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Abstract The total mercury (Hg) content of the soft tis-

sues of cultured oysters of the genus Crassostrea obtained

during the dry and rainy seasons at sampling sites of NW

Mexico with different degrees of urbanization, was deter-

mined by cold vapor atomic absorption spectrophotometry.

Hg levels ranged from 0.05 to 0.37 lg/g (dry weight) and

no significant differences (p [ 0.05) related to season and

sampling site were observed. The values did not exceed the

limit of 1.0 lg/g (wet weight) established by Mexican

legislation and by the Food and Drug Agency (FDA), and

the hazard quotient was between 0.001 and 0.002. The

estimated hazard quotient for MeHg ranged approximately

from 0.002 to 0.01.

Keywords Mercury � Oyster farms � NW Mexico �
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Mercury (Hg) enters the environment through volcanism,

fossil fuel and waste burning and from other human as well as

natural processes. It has a high environmental cost due to its

non-biodegradable nature and long biological half-life

(Hylander and Goodsite 2006). It is a cause of ecological

concern, because it accumulates in sediments and in aquatic

organisms and is biomagnified along aquatic food chains

(Pan and Wang 2011; Jara-Marini et al. 2012; Kim et al.

2012). Among the inorganic and organic Hg species of dif-

ferent toxicity, methylated Hg (MeHg) is well known for its

neurotoxicity and because it affects several physiological

processes (Ipolyi et al. 2004; Apeti et al. 2012). Although it

may originate from human sources, methylation by bacterial

activities is its most common and important source.

Oysters of the genus Crassostrea have been used as bio-

monitors of contamination of the aquatic environment,

because of their adaptability to environmental conditions,

tolerance to contamination and wide geographic distribution

(Vaisman et al. 2005). This genus is represented along the

Pacific Mexican coasts by four species. Three of these (C.

corteziensis, C. iridescens, C. palmula) are native, and one (C.

gigas) was introduced for aquaculture (Rangel-Dávalos 1990).

Among these, C. corteziensis and C. gigas are cultured for

human consumption along the NW coast of Mexico, although

most sections of the coastline are impacted by the discharges of

urban, industrial, mining and agriculture activities.

In this study we determined the concentration of total

mercury in oysters of this genus obtained at different

sampling sites of three coastal states of NW Mexico during

the dry and the rainy season, and used this information to

assess human health risk, considering the average rate of

consumption in Mexico.

Methods and Materials

Samples were obtained in August and November 2010

(rainy season) and February and May 2011 (dry season)
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Aquatic Resources Postgraduate Program, Faculty of Marine

Sciences, Autonomous University of Sinaloa, Mazatlán, Sinaloa,

Mexico

J. Ruelas-Inzunza

Technological Institute of Mazatlán, Mazatlán, Sinaloa, Mexico
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from twelve sites (two visits/season in each station)

located on the coastal area of NW Mexico (Fig. 1). All

oysters (20/sample) were of commercial size (shell height

[5 cm) and those of each sample had similar height.

After collection, oysters were washed with seawater,

transported within 24 h to the laboratory in clean poly-

ethylene bags kept in coolers, and stored at -20�C until

processing for metal analysis (Vaisman et al. 2005).

Samples from Sonora State were cultured Pacific oyster

C. gigas (mean size: 9.5 ± 1.6 cm), those from Sinaloa

and Nayarit States were pleasure oysters C. corteziensis

cultured with different techniques (clutchless oysters in

Sinaloa, with mean size: 8.9 ± 1.4 cm; traditional culture

on mother shell collectors in Nayarit: mean size:

6.8 ± 1.2 cm). Those obtained at Mármol station were

wild C. iridescens (rock oyster, mean size: 9.5 ± 1.1 cm),

collected from their natural habitat.

After thawing, oysters were shucked with a stainless

steel knife, the whole soft bodies of the 20 specimens of

each sample were freeze dried (72 h at 80 9 10-3mbar,

-50�C), ground and homogenized in a Teflon mortar to

obtain a composite sample and 0.25 g of the homogenate

were pre-digested overnight at room temperature with

5 mL of concentrated nitric acid (Baker, trace metal grade)

(Rojas de Astudillo et al. 2002). Digestion was performed

in closed Teflon bombs at 120�C for 3 h, and samples were

diluted to 25 mL with MilliQ water. All materials and

glassware used in sampling and metal analysis were acid

cleaned (Moody and Lindstrom 1977).

Total Hg was determined by cold vapor atomic

absorption spectrophotometry (Buck Scientific) after

reduction with SnCl2 in a mercury analyzer (Buck Scien-

tific) (Ruelas-Inzunza et al. 2004). For QA/QC all samples

were analyzed in triplicate, the accuracy of the analytical

method was evaluated with certified reference material

(DORM 3) with a mean recovery of 104.3 % ± 1.0 % and

parallel reagent blanks were used to check contamination.

The limit of detection was 0.003 lg/g.

The values obtained in the dry and in the rainy season at

each sampling station were compared with a two ways

ANOVA test with a = 0.05 using site and sampling season

as independent variables. The test was run after rank

transformation, because the data were not homoscedastic

(Conover and Iman 1981; Zar 1999; Conover 2012). The

risk to human health due to oyster consumption was esti-

mated according to Newman and Unger (2002), using the

equation HQ = E/RfD, in which HQ is the hazard quotient,

E and RfD are the level of Hg exposure and the reference

dose for total Hg (0.5 lg/kg/day: FDA 2006), respectively,

and the level of exposure E is calculated as E = C I/W

where C is the total concentration of Hg (in lg/g wet

weight) of the species tested, I is its apparent daily con-

sumption (0.39 kg/person/year = 1.07 g/person/day: CO-

NAPESCA 2011). W is the assumed weight of an adult

consumer (70 kg).

The risk due to MeHg content of the oysters was esti-

mated with the same equations, using 0.1 as RfD (EPA

2001) and the average MeHg/total Hg ratio calculated

using the data available for oysters in Claisse et al. (2001),

Pan and Wang (2011), and Apeti et al. (2012).

Results and Discussion

Hg values ranged from 0.05 to 0.34 lg/g (dry weight),

determined during the rainy season at Santa Barbara and

Tóbari, respectively. This range is comparable to that

found by Apeti et al. (2012) in the Northern Gulf of

Mexico. There were no significant differences due to site or

sampling season. The annual mean values ranged between

0.12 and 0.27 lg/g (station Dautillos, Sinaloa and station

Bachoco, Sonora, respectively), and the overall mean

concentration, calculated using all the data obtained at each

station was 0.172 ± 0.034 lg/g (Table 1).

This lack of difference may be explained by the Hg

sources shared by the three states: although the production

of the mining industry of Sonora is far higher than those of

Sinaloa and Nayarit, the freshwater inputs to the coastal

waters of these states flow from the mineral-rich Sierra

Fig. 1 Locations where oysters were collected. A: Sonora State, B:

Sinaloa State, C: Nayarit State. RI Estación Riı́to, BA Bachoco, SB

Santa Bárbara, ME Mélagos, TO Tóbari, AG Agiabampo, BG Brecha

Guasave, SMR Santa Marı́a la Reforma, DA Dautillos, CO Cospita,

MA Mármol, BC Boca Camichı́n
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Madre Occidental (states of Chihuahua, Durango and Za-

catecas) where[70,000 ton of Hg are still present in mine

tailings as residues of the [190,000 tons of Hg used from

colonial times until the early 1900s in the amalgamation

process involved in silver and gold extraction (Castro-Dı́az

2013).

Important additional sources are the effluents from the

3.5 9 106 ha of fertile Pacific coastal plains dedicated to

intensive agriculture, since Hg-based fungicides are still

used for pest control of several crops (Osuna-Martı́nez

et al. 2010). Other inputs are atmospheric deposition,

because of Hg volatility which allows easy transport even

to areas far from the geographic source (Vaisman et al.

2005; Apeti et al. 2012), and the Hg content of seawater,

because of the continuous water renovation of the coastal

lagoons and embayments (Osuna-Martı́nez et al. 2010;

Harris et al. 2012).

There were no differences between the values deter-

mined in the rainy and dry season at each sampling site, but

values tended to be higher in the rainy season. This might

Table 1 Range, annual mean total Hg content (±SD) of Crassostrea spp. from different farms in NW Mexico, hazard quotient (HQ), and

estimated MeHg content and respective hazard quotient

Site Range (Hg) lg/g DW HQ THg (MeHg)b lg/g DW HQ MeHgb

RI 0.093–0.292 0.138 ± 0.049a 0.0010 0.054 0.0020

BA 0.166–0.186 0.175 ± 0.009a 0.0019 0.099 0.0097

SB 0.150–0.374 0.254 ± 0.093a 0.0013 0.068 0.0067

ME 0.161–0.201 0.175 ± 0.022a 0.0013 0.068 0.0067

TO 0.092–0.167 0.139 ± 0.041a 0.0014 0.072 0.0070

AG 0.129–0.264 0.177 ± 0.063a 0.0013 0.069 0.0068

BG 0.113–0.169 0.140 ± 0.025a 0.0010 0.055 0.0053

SMR 0.152–0.241 0.189 ± 0.045a 0.0014 0.074 0.0073

DA 0.005–0.195 0.119 ± 0.080a 0.0009 0.047 0.0045

CO 0.135–0.173 0.157 ± 0.016a 0.0012 0.061 0.0060

MA 0.113–0.200 0.166 ± 0.039a 0.0012 0.065 0.0063

BC 0.106–0.261 0.193 ± 0.066a 0.0014 0.075 0.0074

Mean – 0.172 ± 0.034 0.0013 0.068 0.0063

The equal letters indicate lack of significant differences (two ways ANOVA, a = 0.05)
b Calculated using 0.3915 as mean MeHg/total Hg ratio, estimated from the ranges reported for oysters by Claisse et al. (2001), Pan and Wang

(2011), and Apeti et al. (2012). Total range of MeHg/total Hg ratios 0.156–0.621

Table 2 Range of mean Hg concentrations (lg/g, dry weight) in oysters of different areas of the world

Species Area Hg References

Crassostrea corteziensis Bacochibampo Bay, Sonora State, Mexico 0.12–0.16 Garcı́a-Rico et al. (2010)

Crassostrea gigas Coastal lagoons, Sinaloa State, Mexico 0.06–0.91 Osuna-Martı́nez et al. (2010)

Crassostrea corteziensis Coastal lagoons, Sinaloa State, Mexico 0.16–0.58 Osuna-Martı́nez et al. (2010)

Crassostrea corteziensis Urı́as lagoon, Sinaloa State, Mexico 0.03–0.08 Jara-Marini et al. (2012)

Crassostrea virginica Campeche, Gulf of Mexico, Mexico 0.40–2.00 Aguilar et al. (2012)

Crassostrea virginica Northern Gulf of Mexico, USA 0.03–0.5 Apeti et al. (2012)

Crassostrea rhizophorae Villa Clara, Cuba 0.19–0.69 Olivares-Rieumont et al. (2012)

Crassostrea gigas Minamata Bay, Japan 10 Eisler (1987)

Crassostrea sp. Gulf of Paria, Sucre State, Venezuela 0.08–0.68 Rojas de Astudillo et al. (2002)

Saccostrea cucullata Zhejiang, China 0.11 ± 0.04 Fang et al. (2004)

Saccostrea cucullata Qeshm Island, Iran 0.03–0.06 Shirneshan et al. (2012)

Crassostrea rhizophorae Northeast Brazil 0.02–0.30 Vaisman et al. (2005)

Crassostrea gigas Ebro Delta, Spain 0.12–0.27 Ochoa et al. (2013)

Ostrea edulis Coast of Croatia 0.024–2.72 Bogdanović et al. (2014)

Saccostrea cucullata Arabian Sea, Oman 0.07 ± 0.03 Yesudhason et al. (2013)

Crassostrea spp. NW coast, Mexico 0.12–0.25 This study
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explain the higher metal levels (including Hg) found in

oysters during the rainy than the dry season by Osuna-

Martı́nez et al. (2010) in some coastal lagoons of Sinaloa

State, who related this difference to increased continental

runoff and concurrent high terrigenous sediment transport

from metal-rich watersheds because of natural processes,

such as rock weathering and leaching, or from metal-

impacted surrounding areas (Yesudhason et al. 2013).

A comparison of the Hg levels in the soft tissues of

oysters from several parts of the world show that, apart

from the extremely high values reported for Minamata Bay,

the range of data found in this study (0.05–0.37 lg/g) lies

within the limits of most values found in literature, with the

exception of those reported in Zhejiang, China and in the

transition zone between the Persian Gulf and Arabian Sea

(Oman and Qeshm Island, Iran), although with a tendency

to be lower than the values reported for Villa Clara, Cuba

and for the coast of Croatia. As to previous studies in NW

Mexico, the range found by Garcı́a-Rico et al. (2010) was

similar to that of this study, the upper limits of those

obtained by Osuna-Martı́nez et al. (2010) for C. gigas and

C. corteziensis were between twice and three times higher,

whereas the upper limit of the Hg content of the wild

oysters of Urı́as lagoon (Jara-Marini et al. 2012) was lower

than the lowest of our mean values (Table 2).

Due to its high toxicity even at low concentrations, to

the higher toxicity and high affinity to biological systems

of the end products of its biotransformation, especially of

methyl-mercury (Clarkson and Magos 2006), risk assess-

ments of Hg exposure should be carried out in all world́s

coastal zones. For instance, Shirneshan et al. (2012)

reported no risk by human consumption in view of the low

values detected in Qeshm Island (Persian Gulf), and a

similar result was obtained by Bogdanović et al. (2014) in

their biomonitoring survey along the coast of Croatia. In

the case of this study, all HQ values were \1 (Table 1)

indicating no risk for oyster consumption in NW Mexico.

In general, because of their low trophic position,

bivalves have lower Hg content than fishes (Jara-Marini

et al. 2012; Kim et al. 2012). However their contents may

reach toxic levels for top predators because of biomagni-

fication through the food web, which is of ecological as

well as human health concern (Fang et al. 2004; Ochoa

et al. 2013). The oysters used for this study did not exceed

the 1.0 lg/g (wet weight) limit established by Mexican

legislation (SSA 1995) and FDA (2006) and the calculated

HQ was\1. These values indicate that at least for the time

being the Hg concentration of cultivated oysters is not a

matter of concern although, in view of increasing urbani-

zation and industrialization of NW Mexico, the Hg content

of aquatic organisms should be monitored in order to

prevent human health risk.
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