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Abstract The present study evaluated the impact of

cesium (133Cs) at four concentrations (0, 0.001, 0.01, and

0.1 mg L-1) on growth, concentrations of chlorophyll and

carotenoid pigments, and oxidative stress responses in the

charophyte, Nitella pseudoflabellata, over 30 days.

Oxidative stress was quantified by measuring anti-oxidant

enzyme activities and H2O2 content. When compared with

the control, significantly elevated activity levels of the anti-

oxidative enzymes ascorbic peroxidase, catalase and gua-

iacol peroxidase were observed at 0.1 mg L-1 (all

p\ 0.05), even though the H2O2 level was not signifi-

cantly elevated. Carotenoid and chlorophyll a and b pig-

ment levels were significantly reduced (all p\ 0.05) at Cs

exposures of 0.01 and 0.1 mg L-1. Photosynthetic effi-

ciency (i.e., Fv/Fm) was significantly reduced (p\ 0.05) at

Cs concentrations C0.001 mg L-1. Significant reduction

(p\ 0.05) of plant growth (i.e., shoot length) was also

observed after 1 week of exposure at Cs concentrations

C0.001 mg L-1. Our results suggested that Cs exposure

reduced plant growth and affected plant functioning via

activating the defense mechanism against oxidative stress

in Nitella.

Keywords Oxidative stress � Cesium � Antioxidant
enzymes � Nitella pseudoflabellata

Aquatic systems are challenged by an array of fluctuations

in abiotic stress vectors. In particular, anthropogenic

inputs, including heavy metals and other toxic substances,

have been prominent in the last few decades and have

exceeded the tolerance limits for certain species in aquatic

systems (Nagajyoti et al. 2010). Stable Cs (133Cs) is an

alkali metal that originates from an aluminosilicate mineral

called pollucite (White and Broadley 2000). The major

anthropogenic sources of 133Cs are mining of pollucite ores

and the production and use of Cs compounds in electronic

and energy production (especially coal-burning power

plants) (ATSDR 2004). The Cs concentrations found in

freshwater and marine ecosystems range from 1 9 10-5 to

12 9 10-3, and 5 9 10-4 to 2 9 10-3 mg L-1, respec-

tively (Komarov and Bennett 1983), whereas soils have

been reported to contain 0–26 mg kg-1 133Cs (Cook et al.

2007). Although the naturally occurring Cs levels are

harmless, Cs accumulation over longer time periods can be

toxic to plants (Bystrzejewska-Piotrowska et al. 2005;

Hampton et al. 2004). Therefore, 133Cs accumulation may

pose a risk to aquatic plants in areas with anthropogenic

inputs in the long run.

Aquatic flora provide a wide spectrum of ecological

functions and play a crucial role in maintaining the integ-

rity of aquatic ecosystems. Their functions include the

provisioning of habitats, refuge and food for fish and other

invertebrates, primary production, retention of substances,

and contributions to biogeochemical cycles (Bennett et al.

2005; Bornette and Puijalon 2011; Folkard 2011; Nepf

2012). Algae are plant-like aquatic organisms containing

chlorophyll for photosynthesis, while their bodies are not
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differentiated into true leaves, stems or roots. The macro-

algae of the taxon Charophyta, which are commonly

known as stoneworts/brittleworts, are a group of non-vas-

cular hydrophytes commonly found in many regions, with

potential for phytoremediation (Garcı́a 1994; Gomes and

Asaeda 2009; Siong and Asaeda 2009).

The effects of Cs exposure on growth, metabolism and

genetics have been reported for some terrestrial plants

(Hampton et al. 2004; Kanter et al. 2010; Zhu and Smolders

2000). However, there is little information regarding the

impact of Cs exposure and Cs accumulation on aquatic flora,

including charophytes. Furthermore, Cs-induced stress

responses in charophytes are largely unknown, and the

relationship between plant stress and the Cs accumulation in

aquatic plants remains unclear. In this study, we used the

charophyte, Nitella pseudoflabellata, as a model species to

evaluate our hypothesis that Cs exposure would cause

oxidative stress and negatively impact growth of the algae.

Materials and Methods

Nitella pseudoflabellata plants were obtained from a lab-

oratory maintained culture tank which was previously

collected from nearby paddy fields. A glass beaker (1 L)

with a layer (*2 cm) of commercial river (90 %\1 mm)

sand purchased from the local market (DOIT, Saitama,

Japan) with 1 % Hoagland’s nutrient solution (800 mL)

was used as an experimental unit. Cs solutions (CsCl,

purity was 99 %) and Hoagland’s nutrient medium were

prepared from pure analytical-grade chemicals (Wako

chemicals, Osaka, Japan) and distilled water. The total

nitrogen (TN) and total phosphorus (TP) contents of the

medium were 2.1 and 0.3 mg L-1, respectively. Each

treatment, with three replicates (n = 3), was randomly

allocated into 12 (4 9 3) glass beakers in a complete

randomized design. Six similar size apical tips of N.

pseudoflabellata [initial length (IL) *2–3 cm] were plan-

ted in each beaker.

The measured initial Cs concentrations of the 0.001,

0.01 and 0.1 mg L-1 exposures were 0.005, 0.010 and

0.142 mg L-1, respectively. The lowest test concentration

approximated the upper limit of concentrations reported for

polluted waters in the literature. Light intensity was

maintained at *100 lmol m-2 s-1 using florescent lamps

with a photoperiod of 12 h light and 12 h dark. The aver-

age temperature of the glass beakers was maintained at

24 ± 1�C throughout the experimental period (30 days).

The shoot length of Nitella was measured once per week.

At the end of the experiment, the final shoot length (FL),

shoot elongation rate (SER, SER = (FL - IL)/time)), Cs

content, pigment concentration (chlorophyll-a, chlorophyll-

b, and carotenoids) and the stress responses of plants were

compared. Plant stress was assayed by measuring the

chlorophyll fluorescence, H2O2 concentration and antioxi-

dant enzyme activities. To characterize the antioxidant

enzyme activities, ascorbic peroxidase (APX), catalase

(CAT) and guaicol peroxidase (POD) activities were

assayed. The chlorophyll fluorescence was determined using

the chlorophyll fluorescence imaging technique (FC 1000-H;

Photon Systems Instruments, Drasov, Czech Republic), and

the maximum quantum efficiency of photo-system II pho-

tochemistry (Fv/Fm) was calculated (DeEll and Toivonen

2003). It should be noted that there were some attached

algae grown in the microcosm. The algae were carefully

removed with the aid of forceps before analysis.

The pigments (chlorophyll and carotenoids) were

extracted by keeping fresh N. pseudoflabellata (*5 mg)

overnight in N,N-dimethylformamide. After extraction, the

absorbance was measured spectrophotometrically (Shi-

madzu UV mini 1210, Kyoto, Japan) at the wave lengths of

663.8, 646.8 and 480 nm. The pigment contents were

calculated according to Wellburn (1994). For the stress

assay, plant materials (*100 mg fresh weight (FW)) were

ground to extract hormone and antioxidants using an ice-

cold phosphate buffer (50 mM, pH = 6.0) which contained

polyvinylpyrrolidone (PVP). After extraction, extracts

were centrifuged at 3000 rpm for 20 min at 4�C. The

supernatant was separated and stored at -80�C until

analysis. The H2O2 content was determined according to

Jana and Choudhuri (1982). Briefly, 750 lL of extract was

mixed with 2.5 mL of 0.1 % titanium sulfate in 20 %

H2SO4 (v/v). The mixture was centrifuged at 50009g for

15 min at room temperature, and the intensity of the

resulting yellow color was measured at 410 nm. The H2O2

concentration was estimated using a standard curve and the

H2O2 content is presented as lmol g-1 FW.

Catalase activity was assayed following Aebi (1984).

Briefly, the reaction mixture contained 100 lL of 10 mM

H2O2, 2.00 mL of 100 mM potassium phosphate buffer

(pH = 7.0) and 500 lL of extract. The decrease in absor-

bance at 240 nm was recorded for 0.5 min. The CAT

activity was calculated using the extinction coefficient of

40 mM-1 cm-1. APX activity was determined according

to Nakano and Asada (1981). The reaction mixture con-

tained 100 lL of extract, 200 lL of 0.5 mM ascorbic acid

in 50 mM potassium phosphate buffer (pH = 7.0) and

2.00 mL of 50 mM potassium phosphate buffer

(pH = 7.0). The reaction was started after adding 60 lL of

1 mM H2O2. The decrease in absorbance at 290 nm was

recorded every 15 s. The APX activity was calculated

using the extinction coefficient of 2.8 mM-1 cm-1. Gua-

iacol peroxidase activity was measured based on guaiacol

oxidation according to MacAdam et al. (1992), The reac-

tion mixture contained 3.0 mL of 50 mM potassium

phosphate buffer (pH = 6), 40 lL of 30 mM H2O2 and
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50 lL of 0.2 M guaiacol. The reaction was initiated by

adding 100 lL of enzyme extract, and the absorbance was

measured immediately and then every 15 s for 3 min. The

rate of absorbance change was calculated, and the POD

activity was determined using the extinction coefficient of

26.6 mM-1 cm-1. All enzyme activities are presented as

nkat g-1 FW (‘nkat’ designates nanokatal, where one katal

is the amount of enzyme that converts one mole of sub-

strate per second) (Dybkaer 2001).

For metal analysis (Cs and K), the remaining plants at

the end of the experiment were dried at 65�C in an oven

(Eyela NDO-700, Tokyo, Japan) until a constant weight

was achieved. A 20 mg dry sample was digested with 60 %

HNO3 for 1 h at 125�C. After cooling, 30 % H2O2 was

added and the mixture was further digested until it finished

bubbling (Plank 1992). The extraction was adjusted to

10 mL using milli-Q water and used to measure K. Cs

speciation (i.e., organically bound, inorganically bound and

exchangeable) were determined using dry samples fol-

lowing the method described by Siong and Asaeda (2009).

Briefly, dried sample was mixed with 10 mL of 1 M

MgCl2 for 30 min to obtain the exchangeable fraction. The

residue after former extraction was extracted using 10 mL

of 1 M NaOAc for 5 h and the carbonate-bound fraction

was obtained. The residue in the NaOAc was digested

using a mixture of HNO3 and H2O2 to extract the organic-

bound fraction. The solution was evaporated to approxi-

mately 5 mL and then diluted using distilled water to a

final volume of 25 mL. The content of each Cs species was

summed to determine the total Cs content. Air/acetylene

flame atomic absorption spectrophotometry (Shimadzu

AA-6300, Kyoto, Japan) was used for metal analyses

according to standard methods (APHA 1998).

Quality assurance and control (QA/QC) procedures were

carried out for Cs estimation from water and plant samples.

Method detection limit (MLD) of Cs estimation by atomic

absorption spectrophotometry was calculated from seven

replicate analyses with 99 % confidence level. The MLD of

Cs estimation was 0.0175 mg L-1. During Cs analysis by

flame atomization, the matrix effects were negligible for

both water samples and plant extract. The standard addition

technique was used with atomic absorption spectropho-

tometry. The concentrations obtained for the standard ref-

erence material were always within the 95 % CI of certified

values. Recalibration of Cs standards was performed after

every 10 determinations.

All of the data were analyzed and figures were created

by using R (R Development Core Team 2010). Data were

presented as the mean ± standard deviation (SD) (n = 3).

The homogeneity of variance test and Levine’s check for

equality of variances were performed on the datasets prior

to the statistical analysis to verify the assumptions of

normal distribution and homogeneity of variances. Data

recorded at the end of the experiment were subjected to a

one-way analysis of variance (ANOVA) followed by a

Tukey’s post hoc test to evaluate the mean difference at the

0.05 significance level. Pearson’s correlation analyses were

conducted to determine the relationships between concen-

trations of cesium in media and growth, and biochemical

parameters.

Results and Discussion

Plants grew and were alive until the end of the experiment

(30 days) in all of the treatments, while the shoot lengths

increased with increasing exposure duration irrespective of

the treatments (Fig. 1). However, Cs exposure significantly

affected the plant growth (F = 7.80, p = 0.01). The

longest shoots were observed in the control, followed by

the 0.001, 0.01 and 0.1 mg L-1 Cs treatments. The final

lengths (length at harvest, Fig. 1) of the control plants were

statistically similar to the shoot length of the 0.001 mg L-1

treatment. The shoot elongation rate (SER) of N. pseud-

oflabellata varied significantly among the treatments

(F = 13.5, p\ 0.01), with SERs in the control, 0.001, 0.01

and 0.1 mg L-1 Cs treatments of 2.2 ± 0.1, 2.1 ± 0.1,

1.9 ± 0.0 and 1.7 ± 0.1 mm day-1, respectively. The

observed trend in SER was in close agreement with the

trend observed for the final length (FL). The FL of the

control plants was approximately 1.5-fold longer than that

of the plants exposed to the highest Cs concentration

(0.1 mg L-1) (Fig. 1). The trends in growth reduction for

charophytes after exposure to chromium (0.8 mg L-1),

cadmium (0.025–0.15 mg L-1) and zinc (0.15–1 mg L-1)

for 35 days (Gomes and Asaeda 2009; Hawa Bibi et al.

2010; Siong and Asaeda 2009) were similar to the results in

this study. Furthermore, the total length inhibition in

Spiroplasma floricola was reported after exposure to

*1.13 mg L-1 Cs (Chang 1986). A similar growth

reduction was also reported for Arabidopsis thaliana

(Hampton et al. 2004). Even though the accumulation of

excess metals in plants inhibits growth, some toxic metals

appear to promote growth at very low concentrations. For

example, Strauss (1980) observed a better growth rate in

Chara fragilis and Chara vulgaris after growing in a

medium that contained minute contents of Cs

(0.007–0.003 mg L-1).

The Cs treated plants of this study (0.001–0.1 mg L-1)

contained significantly higher concentrations of Cs (Fig. 2a)

when compared to the control plants (F = 6.20, p = 0.05).

In addition, there was a positive correlation between Cs

accumulation and the exposure concentration (r = 0.81,

p = 0.02). There was a decreasing trend in the K content in

plants with increasing Cs concentration (Fig. 2b). The Cs?

ion shows similar properties as K? and thus both ions
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compete with K? binding sites; therefore, K starvation

might occur in stressed plants (Hampton et al. 2004; Isaure

et al. 2006). We observed a decreasing trend in the K con-

tent in plants with increasing Cs concentration (Fig. 2a). But

the former trend was not statistically significant. The Cs

accumulation might reduce the K? uptake. As K is one of

the major nutrients in plants, this may impact cellular

metabolism, leading to reduced growth in Nitella.

According to the speciation analysis (Fig. 2b), the

organically bound Cs fraction (Cs-ORG/Total Cs) of

Nitella was significantly different among treatments

(F = 6.68, p = 0.04). Further, this fraction was positively

correlated to the total Cs content of the plant (R = 0.94,

p\ 0.01). Similar concentrations of exchangeable Cs (EX)

were observed in the control, 0.001 and 0.01 mg L-1,

while the plants in 0.1 mg L-1 had significantly higher

concentrations of EX Cs (F = 28.2, p\ 0.01). The

organically bound Cs (Org) was assumed to gradually

accumulate in plants with the Cs exposure (Fig. 2b), and

this could be considered as a sign of the bioaccumulation of

Cs. This fraction in Cs-treated plants was 60–80 lg g-1

DW, nearly three-fold higher than that of the control plants

(*20 lg g-1 DW). However, the behavior of inorgani-

cally bound (IB) accumulation deviated from the former

Fig. 1 Growth of Nitella over 30 days (left temporal growth pattern, right plants at the end of the experiment)

Fig. 2 Variation in Cs concentrations in Nitella a total Cs and K content in plant and b concentration of exchangeable (Ex), inorganically (Inor),

and organically (Org) bound Cs species
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observations, as we observed an increasing trend followed

by a decline at higher Cs exposure.

Photosynthesis plays a prime role in plant functioning,

and thus maintenance of appropriate chlorophyll levels in

plant cells is essential for plant functioning. Chlorophyll

levels decreased in Nitella in response to Cs exposure

(Fig. 3). Therefore, the reduced plant growth could also be

associated with the reduced chlorophyll content in stressed

Nitella. Cesium exposure significantly affected chloro-

phyll-a (F = 5.50, p = 0.02) and chlorophyll-b (F = 4.76,

p = 0.04) concentrations (Fig. 3). The negative impact of

Cs exposure on photosynthesis was further explained by

the correlations with shoot length observed for chlorophyll-

a (r = 0.62, p = 0.046) and chlorophyll-b (r = 0.55,

p = 0.076). The reduction in chlorophyll and carotenoids

in the Cs treated plants may be explained by the degrada-

tion of some enzymes, which were essential in pigment

biosynthesis (Shalygo et al. 1997). Similar to the present

study, concentration-dependent reduction of chlorophyll

was observed in barley leaves after exposure to CsCl for

8 h (Shalygo et al. 1997).

Generally, stress-free plants exhibit the optimum value

(0.83) of the maximum quantum yield of PSII [i.e., the

efficiency of PSII (Fv/Fm)] for most plant species, whereas

this optimum Fv/Fm ratio decreases when plants are stres-

sed, indicating the phenomenon of photo-inhibition (Ata-

paththu and Asaeda 2015; Maxwell and Johnson 2000).

The observed Fv/Fm ratios were significantly different

among the treatments (F = 12.04, p\ 0.01). The highest

ratio was observed for the control plants (0.80 ± 0.01),

which was close to the optimum value. Similar to the

present study, lower Fv/Fm ratios have been reported for

charophytes (Gomes and Asaeda 2009), algae (Lu et al.

2000) and aquatic macrophytes (Valderrama et al. 2013) in

response to metal toxicity. Therefore, the observed reduc-

tion in Fv/Fm ratio suggests that photoinhibition occurred in

Cs-treated Nitella.

When compared with the control group, the observed

activities of CAT, POD and APX indicated the activation

of oxidative defense mechanisms responding to Cs expo-

sure (Fig. 3). The stress factors (i.e., response of antioxi-

dant enzymes, efficiency of PS-II) are highly correlated to

plant growth and photosynthesis. Plants produce different

forms of reactive oxygen species in stress conditions,

especially in chloroplasts, mitochondria, peroxisomes etc.

Therefore, the metal induced oxidative stress might dam-

age either the chlorophyll structure or chlorophyll mem-

branes (Dinakar et al. 2012). This possibility would appear

to be supported by the significant negative correlations in

our study between chlorophyll-a concentration and APX

and POD activities (Table 1). Further, chlorophyll fluo-

rescence (Fv/Fm ratio) and SER were negatively correlated

with CAT, POD and APX (Table 1). Therefore, the Cs-

induced stress was considered to have impacted the pho-

tosynthetic mechanism of Nitella.

The APX activity of plants was significantly different

among the treatments (F = 49.10, p = 0.00), and the

activity of this enzyme increased responding to exposure

concentration (Fig. 3). Further, the former relationship was

clearly explained by the positive correlation between APX

activity and the Cs content of plants (r = 0.79, p = 0.02).

The APX activity at the 0.1 mg L-1 Cs treatment was

Fig. 3 The observed changes in pigments (caroten.: Carotenoids,

Chl. a: chlorophyll-a, Chl. b: chlorophyll-b), chlorophyll fluorescence

(Fv/Fm) and stress responses (H2O2 content, APX and POD activity).

Different letters in each bar indicate treatments were significantly

different based on ANOVA followed by Tukey’s post hoc test

(p\ 0.05)
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approximately two-fold higher than that of the control

group. Similarly, the CAT activity of plants was signifi-

cantly different (F = 5.7, p = 0.02) among the treatments

(Fig. 3), with the CAT activity of plants exposed to

0.1 mg L-1 Cs being approximately two-fold higher than

that of the control plants (Fig. 3). The POD activity also

varied significantly among the treatments (F = 6.35,

p = 0.02), where elevated levels of POD activity were

exhibited in plants exposed to 0.1 and 0.01 mg L-1 treat-

ments. However, the POD activity of the plants exposed to

the lowest Cs concentration (0.001 mg L-1) was not sta-

tistically different either from the control or other

treatments.

Cs is known to be a potentially toxic mineral element

that is released into the environment and taken up by plants

(Qi et al. 2008). Due to the large hydrated ion radius of Cs,

the free mobile single electron can react with water and

oxygen to form reactive oxygen species (Sahr et al. 2005),

leading to the activation of the anti-oxidative defense

system in plants. The increased activity of antioxidant

enzyme activities (POD, CAT and APX) indicated the

activation of defense mechanisms against the Cs-induced

oxidative stress in Nitella. Similarly, the Cs application

resulted in the induction of peroxidases, catalases, and an

increased amount of metabolites, such as glutathione, in

other plants (Ghosh et al. 1993). In the present study, the

H2O2 content was not significantly different among the

four treatments (F = 2.65, p = 0.12).

Cs exposure negatively impacted the chlorophyll content

and significantly reduced the growth of Nitella. The antioxi-

dant activities (POD, CAT and APX) changed in an exposure

dependent manner where elevated levels of activities were

detected in plants exposed to the highest Cs (0.1 mg L-1)

concentration. In summary, the Cs content of the stressed

plants was significantly higher than that of the control plants.

Cs (133Cs) induced oxidative stress and negatively affected

photosynthetic function and growth in Nitella. However, the

present study merely studied the effects of stable Cs on

charophytes. Even though the ability of radioactive Cs (137Cs)

elimination was reported for the charophyte; Chara braunii

(Fukuda et al. 2014), the impacts of radioactive Cs on func-

tion and stress physiology of charophytes remain unclear, and

further studies are recommended.
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