming that most of the time

sufficient NH4
? was present to neutralize the acidic com-

ponents (H2SO4, HNO3 and HCl) to form (NH4)2SO4,

NH4NO3 and NH4Cl (Sharma et al. 2015).

The PMF was applied to the analyzed data set consisting

of 23 species and 140 PM2.5 samples collected at sampling

site. For the final analysis, PMF was applied to the data sets

using factors and the resultant change in the Q values was

examined. In this study, the theoretical Q value was to be

approximately 3220 (i.e., 140 9 23). In seven factor solu-

tions, more than 95 % of Q values were quite close to 3220.

Based on an evaluation of the model results for the Q value

variations, a seven-factor solution provided the most feasible

results. The descriptions of the model and source appor-

tionment of PM have been discussed in detail in our previ-

ous paper (Sharma et al. 2015). The mass fraction

distribution of species was used to identify the sources,

which were soil dust, vehicular emission, sea salt, industrial

emission, secondary aerosol, biomass burning and fossil fuel

combustion for PM2.5 mass (Fig. 3).

A discussion follows of the seven major sources of

PM2.5 air pollution at the sampling site.

Source 1 Present PMF analysis shows that secondary

aerosols have contributed to about 21.3 % for PM2.5 mass

concentrations, respectively. Secondary aerosols are mainly

composed of ammonium sulphate and nitrate deriving pri-

marily from the gaseous precursors NH3, SO2 and NOx. The

abundance of gaseous NH3, SO2 and NOx at Delhi (Sharma

et al. 2012) supports the presence of secondary aerosols over

the region. The key markers of secondary aerosols are

NO3
-, SO4

2- and NH4
?, as shown in Fig. 3.

Source 2 PMF analysis showed that soil dust contributed

20.5 % of aerosol mass in PM2.5 at sampling site. Soil dust

includes most of the crustal elements and has high con-

centrations of Fe, Ca, Na, Mg, Al and K (Lough et al.

2005). The concentration of Ca in PM2.5 is associated with

its resuspension from agricultural fields or bare soils by

local winds. Crustal elements typically used as tracers for

soil and/or crustal resuspension include Al, Si, Ca, Mg, Fe

and Na (Begum et al. 2006). A whole array of element

tracers has been used in India for identification of this

source type, including Al, Si, Ca, Ti, Fe, Pb, Cu Cr, Ni, Co

and Mg (Sharma et al. 2014).

Source 3 Vehicle exhaust is generally dominated by

elemental carbon, Cu, Zn, Ba, Sb, Pb, Mn, Mo and Ni

Fig. 2 Charge balance:

a between SO4
2- and NH4

?;

b between NO3
- and NH4

?;

c between SO4
2-, NO3

- and

NH4
?; d between SO4

2-, NO3
-,

Cl- and NH4
?
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which are widely used as markers of vehicular sources. In

the present study, Cu, Zn, Mn, Pb and EC contributed

32.7 %, 42.6 %, 26.9 %, 43.5 % and 51.3 %, respectively,

indicating vehicle emissions as the source. PMF analysis

indicated that vehicle emissions contributed 19.7 % in

PM2.5 at Delhi. Internationally, EC (Lee and Hopke 2006)

is used extensively as a marker for diesel exhaust. In India,

Cu, V, Mn, Co, Pb and Zn have been used as tracer ele-

ments for identification of vehicular emission. Vehicular

emissions are a major source of the PM and research

indicates that they contribute 10 %–80 % to PM in cities

across India.

Source 4 Biomass burning, wood burning and vegetative

burning have been characterized as having high concen-

trations of K? and SO4
2- by various source studies (Wu

et al. 2007). The potassium ion has been used in many

source apportionment studies conducted in Europe and

Asia as an indicator of biomass burning (Pant and Harriso

2012). The PMF analysis showed that biomass burning

contributed 14.3 % for PM2.5 mass in the present study. In

India, K? has been used as a key marker for biomass/wood

combustion for TSP, PM10 and PM2.5 (Shridhar et al.

2010), whereas levoglucosan is the key organic marker

(Chowdhury et al. 2007).

Fig. 3 PMF factor profiles of

soil dust, secondary aerosol,

industrial emissions, biomass

burning, vehicle emissions,

fossil fuel combustion and sea

salt of PM2.5
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Source 5 The higher concentrations of Al, Cl, Fe, Zn, Cr

and SO4
2- at the sampling site clearly indicate the source

of fossil fuel combustion of PM2.5. The PMF analysis

showed that fossil fuel burning contributed 13.7 % for

PM2.5 in the present study. In international studies, a key

marker for coal combustion includes As, Se, Te and SO4
2-

and it has contributed 6 %–30 % to PM in different studies

(Gupta et al. 2007; Sharma et al. 2007).

Source 6 The results of the PMF analysis show that

industrial emissions accounted for about 6.2 % for PM2.5

mass concentration. Begum et al. (2006) used Ni, Pb and S

as markers for industrial emission, whereas Song et al.

(2006) used Ni, Cr, Fe and Mn, and Tauler et al. (2009)

used Zn, Fe, Mn and Cd. Generally Zn, Cu, Mn, S, Ni, Cd,

Fe, Mo and Cr are used as tracers for industrial emission IE

in India (Sharma et al. 2014).

Source 7 Higher concentrations of Na, K and Cl

(52.2 %, 27.2 % and 47.6 %, respectively) in PM2.5 indi-

cate the possible contribution of sea salt, which is sup-

ported by PMF analysis. The use of K offers possible

confusion with wood/biomass burning combustion and Cl

with coal burning, but a combination of the four elements

(Na, K, Cl- and Mg) should provide a reliable signature. In

the present study, PMF analysis shows that sea salt con-

tributed to about 4.3 % for PM2.5 mass concentration.
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