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Abstract To understand the role of silicon (Si) in alle-

viating sodium (Na) toxicity in Trifolium repens L. (white

clover), the changes of biochemical and physiological

parameters were investigated in four-week-old white clo-

ver seedlings exposed to 0 or 120 mM NaCl with or

without 1.5 mM Si for 7 days. Results showed that added

Si alone did not have any effects on the growth and Na?,

K? accumulations in white clover plants compared to the

control (no added Si and NaCl). However, in the presence

of NaCl, additional Si significantly enhanced the selective

transport capacity for K? over Na? that contributed to

reduced Na? uptake and increased K? uptake by roots,

thereby improving its growth and K?/Na? homeostasis in

white clover. This study would provide a way for

improving salt tolerance in important legume white clover

forage.
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Soil salinity is a major constraint of crop productivity

because it reduces yield and limits expansion of agriculture

onto uncultivated land (Flowers and Yeo 1995). Trifolium

repens L. (white clover) is one of the most commonly

cultivated legume forages due to its high protein content

which makes its productivity essential for sheep meat, beef

cattle and dairy production industries (Wang et al. 2010).

In addition, the high nitrogen fixing ability of white clover

makes it adaptable to a wide range of soil and environ-

mental conditions and combines well with many perennial

grasses (Tang et al. 2010). However, T. repens is a salt-

sensitive species (Rogers et al. 1993) and suffers a yield

decline at soil salinity levels of around 2 dS m-1 (Mehanni

and Repsys 1986). Therefore, the objective of cultivating a

salt tolerant T. repens has long been pursued. To overcome

the toxicity of salinity in plant species, many curative and

management practices have been adopted. One of these

methods is to apply exogenous silicon (Si) in salinity soil.

Si is the second most abundant element on the surface of

the earth and can particularly alleviate both biotic and

abiotic stresses in higher plant, although it has not been

listed among the generally essential elements of plants

(Epstein 1994; Liang et al. 1996). Si is known to be

involved in plant protection against salt stress. Yeo et al.

(1999) reported that under salt stress, the deposition and

polymerization of Si in the endodermis and rhizodermis

blocked Na? influx through the apoplastic pathway in the

roots of rice, thereby reducing the entrance of Na? without

significantly affecting the overall transpiration flux and

plant growth. Romero-Aranda et al. (2006) found that sil-

icate crystals deposited in the epidermal cells form a bar-

rier that reduces water loss through cuticles and improves

water relation in tomato plant tissue which contributes to

salt dilution within plants, mitigating salt toxicity effects.

In addition, the increased uptake and transport of K? and

decreased uptake and transport of Na? from roots to shoots

in plants may be attributable to Si-induced stimulation of

the root plasma membrane (PM) H?-ATPase under salt

stress (Liang et al. 2005, 2006). This indicated that

restriction of Na? influx either into root cells or into the

xylem stream is one way of regulating the optimum
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cytosolic K?/Na? ratio (Chinnusamy et al. 2005). Taken

together, the responses vary depending not only on Na and

Si concentrations but also on plant species. However, Si

involved in alleviating Na toxicity in T. repens has not

been explored.

The objective of this study was to reveal the role of Si in

the resistance to salt stress. In view of this, effects of Si on

the growth parameters and Na?, K? accumulations in

T. repens plants exposed to 0 or 120 mM NaCl with or

without 1.5 mM Si was investigated.

Materials and Methods

Seeds of white clover were sterilized with sodium hypo-

chlorite solution (5 %) for 5 min and rinsed thoroughly with

distilled water, then were germinated on moistened filter

paper for 7 days at 25�C in the dark. When the plumule

emerged, seedlings were selected for uniformity and were

subsequently transferred into plastic containers (7 cm 9

7 cm 9 7 cm) filled with 0.6 L modified Hoagland solution

(2 mM KNO3, 1 mM Ca(NO3)2, 0.5 mM MgSO4, 0.25 mM

NH4H2PO4, 11.9 lM Fe-citrate, 11.5 lM H3BO3, 1.25 lM

MnSO4, 0.2 lM ZnSO4, 0.075 lM CuSO4, and 0.025 lM

NH4Mo7O24) for 4 weeks. The nutrient solution was

adjusted to pH 6.8 with 0.1 M HCl/NaOH, and was renewed

every 2 days. Plants were grown in a growth chamber at a

day/night cycle 16/8 h, at 22/18�C, respectively, a relative

humidity between 50 % and 60 %, and a light intensity of

120 lmol m-2 s-1 PAR.

Si was added to the Hoagland solution as K2SiO3. KNO3

was reduced, in the preparation of the Hoagland solution,

proportionally to the K supply provided by K2SiO3, and

additional K introduced by K2SiO3 was subtracted from

KNO3 and the resultant nitrate loss was supplemented with

dilute nitric acid. Notably, in a preliminary experiment,

adding different concentrations of Si (0, 0.5, 1.0, 1.5 and

2.0 mM) partially alleviated the negative impacts of salt

stress on growth in white clover, but 1.5 mM Si was found

to be the most effective. Therefore, 1.5 mM was used in all

subsequent experiments. A randomized block design con-

sisting of a control and three treatments (1.5 mM Si,

120 mM NaCl and 1.5 mM Si plus120 mM NaCl) was

used. NaCl concentrations were incrementally increased

with 30 mM NaCl day-1 increments until final concen-

trations (120 mM NaCl) were achieved. Four-week-old

white clover seedlings were harvested after 7 days of

receiving the silicon and salinity treatments. Three plants

for white clover were pooled in each replicate. The

experiment was repeated five times.

The relative growth rate (RGR) of whole plants was

calculated using the formula RGR = (lnWj - lnWi)/Dt,

where Wj and Wi are final (after 7 days of treatments) and

initial (before treatments) dry weights (DW), respectively,

and Dt is the time elapsed (days) between the two mea-

surements; initial dry weight was determined before treat-

ments (Martı́nez et al. 2005).

At the end of each treatment, plant roots were washed

twice for 8 min in ice-cold 20 mM CaCl2 to exchange cell

wall-bound Na? and shoots rinsed in deionized water to

remove surface salts (Wang et al. 2007). Harvested plants

were washed thoroughly with running distilled water,

separated into shoots and roots; fresh weights were deter-

mined immediately and then oven dried at 80�C for 3 days

to obtain dry weights. Na? and K? were extracted from

dried plant tissue in 100 mM acetic acid at 90�C for 2 h

and ion analysis was performed using an atomic absorption

spectrophotometer (AA-6300C, Shimadza, Kyoto, Japan).

According to Wang et al. (2009), the net Na?, K?

uptake rate was calculated for each time interval, as net

Na?, K? uptake rate (nmol g RFW-1 min-1) = (C2 - C1)/

R2/(t2 - t1), where C is Na?, K? content in whole plant, R2 is

the root fresh weight (RFW), and t is the time at two

harvests, respectively. Sub-indexes 1 and 2 are indicated

before treatments and after 7 days of treatments,

respectively.

Selective transport capacity for K? over Na? (ST) value

indicates the net capacity of selection for transport of K?

over Na? from roots to shoots (Guo et al. 2012). ST values

were estimated according to the following equation as

described by Guo et al. (2012) where ST = (K?/Na? in

shoots)/(K?/Na? in roots).

All the data are presented as means with standard errors

(SE). Statistical analyses, one-way ANOVA, and Duncan’s

Table 1 Effects of Si on DW of shoots and roots and RGR in white clover under salt stress

NaCl (mM) Si (mM) Shoots DW (g plant-1) Roots DW (g plant-1) RGR (mg g-1 d-1)

0 0 1.23 ± 0.061a 0.58 ± 0.026a 152.26 ± 8.36a

0 1.5 1.26 ± 0.042a 0.61 ± 0.031a 157.71 ± 9.23a

120 0 0.56 ± 0.053c 0.23 ± 0.028c 34.62 ± 3.62c

120 1.5 0.92 ± 0.042b 0.46 ± 0.016b 114.30 ± 5.72b

Four-week-old white clover seedlings were exposed to 0 or 120 mM NaCl with or without 1.5 mM Si for 7 days. Values are mean ± SE. Each

value is a mean of five replicates (n = 5). Mean values (±SE) with different letters are significantly different at p \ 0.05 (Duncan’s test)
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multiple range tests were performed by statistical software

(Ver.13.0, SPSS Inc., Chicago, IL, USA).

Results and Discussion

As shown in Table 1, application of Si alone did not

influence the DW and RGR in plants compared to the

control. Added NaCl alone significantly reduced shoots and

roots DW by 54.47 % and 60.34 %, respectively, com-

pared to the control. However, when plants were treated

with NaCl plus Si, the reductions of shoots and roots DW

were only 26.98 % and 24.59 % relative to the additional

Si alone, respectively. Based on these results, in the pres-

ence of NaCl, the addition of Si significantly increased

RGR by 69.71 % in T. repens plants. Furthermore, in the

presence of NaCl, added Si decreased roots Na? concen-

trations by 48.19 % and increased shoots K? concentration

by 48.40 % in T. repens plants (Fig. 1). Meanwhile, NaCl

plus Si caused a 114.11 nmol g RFW-1 min-1 reduction

in net Na? uptake rate and 61.71 nmol g RFW-1 min-1

increase net K? uptake rate compared to NaCl treatments

alone, leading to enhanced whole plant K?/Na? ratios in

T. repens (Table 2). Similar results were also reported in

other plants exposed to salt stress (Liang 1999; Ashraf et al.

2010). The ameliorative effect of added Si in alleviating

deleterious effects of NaCl could be related to Si being

irreversibly precipitated as amorphous silica (SiO2�nH2O)

in cell walls and lumens, leading to Si inducing a reduction

of Na? in transpiration rate (Matoh et al. 1986) and to the

partial blockage of the transpirational bypass flow (Yeo

et al. 1999).

On the other hand, Si reduced Na? uptake by roots due

to Si-induced stimulation of the root PM H?-ATPase under

salt stress (Liang et al. 2005, 2006), which contributed to

increased K? uptake and -transport in plants (Liang 1999).

It is known that the proton motive force created by PM H?-

ATPases drives Na? effluxes from plant cells through Na?/

H? antiporters in the PM (Blumwald et al. 2000). The most

likely candidate is a putative PM Na?/H? antiporter

(SOS1), and SOS1 also is the major component of selective

transport capacity for K? over Na? (ST) in plants (Guo

et al. 2012). Interestingly, we observed the ST values in

white clover plants treated with NaCl plus Si were 1.60

times higher than that of NaCl treatment alone (Table 2).

As for higher plants, cation/H? antiporters are the main

transport systems involved in Na? and K? homeostasis

through PM associated transport processes (Olı́as et al.

2009), thereby contributing to maintaining higher K?/Na?

selectivity in plants (Hasegawa et al. 2000). Therefore,

Si might stimulate activity of PM H?-ATPase which

would provide additional energy needed for PM Na?/H?
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Fig. 1 Effects of Si on Na? and K? concentration in white clover

under salt stress. Four-week-old white clover seedlings were exposed

to 0 or 120 mM NaCl with or without 1.5 mM Si for 7 days. Values

are mean ± SE. Each value is a mean of five replicates (n = 5). Bars

indicate ±SE. Mean values (±SE) with different letters are signif-

icantly different at p \ 0.05 (Duncan’s test)

Table 2 Effects of Si on whole plant K?/Na? ratio, net Na?, K? uptake and ST value in white clover under salt stress

NaCl

(mM)

Si

(mM)

Whole plant

K?/Na? ratio

Net Na? uptake

(nmol g RFW-1 min-1)

Net K? uptake

(nmol g RFW-1 min-1)

ST value

0 0 4.57 ± 0.212a – – 0.92 ± 0.024a

0 1.5 4.75 ± 0.305a – – 0.95 ± 0.028a

120 0 0.53 ± 0.082c 145.39 ± 5.25a -85.98 ± 3.36b 0.52 ± 0.038c

120 1.5 1.58 ± 0.125b 31.28 ± 4.62b -24.27 ± 4.32a 0.83 ± 0.018b

Four-week-old white clover seedlings were exposed to 0 or 120 mM NaCl with or without 1.5 mM Si for 7 days. Values are mean ± SE. Each

value is a mean of five replicates (n = 5). Mean values (±SE) with different letters are significantly different at p \ 0.05 (Duncan’s test)
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antiporter and exclude more Na? from the plant cell. This

would further enhance the selective transport capacity for

K? over Na?, hence regulating K?/Na? homeostasis in

plants under salt stress.

In conclusion, Si could alleviate Na toxicity in white

clover plants subjected to salt stress due to enhance the

selective transport capacity for K? over Na?, hence regu-

lating K?/Na? homeostasis and improving the plant growth.
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