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Abstract Exposure to sub-lethal concentrations of a

pollutant induces, in some organisms, an acclimation pro-

cess which increases their resistance to other substances

(cross-acclimation). Understanding this phenomenon is

important as a basis for a better comprehension of the ef-

fects of pollutants in ecosystems. In this paper we inves-

tigated whether the exposure to Cd or Zn is able to modify

the heart rate response of the crayfish Procambarus clarkii

to acute Cu stress. A first set of experiments provided the

basis to understand heart rate changes induced by varying

Cd or Zn concentrations. In a second set of experiments

crayfish were acclimated for 96 h to control water, Cd or

Zn enriched water, and then exposed to a 10 mg L-1 Cu

solution, known to induce bradycardia in this species.

Bradycardia was suppressed in specimens previously ex-

posed to Cd or Zn but not in those exposed to clean water,

providing a clear evidence of a cross-acclimation in the

heart rate response of P. clarkii.

Keywords Heart rate � Crayfish � Heavy metals �
Pre-exposure � Cross-acclimation

Metals represent one of the major classes of contaminants

in aquatic environments and are today a worldwide threat

to aquatic species (Gautam et al. 2014). Cd is a widespread

environmental contaminant, potentially hazardous to

wildlife even at very low concentrations (Wright and

Welbourn 1994; Qu et al. 2013) and freshwater crustaceans

are amongst the most sensitive of macroinvertebrate

species to this non-essential element (Williams et al. 1985).

On the contrary, Zn and Cu are essential elements, needed

for biological activities in trace amounts, but may have

toxic effects at higher concentrations (Peña et al. 1999;

Brinkman and Johnston 2012). Both these metals are

widespread contaminants in aquatic ecosystem and their

ecological relevance is well understood (e.g. Hebel et al.

1997; Naito et al. 2010).

The monitoring of physiological, biochemical and

functional responses of aquatic organisms to metal expo-

sure is receiving growing interest, due to their potential use

as exposure or stress biomarkers (Luoma and Rainbow

2008). One of the possible markers used to detect the effect

of metallic ions on the metabolism of aquatic invertebrates

is cardiac activity, which involves changes in both heart

rate and stroke volume. Heart rate, in particular, is widely

used as a biomarker in water quality assessments (e.g.

Bamber and Depledge 1997).

The effects of a few metals on heart rate modulation of

crustaceans are known and among those utilized in the

present study (i.e., Cd, Zn and Cu), Cu is certainly the best

studied. A range of effects from an irregular heartbeat,

temporary acardia, and even an increase in heart rate have

been observed in crustaceans exposed to this metal (e.g.

Lundebye and Depledge 1998; Brown et al. 2004; Camus

et al. 2004; Ketpadung and Tangkrock-olan 2006). Less

information is available about the effect of Cd or Zn, and

available reports show either a reduction (bradycardia) or

an increase of heart rate frequency in different species

(Mali and Afsar 2011; More 2011).

It is known that in many species exposure to sub-lethal

concentrations of some pollutants, which include both

metals and organic compounds, can induce an acclimation

process, increasing the resistance of organisms to a sub-

sequent exposure to the same substance (e.g. Muyssen and
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Janssen 2002; Mouneyrac et al. 2003; Silvestre et al. 2006;

Wang and Xing 2009; Farwell et al. 2012). Interestingly,

pre-exposure to sub-lethal amounts of a pollutant may in

some cases elicit an unspecific response leading to in-

creased resistance to other substances. This cross resis-

tance, which has been described for both metals (e.g.

McGeer et al. 2007) and organic substances such as PCBs

or pesticides (e.g. Cosper et al. 1987), can basically be

acquired through individual physiological acclimation or

genetic adaptation (Sun et al. 2014). Individual acclimation

is a rapid, plastic change in phenotype, driven by an ex-

ternal environmental factor, and is largely based on the

plasticity of a particular trait (West-Eberhard 1989). On the

contrary, genetic adaptation describes genetically based

changes acquired at a population level, through the survival

of tolerant genotypes and the demise of those that are

sensitive (e.g. Klerks and Weis 1987). Individual accli-

mation can therefore induce a rapid but reversible pheno-

typic adaptation, which increases individual resistance and

may quickly disappear when the stressor is removed. On

the contrary, the effects of genetic adaptation may be

maintained for several generations, and can persist for

some time even after the removal of stress factor.

The red swamp crayfish Procambarus clarkii is native to

north Mexico and south USA, but has become a widely

distributed invasive species in many other parts of the

world (Gherardi 2006). Owing also to its worldwide dis-

tribution, population abundance, ease of identification and

collection and the ability to colonize both polluted and

unpolluted sites, this crayfish is becoming an important

model species to investigate the effect of exposure to trace

metals (Alcorlo et al. 2006; Henriques et al. 2014). Fur-

thermore, many details of the physiological responses of

this species to trace metals are fairly well known. As for

example, several studies have demonstrated that exposure

to high concentrations of such pollutants produces toxic

effects and causes the induction of metallothioneins-like

and vitellogenin/vitellin-like proteins (Martin-Diaz et al.

2005, 2006). P. clarkii is also an efficient bioaccumulator

of heavy metals, as demonstrated by several field and

laboratory studies (Kouba et al. 2010; Suárez-Serrano et al.

2010). Finally, the effect of Cu on heart rate of this species

was described by Bini and Chelazzi (2006), who showed

that a sub-lethal Cu induces bradycardia. This study also

demonstrated that the effect of Cu on heart rate can be

reduced by a 96 h pre-exposure to lower concentrations of

the same metal, suggesting an acclimation effect.

The present paper reports the results of experiments to

assess the effect of metals on the heart rate of P. clarkii. In

particular, we wished to test if previous short-term expo-

sure to a sub-lethal concentration of Cd or Zn was able to

trigger an unspecific individual acclimation, leading to

increased resistance to Cu. We firstly investigated the heart

rate response of this species to a short term (3–6 h) ex-

posure to sub-lethal Cd and Zn concentrations, providing

the baseline information for the following experiment.

Second, we investigated if a longer (96 h) exposure to

these metals was able to suppress the bradycardia induced

by a following acute Cu exposure.

Materials and Methods

Specimens of P. clarkii (body length 6.5–8.5 cm) were

collected from Fucecchio Marshes, central Italy (43�450N;
10�480E) in May–July 2006. Immediately after collection,

groups of crayfish were transported to the laboratory and

acclimated for 7 days in 20 L of aerated tap water (control

water) at 20 ± 1�C. Control water was characterized as

follows: pH 7.4; hardness 19.2�F; Dissolved Organic Car-

bon 0.3 mg L-1. During the acclimation period, the cray-

fish were maintained under a natural day–night cycle and

fed once with pieces of beef liver, which is sufficient not to

induce starvation-dependent changes in heart rate (Bini and

Chelazzi 2006). Before the start of any test, each animal

was individually placed into an 800 mL test tank.

Metal solutions used in the tests were obtained by

adding the appropriate quantity of Cu (II) sulphate 5-hy-

drate (purity C 98 %, Sigma), Cd sulphate hydrate or Zn

sulphate 7-hydrate (purity C 99 %, Fluka) to control water.

Heart rate was monitored using a non-invasive tech-

nique established for invertebrates (De Pirro et al. 1999).

Therefore, each crayfish was equipped with an optoelec-

tronic sensor glued to the carapace in a dorsal position over

the heart and left undisturbed in clean water for 1 h before

any treatment to permit complete stress recovery (Bini and

Chelazzi 2006). During all experimental sessions the test

medium was renewed daily.

Cd and Zn concentrations were chosen on the basis of

the results of a preliminary study (Bini 2006), showing the

ability of crayfish of the Fucecchio population to resist high

metal concentrations. The 96 h LC50 values reported by

Bini (2006) for these metals (lower–upper 95 % CI) are

156 (121–231) and 812 (623–1210) mg L-1 for Cd and Zn,

respectively. The used concentrations were control, 15, and

30 mg L-1 for Cd and control, 100 and 200 mg L-1 for

Zn. The concentrations used in this study were rather high,

although still not able to cause any mortality after a 96 h

exposure. These concentrations were not chosen as repre-

sentative of those that crayfish could experience in the

field, even at severely polluted sites. Instead, they were

chosen since these concentrations trigger detectable re-

sponses, even after a short exposure time, in this highly

resistant population of the studied species (Bini 2006). In

the first experiment, 42 animals were randomly divided

into six groups (n = 7), each exposed to a different Cd or
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Zn concentration for up to 6 h. The heart rate (HR) of each

specimen was measured in the acclimation water, just be-

fore metal administration (HR0), and 3 (HR3) and 6 (HR6)

h after metal exposure. The individual HR measured after 3

and 6 h were expressed relative to the values measured

before metal administration as RHR3h = HR3/HR0 and

RHR6h = HR6/HR0, respectively. In the second ex-

periment, 60 crayfish were randomly divided into six

groups (n = 10) and each group was exposed to water with

a different Cd or Zn concentration as in previous ex-

periment (control, 15 and 30 mg L-1 Cd; control, 100 and

200 mg L-1 Zn) for 96 h. After 96 h exposure, all speci-

mens were washed in clean water for 3 h to remove any

metal, and then exposed to Cu (10 mg L-1) for three

consecutive hours. The HR of each specimen was mea-

sured in the washing water just before Cu administration

(HR0), and then 3 h after exposure to Cu-bearing water

(HR3). The individual variations of heart rate were ex-

pressed as RHR = HR3/HR0.

Data were analysed using ANOVA, following Under-

wood (1996). Cochran’s C test was used to assess the ho-

mogeneity of variances. Data were log transformed to cope

with homogeneity of variance and non-normality. When

significant differences were observed, the Tukey multiple

comparison test was applied.

Two water samples for each treatment level used in the

experiments were collected and analysed (using ICP-OES)

to provide actual amounts of metals in exposure water.

Average values were as follows. Zn: 0.25 (controls),

101.34 (expected = 100) and 202.17 (expected = 200)

mg L-1, respectively. Cd: \0.005 (controls), 14.98 (ex-

pected = 15) and 30.44 (expected = 30) mg L-1. Cu:

\0.005 (controls), 10.25 (expected = 10) mg L-1. The

instrument detection limits were (in lg L-1): 2.3 (Cd), 1.2

(Zn) and 3.6 (Cu). Certified reference materials (grade

BCR, Fluka Analytical, Sigma-Aldrich) were used to verify

the accuracy and the precision of the methods.

Results and Discussion

Results of the first experiment showed that 6 h of exposure

to control water and both Cd concentrations (15 and

30 mg L-1) did not caused death nor modify crayfish heart

rate (Fig. 1a). RHR values were very close to one (indi-

cating that no change in heart rate frequency had occurred)

and no significant difference was detected independent of

the exposure duration (F2,19 = 1.11, p = 0.350;

F2,19 = 0.27, p = 0.766, respectively). On the contrary,

exposure to Zn induced a significant concentration-depen-

dent reduction in heart rate (Fig. 1b), after both 3 and 6 h

(F2,19 = 6.10, p = 0.009; F2,19 = 10.54, p = 0.0008).

In the second experiment, no significant difference was

observed in the heart rate of the three Cd exposed groups

(controls, 15 and 30 mg L-1), at the end of the wash period

(F2,28 = 0.12, p = 0.887). A subsequent wash period was

also effective at cancelling the bradycardia induced by

exposure to Zn and no difference in heart rate of the three

Zn exposed groups (F2,28 = 0.58, p = 0.566) was detect-

ed. After 3 h of exposure to 10 mg Cu L-1 an 57 % re-

duction in heart rate was evident in the group acclimated to

control water, but not in the two Cd-exposed groups

(Fig. 2a). This difference was significant (F2,28 = 15.76,

p = 0.00003) and Tukey test showed that values observed

for both the 15 and 30 mg Cd L-1 exposure groups were

significantly different from those measured in animals ac-

climated to control water, but not from each other. A

similar trend was observed in Zn-exposed groups. The 3 h

exposure to 10 mg Cu L-1 caused a significant reduction

Fig. 1 Implications of a Cd and b Zn exposure on the heart rate of P.

clarkii. Circles represent the mean (±SD) RHR measured after 3

(open circles) and 6 h (closed circles) of exposure to different metal

concentration (C controls). Horizontal lines show significant differ-

ences between metal-exposed animals and controls (Tukey test,

*p\ 0.05) after 3 (dotted lines) and 6 h (continuous lines) of

exposure to the metal. Value = 1 (dashed line) means no variation in

the HR caused by the exposure; values[1 and\1 represent increased

or decreased HRs, respectively. Sample size was n = 7 for each

group
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of heart rate in crayfish exposed to control water, but not in

those exposed to 100 mg Zn L-1 (Fig. 2b). A slight in-

crease in heart rate was observed in crayfish exposed to

200 mg Zn L-1. All these differences were significant

(F2,28 = 29.17, p\ 0.00001) and Tukey test showed that

both 100 and 200 mg Zn L-1 exposed groups were sig-

nificantly different from the control-acclimated group and

not from each other.

Previous exposure to Cd and Zn concentrations prevented

the bradycardia expected to be induced by the subsequent

exposure to Cu, and this effect was consistent for all the

concentrations of the two metals used. This finding is in line

with previous observations regarding the effect of previous

exposure to metals on heart rate of this species (Bini and

Chelazzi 2006), but also extends our knowledge to cross-

acclimation effects. Cross acclimation is a known phe-

nomenon, described to occur both for metals and organic

substances, but to our knowledge, this is the first studywhere

it was investigated using heart rate changes as a biomarker.

The physiological and molecular mechanisms under-

pinning this acclimation effect are unknown, and are de-

serving further investigation. The effect of previous

exposure was not simply due to an alteration of metabolic

rate induced by the Cd or Zn concentrations. In fact, ex-

posure to Cd did not cause any detectable change in heart

rate, and the bradycardic effect induced by Zn was com-

pletely cancelled by a 3 h wash in clean water. Among the

possible mechanisms leading to acquired resistance, two

seem most likely for this specific case. In many aquatic

organisms, an increase in environmental metal concentra-

tion induces metallothionein-like proteins – MTLPs –

(Amiard et al. 2006). MTLPs play a primary role in the

regulation and homeostasis of several essential metals,

including Cu and Zn, but are also involved in the

detoxification of non-essential ones, such as Cd (Coile

et al. 2002). Several studies demonstrated that acquired

tolerance to metals may relate to the body content of these

proteins (reviewed in Amiard et al. 2006). Induction of

these proteins can occur in a rather short time and, as for

example, a 2–24 h exposure to Cd proved to be sufficiently

long to induce MTLPs in several aquatic crustaceans, in-

cluding P. clarckii (e.g. Martinez et al. 1993; Del Ramo

et al. 1995). Such a short time span is fully compatible with

the acclimation times used in the present study, making the

induction of MTPLs a likely candidate to explain the ob-

served acclimation in P. clarkii. On the other side, it is also

known that in some invertebrates pre-exposure to a metal

may induce a reduction of that metal’s uptake from the

ambient medium (reviewed by Wang and Rainbow 2005).

However, despite this effect seems to be common in

molluscs (e.g. Blackmore and Wang 2002; Wang and

Rainbow 2005) contradictory evidences were produced for

crustaceans. As for example, Truchot and Rtal (1998)

demonstrated an important reduction of Cu uptake from the

ambient medium, after long term exposure to sub-lethal

doses of this metal in the crab Carcinus maenas, whereas

metal pre-exposure did not alter the uptake rate in barna-

cles (Rainbow et al. 2004). No information on the effect of

pre-exposure on metal uptake is available for P. clarkii.

Furthermore, given that, to our knowledge, there are no

clear demonstrations that pre-exposure to one element may

influence the uptake of others, this mechanism seems less

likely to explain the changes in heart rate observed in P.

clarkii.

Finally, it is important to discuss whether our results

support the idea that heart rate changes following an acute

metal stress could be used to infer a previous exposure to

metal contamination. Previous investigations on heart rate

activity of marine invertebrates (gastropod molluscs) in-

voked an a-specific cross-acclimation effect to explain why

specimens collected from polluted and unpolluted sites

responded differently to an acute metal (Cu) stress

Fig. 2 Implications of previous exposure to a Cd and b Zn on the

heart rate response of P. clarkii exposed to 10 mg L-1 Cu solution.

Circles represent the mean (±SD) RHR of specimens preliminarily

exposed to different metal concentrations (C = animals acclimated to

control water before the exposure to Cu). Horizontal continuous lines:

Tukey test: *p\ 0.05, n.s. = not significant. Value = 1 (dashed line)

means no variation in the HR caused by the exposure; values[1 and

\1 represent increased or decreased HRs, respectively. Sample size

was n = 10 for each group
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(Chelazzi et al. 2004; Bini et al. 2008). In these species, the

heart rate of animals from metal-polluted shores was, in

fact, not affected by a subsequent acute exposure to Cu,

contrarily to what happened in limpets from unpolluted

sites. This finding was interpreted as due to an increase in

tolerance determined by a cross-acclimation triggered by

previous exposure. However, despite a superficial agree-

ment between this explanation and our results, there are

some caveats that need to be acknowledged, before our

findings could be used in support of this explanation. In the

examples provided by Chelazzi et al. (2004) and Bini et al.

(2008), in fact, it is not clear to what extent increased

tolerance originates from individual acclimation (as in our

study), genetic selection or a mixture of both. Until rigor-

ous tests to separate all these effects have been carried out,

generalisations may be useless, when not dangerous

(Morgan et al. 2007; Gall et al. 2013).

In conclusion, the results of this study provided a clear

evidence of a cross-acclimation effect in the heart rate

response of P. clarkii after exposure to metal pollutants. In

particular, the results showed that even a relatively short

exposure to metals is able to induce a cross-acclimation on

heart rate activity of this species. To our knowledge, this is

the first time that such an effect is described on the heart

rate of a crustacean, and this finding may contribute to a

better understanding of the action of metals on the cardiac

physiology this group. Our results, however, prompted for

further investigations to clarify the role of the specific

physiological mechanisms leading to acquired resistance,

and to ascertain how short term acclimation effects interact

with longer-term selective processes.
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