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Abstract This study was conducted to determine trace

metal concentrations (Cd, Cu, Zn, Pb and Hg) in blood and

three egg fractions from Eretmochelys imbricata nesting on

Qeshm Island in Iran. The results showed detectable levels

of all analytes in all fractions. Pb and Hg were detectable in

the blood and eggs, reflecting a maternal transfer. With the

exception of Cu and Pb, analyzed elements in eggs were

concentrated in yolk. Only Zn in blood had a significant

correlation with the body size and weight (p \ 0.01). It

appears that Hawksbill sea turtles can regulate Zn con-

centrations through homeostatic processes to balance

metabolic requirements. The relatively low concentrations

of metals in blood support the knowledge that E. imbricata

feed mainly on the low trophic levels. All essential and

non-essential elements were detectable in blood and in

eggs of the hawksbill, reflecting a maternal transfer. Con-

sequently, movement patterns, home ranges of foraging

grounds, and availability of food could explain variations

in trace element concentrations among female turtles.
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Iran has a coastline extending almost 1,800 km on the

northern boundaries of the Persian Gulf and the Sea of

Oman (Kami 1997) (Fig. 1). Qeshm Island, with about

1,495 km2, is the largest Island in the area.Some parts of

Qeshm provide suitable habitat for nesting hawksbills and

foraging green turtles. However, several classes of

anthropogenic pollutants discharged into the marine eco-

system of the Persian Gulf have the potential to negatively

impact the future growth and/or survival of this population.

Heavy metal concentration in sea turtles is mainly deter-

mined by environmental exposure (Gardner et al. 2006).

Sea turtles are of increasing interest as potential bioindi-

cators for heavy metal accumulation in marine ecosystems.

They are long-lived vertebrates that ingest organic and

inorganic contaminants from food, sediment and water.

According to the classical model, females migrate directly

from the nesting beaches (Shibderaz in this study) to

identifiable feeding areas (Hengam Island in this study)

where they remain until they return to nesting beach again

in 2–3 years. Based on this model, we suggest that by

analyzing tissues from nesting hawksbills sampled in

Shibderaz beach, Qeshm Island, we can quantify the con-

centration of metals from the hawksbill foraging grounds in

the waters from the north coast of Persian Gulf region. Due

to the wide geographic distribution that sea turtles cover

during their life cycle, they may serve as meaningful

‘‘biomonitors’’ for overall ecosystem health. For this rea-

son it is especially important to document and understand

any intrinsic factors that affect survival or reproduction

(Kampalath et al. 2006). All species of sea turtles are

regarded as endangered or threatened and are listed in

Appendix I of the Convention of International Trade in

Endangered Species (IUCN 2003). In Iran, sea turtles are

also classified as endangered species and, additionally, they

are considered as priority species for conservation. We
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hypothesize that blood and eggs will be suitable indicators

for monitoring trace metals and other contaminants in

nesting turtles. It is of more interest to toxicologists and sea

turtle conservationists to obtain information about the

contamination of the live animals in a population. There-

fore, we emphasize that we are contributing to a growing

body of researching examining contaminants in healthy,

free-range individuals, which will provide more robust

information about the potential risk presented by such

contaminants to endangered sea turtle populations. A non-

lethal method for sampling blood from the dorsal cervical

sinuses in the neck of sea turtles was developed by Owens

and Ruiz (1980). The present study was conducted to

assess the variations and relationships among trace metal

concentrations in maternal blood and freshly laid eggs from

each mother of E. imbricata. Additionally, the maternal

transfer was estimated quallitaitvely through the metal

excretion rate on the basis of one nesting season of this

turtle that arrived at Shibderaz beaches in Qeshm Island,

along the North coast of Persian Gulf.

Materials and Methods

Sampling

Eggs and blood of E. imbricata were sampled (permit

Hormozgan Environmental Organization No. 25992) from

Shibderaz, Qeshm Island, Iran during the nesting season

between April and June 2011(Fig. 1). Twelve female

Hawksbill individuals were haphazardly selected assuming

to provide a representative distribution of size classes; the

total weight of individual turtles was determined and

curved carapace length (CCL) and width (CCW) were

measured after nesting was concluded. After biometric

measurements, blood and egg samples were collected from

each female turtle; blood samples were taken from the

dorsal cervical sinus using a sterile plastic syringe and

needle in order to collect 5–10 mL that were immediately

placed in an acid-washed (Moody and Lindstrom 1977)

polyethylene tube. During blood extraction from each

individual, careful cleaning of the neck region (with etha-

nol and deionized water) prior to sampling was practiced.

Four eggs from each female were haphazardly collected at

the time of oviposition before they touched sand. All

samples were kept under fresh conditions (4�C) and were

transported to the laboratory.

Trace Metal Analyses

Egg samples were rinsed with deionized water to remove

any particulate matter that might have adhered. Next, eggs

were weighed and sized and subsequently separated into

shell, albumen, and yolk. The separation was carried out

quickly to prevent thawing. For the analysis, eggs were

separated into three fractions and randomly groped in pools

of 2; that is, each individual was represented by two pools

(A and B) containing the three fractions of eggs (four eggs

Fig. 1 Location of the

collection site of E. imbricata

nesting on Qeshm Island in Iran

(North coast of Persian Gulf)
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from each turtle); fractions were randomly dispersed in the

two groups. Blood samples were individually transported

and processed. Glassware and plastic materials used for

handling and transportation of samples were thoroughly

acid-washed to prevent contamination of samples (Moody

and Lindstrom 1977). Blood and pooled samples of eggs

were freeze-dried (72 h at – 49�C and 133 9 10-3 mbar)

and then powdered. Powdered samples (0.25 g) were

digested with quartz-distilled concentrated nitric acid

(5 mL) in hot plate equipment (PC 420D) under estab-

lished conditions (MESL 1997). The digested material was

finally diluted to 50 mL using deionized water and stored

in polyethylene containers for further analysis. All samples

were analyzed in triplicate for Cd, Pb, Cu and Zn by

Atomic Absorption Spectrophotometer (Shimadzu, model

SOLAAR M5, England) and for Hg by LECO AMA254

Advanced Mercury Analyzer.

Data Analyses

Normality and homoscedasticity of data were assessed by a

Kolmogorov–Smirnov test respectively. In order to define

statistical differences (p \ 0.05) among mean metal con-

centrations in blood and the three fractions of eggs, a one

way ANOVA test was used. Correlations of metal con-

centrations of egg fractions and blood with body size

(CCL) and weight were determined separately using simple

regression analyses, establishing correlation coefficients

(significant when p \ 0.05) as the indicator of correlation.

Statistical analyses were carried out using SPSS version

16.0.

Results and Discussion

Biometric Data

The mean size of female turtles(N = 12) was 43.02 ± 12.6 kg

(CCL 63.54 ± 10.23 cm; CCW 57.17 ± 9.05 cm); mean egg

diameter and egg weight (N = 48) was 3.64 ± 0.01 cm and

29.77 ± 3.73 g, respectively.

Metal Concentrations

Trace metal concentrations of egg fractions and blood of E.

imbricata are presented in Table 1. For comparative pur-

poses, data that were originally presented on a wet weight

basis were converted into dry weights using the mean water

content of each egg fraction correspondent; water content

determined in this study was used [albumen,

97.3 % ± 1.9 % (n = 48); yolk, 62.5 % ± 2.9 %

(n = 48); eggshell, 59.0 % ± 5.6 % (n = 48)]. Blood

concentrations of Cu and Zn found in E. imbricata are less

than those found in D. coriacea (Guirlet et al. 2008), L.

Kempii (Kenyon et al. 2001) and L. olivacea (Pa0ez-Osuna

et al. 2010), but the levels of Cd was within of the range of

concentrations reported for D. coriacea (Guirlet et al.

2008), L. Kempii (Kenyon et al. 2001) and L. olivacea

(Pa0ez-Osuna et al. 2010). Day et al. (2005) found signifi-

cant positive correlations between blood mercury levels

and mercury concentrations in the muscle and spinal cord

of C. caretta. Similarly, Keller et al. (2004) found strong

correlations between blood and carapace fat for a number

of organochlorine compounds. Females seem to ingest a

significant volume of water to decrease their body tem-

perature in warm waters of nesting tropical beaches

(Southwood et al. 2005) and to ensure egg production

(albumin is mainly composed of water; Wallace et al.

2006) which would explain the heavy metals are higher in

blood than egg fractions. Blood is a physiologic medium of

interchange and transport of substances among the tissues

of organisms; its flux in the different organs and tissues

varies significantly (Guyton 1977). Day et al. (2005) pro-

posed the use of blood for monitoring trace metal exposure

in marine turtles because it is possible to predict the load in

internal tissues. The decreasing order of metal concentra-

tions in the analyzed materials in E. imbricata from Qeshm

Island was as follows: for Zn, blood [ Yolk [ egg-

shell [ albumen; for Cu, Egg shell [ blood [ albu-

men [ yolk; for Cd, albumen [ yolk [ eggshell [ blood;

for Pb, egg shell [ yolk [ albumen [ blood and for Hg,

blood [ albumen [ eggshell [ yolk.Trace metal concen-

trations, including standard deviation, in the eggshell,

albumen, yolk, and blood of E. imbricata turtle are shown

in Fig. 2. In general, Zn concentrations varied among

sampled individuals (Fig. 2), the CV (SD 9 100/mean)

was consistently the lowest (\10.6 %) found in all ana-

lyzed egg fractions. Therefore, it appears that Hawksbill

sea turtle can regulate Zn concentrations through homeo-

static processes in balance between metabolic requirements

and prevention against toxic effects. On the other hand, the

relatively high CV was found for Cd (21.4 %–175.8 %),

Hg (27.9 %–100.0 %), Pb (13.7 %–75.6 %) and Cu

(15.3 %–46.5 %), at the three egg fractions, it implying

that such elements are not actively controlled by female

turtles and probably their levels change as a function of the

degree of exposure (Pa0ez-Osuna et al. 2010).

The multiple comparisons of means of metals in egg

fractions produced various significant (p \ 0.05) differ-

ences: The Zn mean concentration was higher in the yolk

than the other tissues; the presented data indicate that shell

and albumen were not significantly different from each

other but both were significantly lower than yolk (Fig. 2).

Cu and Pb mean concentrations were highest in the egg

shell than the other tissues. The Cd concentration was

higher in the albumen, whereas Hg concentration was
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higher in blood. Similar metal results were found in

Caretta caretta by Sakai et al. (1995), Kaska and Furness

(2001) and L. olivacea by Páez-Osuna et al. (2010). Non-

essential metals include Mercury (Hg), Lead (Pb) and

Cadmium (Cd) although several essential metals, notably

Zinc (Zn) and Copper (Cu), can act as toxicants at elevated

concentrations in organisms (Devkota and Schmidt 1999).

Cu had a significant concentration in eggshell and albumen.

The concentration of essential metals in yolk are important

because they contribute to the physiological processes for

development of the embryo, such metals being transferred

from mother to eggs, whereas for nonessential metals, the

transference is more limited (Storelli and Marcotrigiano

2003).

Considering the proportions of each egg fraction (albu-

men, 3.85 %; yolk, 81.2 %; eggshell, 14.95 % in dry

weight) and concentrations of each metal in each case, it is

observed that the highest load or percentage of Cd and Cu

was incorporated in the yolk (Fig. 3); in the eggshell, Cu

and Pb contribute with a load of 51.9 % and 41.5 %,

respectively. Yolk represents the higher portion of egg in

weight (81.2 %) and constitutes, with the exception of Cu,

the main fraction where the highest load of the analyzed

metals occurs. This confirms the importance of the yolk in

the accumulation of trace metals in marine turtles (Godley

et al. 1999; Sakai et al. 2000; Páez-Osuna et al. 2010). In

contrast, considering the weights and proportions of metals

in each egg fraction, the trace metal content (mg/kg dry

weight) of whole eggs (i.e., albumen ? yolk ? eggshell)

were calculated: 12.8 ± 5.2 for Cu, 43.2 ± 14.4 for Zn,

1.2 ± 1.2 for Cd, and 0.009 ± 0.01 for Hg. Zn concen-

trations were lower than those reported by Sakai et al.

(1995), Guirlet et al. (2008) and Páez-Osuna et al. (2010) in

eggs of C. caretta, D. coriacea and L. olivacea respec-

tively; Cu and Cd were lower than levels in eggs of C.

caretta reported by Sakai et al. (1995) but resulted to be

comparable levels in eggs of L. olivacea (Páez-Osuna et al.

2010). Such differences could be attributed to the diet of

Table 1 Metals concentration (mean ± SD, lg/g dry weight) in blood and three egg fractions of marine turtles from different locations

Species Cd Cu Pb Zn Hg Location Reference

yolk

C. mydas – 0.91 ± 0.10 – 120 ± 9.6 – China 1

C. careta – 1.57 ± 0.07 0.02 ± 0.007 34.4 ± 3.18 12.1 ± 3.41 Japan 2

C. mydas 0.34 ± 0.03 0.49 ± 0.008 45 ± 3.6 0.002 ± 0.0001 China 3

C. careta 0.02 ± 0.007 1.57 ± 0.07 – 34.4 ± 3.18 12.1 ± 3.41 Japan 2

L. olivacea 0.24 ± 0.1 2.2 ± 1.47 – 72.3 ± 10.9 – Mexico 4

E. imbretica 0.42 ± 0.09 2.28 ± 0.35 3.1 ± 0.92 34.13 ± 8.2 0.007 ± 0.002 Iran This study

Albumen

C. mydas – 2.33 ± 0.40 – 11.1 ± 2.2 – China 1

C. careta 0.12 ± 0.08 0.59 ± 0.58 0.49 ± 0.24 Japan 2

C. mydas – 0.06 ± 0.01 0.005 ± 0.001 0.3 ± 0.05 – China 3

C. careta – 0.12 ± 0.08 – 0.59 ± 058 0.49 ± 0.24 Japan 2

L. olivacea 0.22 ± 0.09 3.53 ± 2.87 – 33.6 ± 6.1 – Mexico 4

E. imbretica 0.59 ± 0.35 3.81 ± 1.14 2.76 ± 0.38 3.45 ± 1.18 0.004 ± 0.004 Iran This study

Egg shell

‘C. mydas 0.04 ± 0.03 3.16 ± 0.80 – 2.9 ± 0.6 – China 1

C. careta – 5.57 ± 0.76 – 2.17 ± 0.59 4.05 ± 1.31 Japan 2

L. olivacea 0.47 ± 0.09 7.48 ± 2.6 – 12.4 ± 1.5 – Mexico 4

E. imbretica 0.36 ± 0.63 6.64 ± 3.09 4.16 ± 3.15 5.56 ± 3.91 0.002 ± 0.002 Iran This study

Blood

L. kempii – 0.12–1.3a 0–0.03a 3.28–18.9a 0.00005–.00673a USA 5

D. coriacea 0.08 ± 0.03 1.34 ± 0.28 0.18 ± 0.05 11.1 ± 0.28 0.011 ± 0.003 French Guiana 6

C. mydas 35.47 ± 9.52 – 22.18 ± 5.83 – 2.51 ± 0.05 Australia 7

L. olivacea 0.45 ± 0.2 2.28 ± 0.4 – 58.4 ± 4.7 – Mexico 4

E. imbretica 0.34 ± 0.08 1.89 ± 0.78 0.56 ± 0.25 37.6 ± 3.98 0.18 ± 0.05 Iran This study

1: Lam et al. (2004), 2: Sakai et al. (2000), 3: Lam et al. (2006), 4: Pa0ez-Osuna et al. (2010). 5: Kenyon et al. (2001), 6: Guirlet et al. (2008), 7:

van de Merwe et al. (2010)

– Not reported
a Range of concentration
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Persian Gulf hawksbills, and the bioaccumulation of metals

by sponges and other benthic invertebrates which comprise

the majority of the hawksbill diet. Sea turtles are oppor-

tunistic omnivorous, consuming whatever is available.

Hatchlings and pelagic turtles typically consume what is

available at the surface, whereas older, larger benthic tur-

tles consume food throughout the water column, with a

greater emphasis on benthos. Hawksbill sea turtles are

omnivorous, feeding in coastal waters on a diet that con-

sists primarily of sponges. They are selective feeders

choosing only certain species of sponges of which are toxic

to other animals. Sea jellies and other coelenterates are

also common prey for hawksbill turtles. They also eat

mollusks, fish, marine algae, crustaceans and other sea

plants and animals (Meylan 1988). Coastal habitats are

often in close proximity to sources of persistent organic

pollutants (POPs) and heavy metals, which make their way

into the marine environment from industrial, domestic and

agricultural sources (Newman and Unger 2003). These

chemicals accumulate in marine animals nearly exclusively

Fig. 2 Trace metal concentrations (mean ± SD) in eggshell (n = 48), albumen (n = 48), yolk (n = 48), and blood (n = 12) of E. imbricata
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through their diet (Langston and Spence 1995). An addi-

tional factor that should be considered is the elevated

mobility of E. imbricata turtles across the Persian Gulf;

potentially enhanceing exposure to environmental toxi-

cants. Coastal waters in the northern part of Hormuz Strait

in the Persian Gulf, receive large inputs of anthropogenic

pollutants through industrial and urban discharges, atmo-

spheric deposition, and terrestrial drainage (Mohammadi-

zadeh et al. 2013), Thus, movement patterns as well as

availability of food could both contribute to variations in

trace element concentrations among turtles.The monitoring

of metals in E. imbricata therefore provides vital infor-

mation about the health of individuals and populations and

is an important area of sea turtle conservation research.

Metal Correlations

Because no reliable age determination methods exist for

sea turtles (Bjorndal et al. 1998), we used the body size

parameters CCL, CWL, and weight to evaluate growth

related variations in trace element concentrations of egg

fractions and blood. Zn content in blood showed positive

correlation with the body size and weight (as a proxy for

age) (p \ 0.01). Independently of such a result, the

expected behavior is that bigger organisms will accumulate

more Zn which indicates bioaccumulation. Weights of eggs

had no significant correlation with concentration of metals

analyzed in each fraction of eggs (p [ 0.05).

In the case of load of metal in the blood of the nesting

females versus the metal levels found in the fractions of

eggs, Zn had positive significant correlation (p \ 0.05).

This indicates that when Zn is increased in the female

turtles, the concentration of Zn is increased in each

fractions of egg. Few studies have reported data on trace

elements in sea turtle blood and eggs because most of the

available data involve stranded turtles and consequently

maternal transfer of trace elements to eggs in sea turtles is

poorly known and should be examined to assess risk for

incubation success (Guirlet et al. 2008).

Maternal Transfer of Metals

In birds, amphibians and reptiles, eggs receive their initial

burden of POPs and heavy metals with maternal transfer

during egg formation (Hopkins et al. 2006). After migra-

tion to the nesting site, parental investment is limited to the

nutrients and energy invested in the yolk that will support

embryonic development and the post natal period of the

hatchlings (Hewavisenthi and Parmenter 2002). In reptiles,

while Cu and Zn have a paramount role in the growth and

the tissue development of embryo, Cd, Hg and Pb are

particularly toxic at this key period of development (Wolfe

et al. 1998). In our study, concentrations of essential ele-

ments are higher in eggs and blood compared to non-

essential elements, reflecting the lower exposure of

hawksbill turtles in our study to these toxic metals. All

essential and non-essential elements were detectable in

blood and in eggs of the hawksbill, reflecting a maternal

transfer.

Permeability of eggshells to soil contaminants should

also be considered as a way of contamination that could

affect hatching success of the nest for reptile species with

permeable eggshells deposited in contaminated substrate

(Marco et al. 2004). However, Nagle et al. (2001) found

that slider turtles (T. scripta) inhabiting contaminated

basins accumulated multiple contaminants, including Cd,

without transferring it to eggs, while our results clearly

show a maternal transfer of cadmium to eggs. Therefore,

maternal transfer is likely to depend on the species, the

level of contamination and the nature of the element

considered.

Conclusions

The present study provides the first data on baseline trace

element concentrations in wild hawksbill turtles from

North coast of Persian Gulf. Whole blood has proven

useful for measuring trace element levels in turtles. Levels

of toxic metals such as Hg, Cd and Pb were low in the

turtles sampled for this study but always detectable in

blood and eggs suggesting a maternal transfer. The rela-

tively low metal concentrations found in the blood samples

may be attributed to dietary specialization; E. imbricata

feed heavily on sponges which occupy a low trophic level.

Our findings, in combination with information from the

0% 20% 40% 60% 80% 100%

Cd 

Cu

Zn

Pb

Hg

yolkEgg shell Albumen

Fig. 3 Percentages of trace metal loads in the three egg fractions of

E. imbricata (filled bars Yolk; unfilled bars eggshell; gray bars

albumen)

672 Bull Environ Contam Toxicol (2014) 92:667–673

123



referenced studies (Wolfe et al. 1998; Sakai et al. 1995;

Páez-Osuna et al. 2010), suggest that Cd and Hg levels

examined are relatively low in adult E. imbricata, these

levels may pose a hazard to the developing embryo after

maternal transfer. Further investigations are needed to

better understand the exact role of trace elements in sea

turtle development as well as their potential relationship

and adverse effects on embryonic development and sub-

sequent hatching success due to maternal and environ-

mental contamination.
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Páez-Osuna F, Calderón-Campuzano MF, Soto-Jiménez MF, Ruelas-
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