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Abstract
The recently explored Tianzuo hydrothermal field in serpentinized ultramafic rocks of the amagmatic segment of the ultraslow-
spreading Southwest Indian Ridge displays high-temperature sulfide mineralization (isocubanite, sphalerite, and minor pyrrho-
tite) and low-temperature (pyrite and covellite) phases. Pyrite can be subdivided into pyrite-I and -II, with the former generally
having a pseudomorphic texture after pyrrhotite and the latter typically growing around isocubanite, sphalerite, and pyrite-I or
occurring as individual grains in quartz veinlets. The sulfide minerals have the greatest range of δ34S values (− 23.8 to 14.1‰),
found so far among modern sediment-starved ridges, with distinct δ34S values for low- and high-temperature mineral phases. The
high δ34S values of isocubanite (9.6 to 12.2‰) and sphalerite (9.1 to 14.1‰) suggest that sulfate, which precipitated from
seawater during an early low-temperature phase of hydrothermal circulation, was the main sulfur source for these sulfides. Pyrite-
II has the lowest and most variable δ34S values (− 23.8 to − 3.6‰), suggesting microbial sulfate reduction. Pyrite-I has variable
and generally positive δ34S values (− 0.1 to 12.0‰), with sulfur being inherited from pyrrhotite from the original thermochemical
reduction of sulfate, mixed with volcanogenic sulfur. Intermittent magmatism represented by gabbroic intrusions, and high
permeability caused by well-developed fractures associated with detachment faults, contributed to the formation of sulfides in
the Tianzuo hydrothermal field. These factors possibly control sulfide mineralization in amagmatic segments of ultraslow-
spreading ridges.
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Introduction

Spreading rates of oceanic ridges are commonly considered
as superfast (> 140 mm yr−1), fast (80–140 mm yr−1), inter-
mediate (55–80 mm yr−1), slow (20–55 mm yr−1), or ultra-
slow (< 20 mm yr−1) (Dick et al. 2003 and references
therein; Beaulieu et al. 2013). Since longitudinal profiles
of ridges are closely associated with the intensity of
magmatism (Standish and Sims 2010), and hydrothermal
activity is significantly correlated with spreading rate
(Baker et al. 1996; Baker 2009), previous studies consid-
ered that hydrothermal fields in oceanic ridges are predom-
inantly controlled by the eruption and/or intrusion of basal-
tic magmas (Hannington et al. 2005; Fouquet et al. 2010).
This results in most sulfide deposits being hosted in basalts,
especially at fast-spreading ridges, with few being hosted in
ultramafic rocks. However, in fast-spreading ridges, hydro-
thermal circulation may be blocked by such eruptions,
resulting in abundant small-scale sulfide deposits (Fornari
et al. 1998). Contrarily, sulfide deposits and vent sites in
slow-spreading ridges tend to be much larger than those
found in classic magmatic settings (German et al. 2016);
in most cases, they are hosted in long-lived detachment
faults (leading to oceanic core complex formation with ex-
humation of ultramafic rocks). This allows the formation of
relatively stable and long-lived fluid pathways, and also the
involvement of serpentinization reactions within the hydro-
thermal circulation cells (Hannington et al. 2005; McCaig
et al. 2007; Ildefonse et al. 2007; Escartin et al. 2008;
Fouquet et al. 2010).

Hydrothermal activity in slow-spreading ridges may be ex-
tensive (German and Parson 1998; Münch et al. 2001; Baker
et al. 2004; Nayak et al. 2014), even in ultraslow ridges, where
it was considered to be absent because of scarce magmatic
activity (Baker et al. 1996). Tao et al. (2012) found an active
black smoker chimney (Longqi field; 37.8° S, 49.6° E) in the
ultraslow-spreading Southwest Indian Ridge (SWIR), show-
ing that sulfide deposits develop in such environments, with
hydrothermal activity being associated with localized mag-
matic activity and stable permeability. More hydrothermal
fields have since been discovered near Longqi, including
the Yuhuang (49.3° E), Xilongjing (49.7° E), Duanqiao
(50.4° E), Changbai (~ 51.0° E), and Zhanqiao (~ 51.0° E)
fields (Tao et al. 2014; Yang et al. 2017b; Liao et al. 2018).
An important feature of ultraslow-spreading ridges is that
they can be considered in terms of magmatic and
amagmatic segments (Sauter et al. 2009; Standish and
Sims 2010; Li et al. 2015; Yang et al. 2017a). The extensive
occurrence of basalts suggests that SWIR fields, including
the previously discovered inactive Mt. Jourdanne field at
63° 56′ E, are most likely associated with magmatic activity
(Münch et al. 2001; Nayak et al. 2014; Tao et al. 2014;
Yang et al. 2017b; Liao et al. 2018; Yuan et al. 2018).

Sulfide deposits associated with ultramafic rocks along the
slow-spreadingMid-Atlantic Ridge (MAR) appear to be more
abundant than in ophiolites on land (Fouquet et al. 2010), with
ultramafic-hosted volcanogenic sulfide deposits being a spe-
cific marine mineralization type occurring along the MAR in
the Logatchev (Bogdanov et al. 1997), Rainbow (German
et al. 1996; Lein et al. 2001), Lost City (Kelley et al. 2001),
Ashadze (Cherkashev et al. 2013),Menez Hom (Fouquet et al.
2002), Nibelungen (Melchert et al. 2008), Saldanha (Dias and
Barriga 2006; Cherkashev et al. 2013), and Semyonov
(Cherkashev et al. 2010) hydrothermal fields. In most cases,
on-land ultramafic-hosted sulfide deposits, if not clearly of
primary magmatic origin, are thought to be linked to
serpentinization that remobilizes metals from primary silicates
(e.g., olivine) into hydrothermal sulfides, if enough H2S is
available (Barrie et al. 1999; Marques et al. 2007 and refer-
ences therein). However, analysis of vent fluids in active sea-
floor hydrothermal systems has shown that the concentrations
of most elements (e.g., Mn, Zn, Cu, Ag, Ba, Cd, Rb and As)
are comparable in ultramafic and basaltic systems, with the
exception that fluids from ultramafic-hosted systems have
higher concentrations of CH4, H2, Co, Ni, Fe and lower Si,
Pb, Al, Mg concentrations (Wetzel and Shock 2000; Charlou
et al. 2002; Douville et al. 2002; Schmidt et al. 2007). This
implies that even in hydrothermal fields hosted in tectonic-
related hydrothermal systems, fluids circulate probably also
through mafic basements. Allen and Seyfried Jr (2004) further
proposed that even for the low-temperature ultramafic-hosted
Lost City system, serpentinization likely played an insignifi-
cant role accounting for hydrothermal circulation compared
with hot lithospheric units and/or near magmatic heat sources,
as the chemical compositions (such as Cl, K/Cl, and Na/Cl
ratios) of vent fluids from this hydrothermal field are virtually
unchanged from the seawater values. In addition, most modern
seafloor sulfide deposits are not affected by metamorphism,
meaning that the study of modern ultramafic-hosted seafloor
hydrothermal systems may provide new insights into the for-
mation of ancient volcanogenic massive sulfide deposits that
are spatially related to ultramafic rocks.

Abundant sulfur isotope work has been conducted to inves-
tigate the sulfide mineralization mechanisms for modern sea-
floor hydrothermal systems in a variety of geological settings,
such as subduction zones, sediment-covered oceanic ridges
near continental margins, and sediment-starved mid-ocean
ridges (Shanks III 2001; Hannington et al. 2005; Seal 2006;
Peters et al. 2010). Sulfide sulfur in mafic-hosted mid-ocean
ridge hydrothermal vents is derived from leaching of basaltic-
sulfide and seawater-derived sulfate that is reduced during
high-temperature water rock interaction (Ono et al. 2007).
However, microbial sulfate reduction during low-temperature
serpentinization can provide significant sulfur for sulfide-
mineralized systemswhen they are hosted bymantle peridotites
as commonly exposed at slow- and ultraslow-spreading mid-
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ocean ridges (Alt and Shanks III 1998, 2011; Alt et al.
2007). The possible sulfur reservoirs for ultramafic-hosted
hydrothermal fields therefore have distinct sulfur isotopic
compositions, i.e., seawater-derived sulfate with δ34S
values ~ 21‰ (Rees et al. 1978), sulfide derived from mafic
and ultramafic rocks with δ34S values ~ 0‰ (Sakai et al.
1984), and sulfide from microbial sulfate reduction in open
environments with significantly 34S depleted sulfur
(O'Hanley 1992). Therefore, sulfur isotopes can provide
valuable information to identify the sulfur sources and pos-
sible reactions during the migration and precipitation of
sulfides within hydrothermal systems.

The recently discovered Tianzuo hydrothermal field (27°
57′ S, 63° 32′ E) is an inactive field hosted in ultramafic rocks
associated with detachment faults along the SWIR. The sul-
fides from the Tianzuo hydrothermal field can be generally
subdivided into two stages based on their mineral assem-
blages, with late low-temperature sulfides (pyrite and covel-
lite) replacing or growing around early high-temperature sul-
fides (isocubanite, pyrrhotine, and sphalerite) (Cao et al.
2018). On the basis of detailed mineralogical studies, this
study provides precise sulfur isotopic compositions of sulfides
obtained by in situ LA-MC-ICP-MS in order to further under-
stand how sulfide mineralization can develop within ultramaf-
ic rocks along amagmatic segments.

Geological setting

SWIR geology

The SWIR separates the African and Antarctic plates from the
Bouvet Triple Junction (BTJ; 0° E) in the west to its eastern end
at the Rodrigues Triple Junction (RTJ; 70° E) (Fig. 1a). It
extends approximately 8000 km with an almost constant
spreading rate of ~ 14 mm yr−1, being one of the slowest-
spreading ridges globally (Dick et al. 2003; Horner-Johnson
et al. 2005). The ridge is characterized by very rugged topog-
raphy with an axial rift valley and water depths of > 5000 m. It
is cut by a series of N–S striking transform faults, which divide
it into individual segments with distinct geological characteris-
tics. Bathymetric data reveal a shallow central region between
the Prince Edward (35° E) and Gallieni fracture zones (52° 20′
E), with an average depth of ~ 3200 m (Fig. 1a; Sauter et al.
2001; Cannat et al. 2008). The thick oceanic crust indicates a
robust magma supply since 10–8 Ma, associated with the
Crozet and Marion hotspots (Sauter et al. 2004, 2009; Zhou
and Dick 2013; Yang et al. 2017a). The SWIR region between
the Melville Fracture Zone (61° E) and RTJ is oriented at ~ 60°
to the spreading direction, with no transform faults (Fig. 1b).
The easternmost SWIR is characterized by a common depar-
ture from isostatic compensation of seafloor topography, pro-
nounced asymmetry in seafloor relief, and a smooth seafloor

between the two ridge flanks (Cannat et al. 2003; Sauter et al.
2013). This indicates an anomalously low melt supply and
strong tectonism. There has been no obvious magmatic ac-
tivity for at least 26 Ma in this region (Cannat et al.
2006), distinct from the region between the Prince
Edward and Gallieni fracture zones. Compared with other
segments of the ridge, the easternmost SWIR has the
greatest average water depth (4730 m), thinnest (or miss-
ing) crust, and highest basalt Na8.0 content, with these
features being attributed to lower mantle temperatures
and lower degrees of mantle melting (Minshull et al.
2006; Cannat et al. 2008). However, several magmatically
robust areas with high relief (e.g., at ~ 61.5° E, 64° E, and
65.5° E) exist along the easternmost SWIR (Fig. 1c),
displaying volcanic structures several tens of meters high,
with lateral extension for several tens of kilometers.

Geology of the Tianzuo hydrothermal field

The Tianzuo hydrothermal field was discovered during the
COMRA DY115-20 cruise by the R/V Dayangyihao in
2009 (Tao et al. 2014), and is located in Segment 11 of the
SWIR, near the inactive Mt. Jourdanne and active Tiancheng
fields (Fig. 1d; Münch et al. 2001; Nayak et al. 2014; Cao
et al. 2018; Chen et al. 2018). Further detailed investigations
of this hydrothermal site were carried out by the Chinese
manned submersible Jiaolong during the COMRA DY115-
35 cruise conducted by the R/V Xiangyanghong 9 in 2014–
2015. Segment 11 has an hourglass shape extending N–S for
> 20 km, with an axial volcanic ridge bounded to the east and
west by a non-transform discontinuity (NTD). Along-axis to-
pography in Segment 11 varies within ~ 2700 m, and the
crustal thickness is > 6 km at the center with high relief, with
an average thickness of ~ 4 km. Maximum crustal thicknesses
in adjacent low-relief segments are 2–3 km, indicating fo-
cused and variable magmatic accretion (Cannat et al. 2003).
The inactive Mt. Jourdanne and adjacent active Tiancheng
(which shows low-temperature diffuse flows) hydrothermal
fields are located at a volcanic structure along the rift axis, at
water depths of 2750 and 2950 m, respectively (Fig. 1c, d).
Outcrops in both these fields comprise predominantly ba-
saltic rocks (Münch et al. 2001; Tao et al. 2014; Chen et al.
2018). The Tianzuo hydrothermal field is situated on top of
a dome-shaped structure typically associated with oceanic
detachment faults (Fig. 1d; Standish and Sims 2010) and
outcrops comprise ultramafic rocks, which are distinct from
the adjacent fields (Cao et al. 2018; Chen et al. 2018). The
Tianzuo field is thus the first confirmed sulfide field hosted
by ultramafic rocks and controlled by detachment faults in
the SWIR.

The Tianzuo hydrothermal field is located ~ 14 km south-
east of the Tianzuo seamount at a depth of 3630 m (Fig. 1d).
Hydrothermal activity is likely controlled by the detachment
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fault, as in the Logatchev and Rainbow fields (German et al.
1996; Schmidt et al. 2007). The DY115-20 cruise and 88th
Jiaolong dive found that the main outcrops of the Tianzuo
field are altered ultramafic rocks and hydrothermal precip-
itates (Fig. 1e), with no significant evidence of magmatic ac-
tivity or typical vent fauna, indicating hydrothermal activity is
ancient. Adjacent areas are covered by gray sediments, distinct
from the Tianzuo field where opal and red-brown sediments
occur over an area of about 800 × 530 m (Fig. 1e1, e2) and
where massive sulfide deposits observed on the surface are
strongly weathered (Fig. 1e3, e4). Samples analyzed in the
present study were collected from the surface of this field by
the manned submersible Jiaolong during the DY115-35 cruise
and 88th Jiaolong dive, and mainly include massive sulfide
deposits and serpentinized peridotites (Figs. 1e3, e4 and 2a–

o). The manned submersible Jiaolong dived at the coordinates
of 27° 57′ S, 63° 32′ E, exactly located at the eastern part of the
Tianzuo hydrothermal field. Four fresh serpentinized peridotite
samples were collected from the margin of this field. Jiaolong
traveled through this field westwards with a total distance of
several hundred meters. The field was generally covered by
red-brown sediments which most probably resulted from the
weathering and oxidization of sulfides. Some strongly weath-
ered ancient sulfide chimneys have been observed standing
above these sediments with distinct shapes. Faults and col-
lapses have been observed, with relatively fresh massive sul-
fides occurring along the fault surfaces. The massive sulfides
most likely represent a mound with the diameter of several
hundred meters. Three relative fresh massive sulfide samples
were collected from the sulfide mound.

Fig. 1 (a) The geotectonic setting and topography of the Southwest
Indian Ridge. (b) The area between the Melville fracture zone and
Rodrigues Triple Junction. Ridge segments and non-transform faults are
based on Cannat et al. (1999) and Sauter et al. (2001). (c) Along-axis
bathymetric profile between 61° E and 69° E (modified fromCannat et al.
2003). (d) Topography of the Tianzuo hydrothermal field and the adjacent
Tiancheng and Mt Jourdanne fields from multibeam sonar data. (e1–e2)

The red-brown sediments in the Tianzuo hydrothermal field; weathered
massive sulfides and opal are commonly observed on the seafloor. (e3–
e4) Samples obtained from the Tianzuo hydrothermal field. The altered
ultramafic rock in (e3) indicates that the pyroxene phenocrysts are
surrounded by serpentine minerals. The sulfides in (e4) are generally
cracked and covered by red iron oxide
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Analytical methods

Preliminary SEM and EDS analyses

Thin sections of samples from the Tianzuo hydrothermal field
were prepared for mineralogical examination by reflected and
transmitted light under a petrographic microscope. Scanning
electron microscope (SEM) imaging and energy dispersive
system (EDS) element mapping were performed with a
Zeiss Supra 55 at the State Key Laboratory for Mineral
Deposits Research, Nanjing University, Nanjing, China, with
an accelerating voltage of 15 kV and a beam spot size of 60
aperture.

In situ LA-MC-ICP-MS sulfur isotope analysis

Sulfur isotopic compositions of sulfide minerals were deter-
mined in situ using a 193-nm ArF excimer laser ablation sys-
tem (RESOlution S-155) connected to a multi-collector induc-
tively coupled plasmamass spectrometer (Nu Plasma II) at the
State Key Laboratory for Geological Processes and Mineral
Resources, China University of Geosciences (Wuhan),
Wuhan, China. Secondary and back-scattered electron images
were used to select spots for analysis, avoiding defects and
contamination from different sulfide minerals. The in situ LA-
MC-ICP-MS analytical procedure follows the protocol de-
fined in Zhu et al. (2016), and the detailed description of this
technique is reported by Mason et al. (2006), Craddock et al.
(2008), and Bühn et al. (2012). In brief, helium carrier gas was
used at 0.4 L min−1 and mixed with Ar (0.8 L min−1) and N2

(~ 4 mL min−1) (addition of N2 eliminates polyatomic inter-
ferences such as 16O2+; Fu et al. 2016). The laser beam di-
ameter was 33 μm, with a repetition rate of 10 Hz for single
spot analyses, an energy of 3–4 J cm−2, and the ablation
process was set to last for 40 s. An in-house pyrite standard
WS-1, consisting of a natural pyrite crystal from the
Wenshan polymetallic skarn deposit (Yunnan Province,
South China), was used to calibrate the mass bias for S
isotopes. The δ34S composition of WS-1 (1.1 ± 0.2‰) was
determined by secondary ion mass spectrometry at the
Chinese Academy of Geochemistry, Guangzhou, China
(Zhu et al. 2016). Secondary reference material WS-2 py-
rite (δ34S = 2.2‰) was used to monitor the accuracy of the
analysis results. All sulfur isotopic compositions are given
in the common δ34S notation as permil difference to the V-
CDT-reference (Vienna Canyon Diablo Troilite). The true
sulfur isotope ratio of unknown samples was calculated by
correction for instrumental mass bias by linear interpolation
between the biases calculated from two neighboring stan-
dard analyses (WS-1). The internal analytical precision is
given as 2 standard deviations (2σ), which is better than ±
0.5‰ (2σ).

Results

Mineralogy of the Tianzuo hydrothermal field

The serpentinized peridotite samples collected from the
Tianzuo hydrothermal field are characteristically light-
colored showing, in hand specimens, pyroxene crystals
surrounded by dark serpentine minerals (Fig. 1e3).
Microscopic textures indicated that pyroxene is dominated
by clinopyroxene and is cut by veinlets of later serpentine,
magnetite, and chrysotile (Fig. 2a). Serpentineminerals, main-
ly including lizardite and chrysotile, generally retain the pseu-
domorphic textures after olivine as mesh texture forming a
network of veinlets between the relict clinopyroxene, olivine,
and minor spinel grains (Fig. 2a–c). These indicate that the
source rocks of serpentinized ultramafic rocks were most like-
ly clinopyroxene peridotite. In addition to the abundant mag-
netite veinlets that crosscut serpentine minerals (Fig. 2a),
many subhedral to euhedral magnetite grains occur with a
pseudomorphic texture after olivine (Fig. 2d, e), contempora-
neous subhedral to euhedral shape hematite is observed
coexisting with these magnetite grains (Fig. 2d, e). Minor
quartz veinlets also occur within the serpentine minerals, pos-
sibly a product of serpentinization.

Sulfide samples collected from the Tianzuo field are
yellow–brown in color in hand specimen, and are usually
covered by red iron oxide as a result of sulfide weathering
(Fig. 1e4). Microscopic observation revealed that sulfides
are mainly characterized by major pyrite and isocubanite;
and minor sphalerite, pyrrhotite, and covellite, a mineral as-
semblage of sulfides similar to those described for other hy-
drothermal fields hosted in ultramafic rocks, such as
Logatchev-1, -2, and Rainbow (Lein et al. 2001; Mozgova
et al. 2005). These sulfide minerals contain anhedral grains
with rare subhedral to euhedral crystals, which are generally
disseminated in serpentine-bearing ultramafic rocks, with the
exception of covellite and partial pyrite, hosted in quartz vein-
lets (Fig. 2 and ESM Fig. 1).

Isocubanite disseminated in serpentinite is easily distin-
guishable from other sulfide minerals in the Tianzuo field. It
shows an anhedral shape, brown color, and usually displays
grid structures typically resulting from exsolution within other
Cu-Fe-sulfides (Fig. 2f, g), such as chalcopyrite, which is
further evidenced by the Cu-rich rims around isocubanite,
as illustrated by ESM Fig. 1a1-a4. There is no obvious
crosscutting relationship between isocubanite, sphalerite,
and pyrrhotite (or pyrite with pseudomorphic texture after
pyrrhotite), and so precipitation of isocubanite was likely
contemporaneous with pyrrhotite and sphalerite crystalliza-
tion. Isocubanite displays obvious replacement by late
pyrite-II (Fig. 2g and ESM Fig. 1a1-a6), and its precipita-
tion must pre-date pyrite-II. The matrix seems to present
weathering of serpentine minerals due to the higher
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concentrations of Si and Mg, as illustrated by EDS element
mapping (ESM Fig. 1a5-a6). Experimental studies of the
phase relationships of reactions in the Cu-Fe-S and Fe-S
systems indicate that at temperatures of > 335 °C,
isocubanite begins to crystallize with chalcopyrite, pyrite,
and pyrrhotite (Lusk and Bray 2002). Isocubanite was thus
likely precipitated during the early high-temperature phase
of the Tianzuo field.

Sphalerite is rare in the Tianzuo samples, as indicated by
SEM imaging and EDS element mapping (ESM Fig. 1b-c). It
is generally anhedral, gray in color, and usually contains abun-
dant isocubanite or, conversely, it is included in isocubanite as
exsolution lamellae (Fig. 2h and ESM Fig. 1b1-b6). Fewer
subhedral sphalerite grains can also be found contained in
serpentine minerals in this field (ESM Fig. 1c1-c3). This min-
eral is usually replaced by late pyrite-II similar to isocubanite,
indicating that it precipitated with isocubanite during an early
high-temperature phase.

Pyrrhotite is rare in Tianzuo sulfide samples, and is usually
included in pyrite-II, with an anhedral shape, as a relict, which
was replaced by late pyrite-II (Fig. 2i, j and ESM Fig. 1d1-d3).
In addition, pyrrhotite plates can also be completely replaced
by pyrite-I, resulting abundant pseudomorphic textures after
pyrrhotite. Sometimes, pyrite-I crystals were absent due to
strong weathering, resulting in abundant holes surrounded
by pyrite-II rims with pseudomorphic textures after pyrrho-
tite (Fig. 2i–n and ESM Fig. 1d-e). Pyrite-I and -II replacing
or growing around pyrrhotite displays pseudomorphic tex-
tures after pyrrhotite, indicating that Tianzuo field was

originally enriched in pyrrhotite that was almost completely
replaced by late pyrite-I and -II during the late low-
temperature phase, resulting in few pyrrhotite relicts in
pyrite-II and abundant pseudomorphic textures (Fig. 2j–n
and ESM Fig. 1e1-e6).

Pyrite is the most abundant sulfide phase in Tianzuo field
and it is either hosted in serpentine minerals or coexists with
quartz (Fig. 2g–n and ESM Fig. 1e1-e6). Based on its mor-
phology, pyrite can be subdivided into two types, i.e., pyrite-I
coexisted with marcasite as colloform, retaining pseudomor-
phic textures after pyrrhotite and creating a turbid appearance
in thin section (Fig. 2k–n); pyrite-II with crystals that have
typically grown around and replace early isocubanite, sphal-
erite, pyrrhotite, and pyrite-I, or are present as individual
grains in quartz veinlets, with no inclusions visible in micro-
scopic examination (Fig. 2g–n and ESM Fig. 1a, d, e). The
matrix containing pyrite-I is also abundant in serpentine min-
erals, while that containing pyrite-II is most likely quartz as
indicated by EDS element mapping (ESM Fig. 1e5-e6).
Marcasite relicts can be also observed retained in pyrite-II
(Fig. 2k). Marcasite is unstable and precipitates at relatively
low temperatures (< 200 °C) and low pH (< 4.5). It undergoes
transformation to pyrite at temperatures of > 350 °C (Fleet
1970). Pyrite-I and -II in the Tianzuo hydrothermal field usu-
ally replaced early minerals, including isocubanite, sphalerite,
and pyrrhotite, suggesting that they precipitated after these
minerals and crystallized during a low-temperature phase.
This is particularly evident for pyrite-II, which also replaced
pyrite-I, indicating that this mineral precipitated later than
pyrite-I (Fig. 2k–n).

Covellite is another low-temperature sulfide mineral found
in Tianzuo sulfide samples. The atom ratios of Cu/S obtained
by EMPA are 1:1 (Cao et al. 2018). It is blue in color, usually
replacing sphalerite with an anhedral morphology (Fig. 2g–h)
or occurring in quartz veinlets as lamellae or fibers (Fig. 2o
and ESM Fig. 1f1-f6).

On the basis of these observations, it is concluded that
sulfide mineralization in the Tianzuo hydrothermal field
occurred in two stages, i.e., an early high-temperature stage
(> 335 °C; isocubanite, sphalerite, and pyrrhotite) and a late
low-temperature stage (< 200 °C; pyrite-I, -II, and
covellite).

Sulfur isotopic composition of sulfide phases

Sulfur isotopic compositions of 81 individual sulfide minerals
were determined, including 26 isocubanite, 8 sphalerite, 32
pyrite-I, and 15 pyrite-II samples. Results are presented in
ESM Table 1 and illustrated in Fig. 3 a. The grain sizes of
pyrrhotite and covellite were too small for such analyses.
Sulfide minerals from the Tianzuo hydrothermal field display
a large variation in δ34S values. Isocubanite has the least var-
iability in δ34S, with values of 9.6 to 12.2‰; sphalerite has the

�Fig. 2 Microscopic images of samples collected from the Tianzuo
hydrothermal field. a Partially serpentinized peridotite showing
clinopyroxene phenocrysts surrounded by serpentine minerals, both of
which are crosscut by late magnetite veinlets (cross-polarized light). b
Olivine altered as serpentine minerals with the mesh texture consisting of
relict olivine surrounded by a network of serpentine veinlets between the
olivine grains (reflected light). c Spinel surrounded by serpentine
minerals (reflected light). d Magnetite coexisting with hematite and
occurring as fillings in holes of serpentine minerals (reflected light). e
Subsection of Fig. 2 d, showing hematite with subhedral to euhedral
shape, or occurring as an exsolution within magnetite (back-scattered
electron image). f Isocubanite with typical grid structure disseminated
in serpentine minerals (reflected light). g Isocubanite replaced by pyrite-
II; sphalerite replaced by late covellite (reflected light). h Sphalerite with
isocubanite exsolution (reflected light). i, j Pyrite-II rims retaining a pseu-
domorphic texture after pyrrhotite (i reflected light, j back-scattered elec-
tron image). k Pyrite-I replacing pyrrhotite, showing pseudomorphic tex-
tures after pyrrhotite, which was further replaced by pyrite-II; marcasite
can be observed coexisting with pyrite-I or included in pyrite-II as relicts
(reflected light). l–n Fine-grained pyrite-I filling the outline of early pyr-
rhotite with quartz, and replaced by late pyrite-II (l reflected light, m
back-scattered electron image, n secondary electron image). o Covellite
occurred in quartz as lamellae or fibrous (secondary electron image).
Mag, magnetite; Serp, serpentine; Cpx, clinopyroxene; Ol, olivine; Spl,
spinel; Hem, hematite; Iso, isocubanite; Py, pyrite; Sp, sphalerite; Cv,
covellite; Po, pyrrhotite; Mar, marcasite; Qtz, quartz
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highest value, ranging from 9.1 to 14.1‰; pyrite-I has vari-
able and generally positive δ34S values of − 0.1 to 12.0‰; and
pyrite-II has the lowest and most variable values of − 23.8 to
− 3.6‰.

Discussion

Potential sulfur sources for modern seafloor
hydrothermal fields

The δ34S values of sulfide minerals in modern sediment-
starved ridge hydrothermal systems typically range from 1 to
7‰ (Shanks III et al. 1995; Shanks III 2001; Hannington et al.
2005; Seal 2006; Peters et al. 2010). In mid-ocean ridge hy-
drothermal systems, sulfur forming hydrothermal sulfides are
derived from different sources, i.e., (1) magmatic (including
degassing processes), (2) leaching from the ocean basement
rocks and sediment covers, (3) thermochemical reduction of
seawater sulfate, and (4) remobilization of sulfur produced by
microbial sulfate reduction. Each of these sources has distinc-
tive sulfur isotopic signatures (Ohmoto and Rye 1979; Seal
2006 and references therein). At magmatic temperatures
(higher than 400 °C), sulfur at deeper zones of the hydrother-
mal system has δ34S values close to 0‰, as SO2 is totally
reduced to H2S and sulfides forming from these fluids
(Herzig et al. 1998). However, at the temperatures below
350–400 °C, the δ34S values will disproportionate rapidly
according to the disproportionation reaction: 4SO2(aq) +
4H2O(g) = H2S(aq) + 3H+ + 3HSO4

−, the δ34S values of the
sulfides precipitated from these fluids will be < 0‰ and the
δ34S values of the sulfate derived from the same fluids will be
> 0‰ and generally lower than seawater (Ohmoto and Rye
1979 and references therein). For example, sulfides (native
sulfur) and barite from the Hine Hina hydrothermal field,
Lau Basin, have δ34S values ranging from − 7.7 to − 2.4‰
and 16.1 to 16.7‰, respectively (Herzig et al. 1998).
According to the model of Janecky and Shanks III (1988),
simple adiabatic mixing associated with seawater-basalt inter-
actions produces H2S with a maximum δ34S value of 4.5‰,
whereas H2S produced through thermochemical reduction of
modern seawater sulfate, through interaction with magnetite
and fayalite, has δ34S values which can fractionate by a scale
up to 21‰ (Ohmoto et al. 1983). Anhydrite precipitated from
the pristine seawater has the δ34S value as the same as seawa-
ter (~ 21‰; Rees et al. 1978; Chiba et al. 1998; Herzig et al.
1998; Zeng et al. 2016). In contrast, H2S produced through
dissolution of biogenic sulfides in sedimentary rocks has neg-
ative δ34S values reflecting microbial sulfate reduction
(Canfield and Teske 1996; Ohmoto and Goldhaber 1997;
Alt and Shanks III 1998, 2011; Allen and Seyfried Jr 2004;
Alt et al. 2007), although questions remain about the magni-
tude of sulfur isotope fractionation during microbial sulfate
reduction (Rouxel et al. 2008); this microbial sulfate reduction
may cause sulfate–sulfide fractionation of 15 to 60‰
(Goldhaber and Kaplan 1975; Canfield and Teske 1996;
Detmers et al. 2001; Wortmann et al. 2001; Canfield 2002).

The δ34S values of hydrothermal sulfides precipitated in
sediment-starved ridges with a range of spreading rates and

Fig. 3 a Frequency distribution of δ34S values for sulfides from the
Tianzuo hydrothermal field. b Range of δ34S values for sulfides from
modern sediment-starved ridges, showing that sulfides hosted in ultra-
mafic rocks (cross) have wider ranges than those hosted in basaltic rocks
(square). Data sources: Seawater (Rees et al. 1978), sulfides in MORB
(Sakai et al. 1984), magmatic volatiles based on the sulfides (native sul-
fur) from Lau Basin (Herzig et al. 1998), East Pacific Rise (EPR) 21° S
and EPR 13° N (Ono et al. 2007), EPR 9°–10° N (Ono et al. 2007; Rouxel
et al. 2008), EPR 21° N (Woodruff and Shanks III 1988); Galapagos Rift
(Knott et al. 1995); Juan de Fuca Ridge (Shanks III and Seyfried Jr 1987;
Hannington and Scott 1988); Edmond and Kairei (Wang 2012; Zeng
et al. 2016); Logatchev (Bogdanov et al. 1997; Rouxel et al. 2004;
Zeng et al. 2016); Broken Spur (Duckworth et al. 1995; Butler et al.
1998); Snake Pit (Kase et al. 1990); Trans-Atlantic Geotraverse (TAG;
Herzig et al. 1998; Knott et al. 1998; Zeng et al. 2016); Lucky Strike
(Rouxel et al. 2004; Ono et al. 2007); Rainbow (Lein et al. 2001; Rouxel
et al. 2004); Yuhuang (Liao et al. 2018); Duanqiao (Yang et al. 2017b);
Longqi (Ye 2010). Spreading rates of mid-ocean ridges are based on
Baker et al. (1996) and Hannington et al. (2005, 2010)
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hosted in basaltic rocks varies in a narrow range (1 to 7‰)
(Fig. 3b; Shanks III et al. 1995; Shanks III 2001; Hannington
et al. 2005; Seal 2006; Peters et al. 2010; Zeng et al. 2016) and
mainly represent sulfur leached from basaltic substrate, with
little contribution from inorganically reduced seawater sulfate.
Increasing contributions of reduced seawater sulfate and
higher δ34S values occur as ridge spreading rate decreases
(Fig. 3b), reflecting equilibration of hydrothermal fluids
with rocks that have already undergone a long history of
seawater–rock interaction (Shanks III 2001). Sulfides
hosted by ultramafic rocks, as in the Logatchev,
Rainbow, and Tianzuo hydrothermal fields, or closely as-
sociated with these rocks as in the Yuhuang field (Liao
et al. 2018), have greater δ34S variability than those
hosted in basaltic rocks (Fig. 3b). This feature applies
especially to the Tianzuo field, where sphalerite has the
highest (14.1‰) and pyrite-II has the lowest (− 23.8‰)
δ34S values found to date in sediment-starved ridges, with
these minerals representing high- and low-temperature
mineralization phases, respectively. Neither basaltic
magmatism nor seawater-basalt interactions can generate
reduced H2S with such extremely positive and negative
δ34S values as mentioned above, thus, we favor that ther-
mochemical reduction of early precipitated anhydrite and
leaching of sulfides in the wall rocks produced by micro-
bial sulfate reduction most likely have isotopically played
an important role for the sulfide mineralization in this
Tianzuo field.

Possible early anhydrite precipitation in the Tianzuo
hydrothermal field

In the Tianzuo hydrothermal field, sulfide minerals are hosted
in serpentine-bearing ultramafic rocks where fractures are
widely developed, in accordance with the SWIR being con-
trolled mainly by tectonism rather than magmatism (Standish
and Sims 2010; Tao et al. 2020). Early stage sulfide minerals,
including isocubanite and sphalerite, are isotopically heavier
than those from other sediment-starved systems, especially for
sulfides hosted in basaltic rocks (ESM Table 1; Fig. 3). H2S
from the deep reaction zone in the Tianzuo field is thus isoto-
pically heavier than that from other sediment-starved systems.
δ34S values for the two early sulfide minerals are as high as
14.1‰ (ESM Table 1), with such heavy values requiring the
addition of sulfur from seawater sulfate, and limited
volcanogenic and/or microbial reduction contributions (Lein
et al. 2001; Shanks III 2001; Hannington et al. 2005; Seal
2006; Ono et al. 2007; Peters et al. 2010). It seems, therefore,
that reduction of aqueous sulfate and/or reduction of anhydrite
must have occurred in the deep reaction zone of this hydro-
thermal system. Seawater contains ~ 10 mmol/kg Ca2+ and ~
28 mmol/kg SO2–

4 and anhydrite precipitates from pristine
seawater upon heating above 150 °C in the low-

temperature recharge zone, only a small proportion (<
1 mmol/kg) sulfate enters to the deep high-temperature
(> 250 °C) reaction zone (Woodruff and Shanks III
1988; Sleep 1991), this indicates that if the temperature
in the pathway between recharge and reaction zones was
low enough, seawater sulfate could reach the reaction
zone, leading to anhydrite precipitation at depth (Lowell
and Yao 2002; Lowell et al. 2003; Ono et al. 2007).

The dissolution of anhydrite precipitated during an ear-
ly low-temperature phase may explain the heavy isotopic
composition of sulfide minerals formed during the subse-
quent high-temperature sulfide mineralization, such as
isocubanite and sphalerite, in the Tianzuo hydrothermal
field. Although the formation of oceanic core complexes
means that at least part of the oceanic lithosphere formed
at slow- and ultraslow-spreading centers comprises peri-
dotite with gabbroic intrusions in varying proportions
(Ranero and Reston 1999; Lowell and Rona 2002;
Ildefonse et al. 2007; Escartin et al. 2008), there is no
evidence that earlier sulfides existed before isocubanite
and sphalerite in this Tianzuo hydrothermal field. In ad-
dition, δ34S values of isocubanite and sphalerite from this
field fall within a narrow range (9.1 to 14.1‰), meaning
that the formation of these two sulfide minerals most like-
ly dominated by one major gabbroic intrusion event rather
than multiple magmatic activities, as the latter most likely
will result in multi-stage sulfide mineralization over-
lapped with different δ34S values (Woodruff and Shanks
III 1988), especially with the involvement of seawater
sulfate, so we favor that there were probably no early
high-temperature gabbroic intrusions which have signifi-
cantly contributed to the sulfide mineralization in this
Tianzuo hydrothermal field. It appears likely, therefore,
that hydrothermal circulation was initially of low-temper-
ature, dominated by seawater, and driven more notorious-
ly by the exothermic serpentinization of ultramafic rocks.
In fact, the decreasing solubility of anhydrite and other
sulfate minerals as temperature increases leads to their
removal from seawater by precipitation during heating
associated with downwelling (Bischoff and Seyfried Jr
1978; Seyfried Jr and Bischoff 1981; Shanks III et al.
1995), as illustrated in Fig. 4a. Although the studies about
the faults in the Tianzuo field were limited, fractures with
extreme depths (13 ± 2 km), which are even deeper than the
other mafic- and ultramafic-hosted hydrothermal fields,
such as Trans-Atlantic Geotraverse (TAG) and Logachev-
1 on the MAR, can well developed in this ultraslow-
spreading SWIR (Tao et al. 2020). The anhydrite precipi-
tated in the deep fractures during this early low-temperature
phase can be dissolved into the subsequent high-
temperature hydrothermal circulation, which has an isoto-
pically significant contribution for the formation of
isocubanite and sphalerite, as discussed below.
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High-temperature phase sulfide mineralization in the
Tianzuo hydrothermal field

Previous studies have shown that venting in modern seafloor
hydrothermal systems, such as the TAG, Edmond, Kairei, and
Duanqiao fields, has been intermittent in the past (Lalou et al.
1998; Chiba et al. 1998; Rouxel et al. 2008;Wang 2012; Yang
et al. 2017b), implying that hydrothermal discharge through
major fracture systems may be reactivated. If high-
temperature activity was reactivated after a previous low-
temperature phase, seawater-derived sulfate (in the form of
anhydrite) would be available as a source of sulfur, in addition
to basaltic sulfur (Janecky and Shanks III 1988). With abun-
dant sulfate, sulfate sulfur would be reduced by reaction with
magnetite and/or fayalite in ultramafic rocks and incorporated
into the hydrothermal fluid, such as 4H+ + 2SO2–

4 +
12Fe3O4 = 18Fe2O3 + FeS2 + 2H2O (Gow et al. 1994).
Abundant hematite and magnetite coexisting in the serpentine
minerals further support this hypothesis for Tianzuo hydro-
thermal field (Fig. 2d, e). Potential sources of heat include
magmatism, mantle upwelling, and serpentinization
(German and Lin 2004; Lowell and Rona 2002), with
serpentinization previously being considered the major source
(McCaig et al. 2007). However, heat balance models predict
that heat released during serpentinization of peridotites may
result in a wide range of hydrothermal venting temperatures,
while temperatures of hydrothermal fluids triggered by this
process are up to only 40–75 °C (Lowell and Rona 2002).
Furthermore, serpentinization cannot explain the abundance
of rare earth elements, Ba, and Si in hydrothermal fluids
(Douville et al. 2002). Gabbroic intrusions are therefore likely

sources of heat and elements key for the formation of sulfides,
even in hydrothermal fields with sulfides hosted in ultramafic
rocks (Wetzel and Shock 2000). Movement along detachment
faults may exhume gabbros and even peridotites, both of
which are features of modern oceanic core complexes
(Ranero and Reston 1999). However, in the Tianzuo field,
sulfide minerals precipitated during a high-temperature phase,
including isocubanite and sphalerite, have the highest and
most uniform δ34S values (Fig. 3a), indicating that sulfur
was derived from a homogeneous source with high δ34S
values before precipitation as Fe, Cu, and Zn sulfides.

For the seafloor hydrothermal systems, precipitation of an-
hydrite is probably important (Sleep 1991; Lowell and Yao
2002; Lowell et al. 2003), and numerous studies have shown
the presence of anhydrite in the serpentine ultramafic rocks
(Alt and Shanks III 1998, 2011; Allen and Seyfried Jr 2004;
Alt et al. 2007). As mentioned above, the gabbroic intrusion
most likely has provided sufficient heat driving the hydrother-
mal circulation where high-temperature phase (> 335 °C)
isocubanite, sphalerite, and pyrrhotite precipitated in
Tianzuo hydrothermal field; this means that in the high-
temperature reaction zone, the hydrothermal fluids can gain
reduced sulfur (H2S) from reduction of seawater-derived an-
hydrite in addition of the leaching of sulfides from the wall
rocks (e.g., gabbros and peridotite). The models previously
used to interpret the various δ34S values of sulfides in the
seafloor hydrothermal systems including (1) the anhydrite
buffer model (Ohmoto et al. 1983), (2) disproportionation of
SO2 (Ohmoto and Rye 1979; Herzig et al. 1998), and (3) two-
component mixing (Janecky and Shanks III 1988; Shanks III
2001). The anhydrite buffer model suggests that the majority

Fig. 4 Cartoon showing the sulfide formation processes in the Tianzuo
hydrothermal field. a Anhydrite precipitated in the reaction zone during
an earlier phase of low-temperature hydrothermal circulation. bGabbroic
intrusion provided sufficient heat to drive high-temperature hydrothermal
circulation; earlier precipitated anhydrite is available for high-temperature
sulfate reduction; all high-temperature and isotopically heavier sulfides

precipitated, including isocubanite, sphalerite, and pyrrhotite. c Seawater-
dominated, low-temperature, hydrothermal circulation while the magma
chamber is cooling; sulfur frommicrobial sulfate reduction is the predom-
inant sulfur source for late sulfide minerals, including pyrite-II and most
probably covellite
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of hydrothermal sulfides ultimately derived from seawater-
derived sulfate, the δ34S values of these sulfides essentially
reflect the fractionation factor between sulfate (SO2–

4) and
sulfide (H2S). The isotope fractionation factors between sul-
fate and sulfide are 21 and 15‰ at 300 °C and 400 °C
(Ohmoto et al. 1983), respectively, which can explain why
the hydrothermal sulfides in the seafloor hydrothermal system
have the δ34S values generally range from 1 to 7‰ (seal 2006
and the references therein). However, this model cannot ex-
plain the extremely high δ34S values for the isocubanite and
sphalerite from the Tianzuo hydrothermal field (9.1 to
14.1‰). The disproportionation of SO2 means that the SO2

in the volcanic gases will disproportionate rapidly into re-
duced H2S and oxidized SO2–

4 when temperatures below
300–400 °C, with the sulfides precipitated in the hydrothermal
fluids have low δ34S values (< 0‰) and the sulfates have
relative high δ34S values (> 0‰). This model was generally
used to explain the formation of those sulfides occurred in the
arc/back arc environments with low δ34S values and charac-
teristic acid-sulfate alteration assemblages (e.g., alunite/barite-
pyrite in the Lau Basin; Herzig et al. 1998). The isocubanite
and sphalerite have extremely high δ34S values and sulfates
are absent in the Tianzuo hydrothermal field; the influence of
disproportionation of SO2 therefore can be removed from this
field. Thus, for the Tianzuo hydrothermal field, the δ34S
values of isocubanite and sphalerite most likely reflect two-
component mixing between seawater-derived sulfate (δ34S ≈
21‰) and wall rocks/gabbroic intrusion-derived sulfide
(δ34S ≈ 0‰). Based on this two component mixing model,
the highest δ34S value of sulfides form the Tianzuo hydrother-
mal field (δ34S = 14.1‰) indicates that about 33% of H2S was
derived from leaching of sulfides from wall rocks/gabbroic
intrusion, and the seawater-derived sulfates have provided
the other 67% of H2S; the gabbroic intrusion most likely has
a significant contribution to the sulfur forming these high-
temperature phase sulfides in addition of the abundant heat
as mentioned before.

The Tianzuo hydrothermal field is located about 35 km to
the southwest of Mt. Jourdanne hydrothermal field (Fig. 1d).
Previous studies have shown that abundant galena occurred in
the sulfide assemblages within the Mt. Jourdanne field, and
the sulfides from this field have high concentrations for the
elements Pb (up to 3.54 wt%), As (up to 0.57 wt%), Cd (up to
0.22 wt%), and Ag (up to 0.13 wt%) (Münch et al. 2001;
Nayak et al. 2014). Since the enrichment of galena and those
elements Pb, As, Cd, and Ag are generally observed in the arc/
back arc environments associated with felsic magmas rather
than sediment-starved oceanic ridges associated with basalts,
Nayak et al. (2014) proposed that within the Mt. Jourdanne
seamount structure, isolated bodies of more felsic rocks may
provide a source for the abundant Pb, As, Cd, and Ag found in
its sulfides. Therefore, another explanation for the isotopically
heavier sulfides in the Tianzuo field may be the occurrence of

granitic rocks in the area. Such as rocks of granitic composi-
tion have already been found in the Central Indian Ridge near
the Agro Fracture Zone (Engel and Fisher 1975) and a range
of volcanic rocks, from andesite to rhyodacite, has been re-
covered from the Galapagos Spreading Center (Shibata et al.
1979). Granitoids have an average δ34S value of 1.0 ± 6.1‰,
with a range of − 11 to 14.5‰, reflecting variable assimilation
or partial melting of either pyritic sedimentary rocks with low
δ34S values or evaporites with high δ34S values (Ishihara and
Sasaki 1989). Granites and syenites from southern India have
δ34S values of 2.5 to 14.5‰ (Santosh and Masuda 1991),
which are approximatively close to those of isocubanite and
sphalerite from Tianzuo field. However, sulfides such as
isocubanite and pyrite are depleted in these elements, includ-
ing Pb, As, Cd, andAg (Cao et al. 2018), and the Tianzuo field
lacks galena (abundant in the Mt. Jourdanne field), with no
significant evidence of granitic rocks. The influence of granit-
ic rocks is thus precluded, with reduction of anhydrite (depos-
ited during early low-temperature hydrothermal circulation
through deep fractures) in the high-temperature phase being
favored as the main source of isotopically heavy sulfur in
isocubanite and sphalerite. Hydrothermal fluids would have
been mixed in the reaction zone and heated by the gabbroic
intrusion; hot fluids with homogeneous sulfur isotopic com-
positions would then ascend and be exhaled on the seafloor,
resulting in sulfide deposition during the high-temperature
phase (Fig. 4b). When high-temperature activity declined,
low-temperature seawater-derived fluid may have eventually
dominated hydrothermal fluid circulation again. Pyrite-I, -II,
and covellite would have precipitated during this low-
temperature phase.

Low-temperature phase sulfide mineralization in the
Tianzuo hydrothermal field

Pyrite-II has the lowest and most variable δ34S values (− 23.8
to − 3.6‰) of sulfide minerals in the Tianzuo field, with sig-
nificant signs of sulfate-reducing microbial activity. Such low
δ34S values have not previously been reported for sulfides in
sediment-starved ridges, but are commonly observed in
sediment-covered ridges and back arc basins (e.g., Shanks
III 2001; Hannington et al. 2005; Seal 2006; Ono et al.
2007; Peters et al. 2010), such as the Kebrit, Shaban and
Atlantis II Deeps, Red Sea (Zierenberg and Shanks III
1988), Lau Basin (Herzig et al. 1998), Guaymas Basin
(Peter and Shanks III 1992), and Middle Valley (Zierenberg
1994). Pyrite-II δ34S values indicate some influence of mag-
matic sulfur, and a larger contribution of microbial action than
in basalt-dominated systems. In addition to detachment faults,
the widely developed fractures in the Tianzuo field may have
also resulted from expansion during serpentinization of min-
erals in ultramafic rocks such as olivine, where a 40 to 50%
volume increase may occur (O'Hanley 1992). With the stable
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permeability of the ridge, hydrothermal fluid pathways may
exist long after high-temperature hydrothermal circulation has
ended. Furthermore, compared with the initial low-
temperature stage when the anhydrite precipitated, the high-
temperature circulation provided enough materials for life to
flourish in the hydrothermal field, probably including sulfate-
reducing bacteria, with numerous sulfides containing
microbially reduced sulfur, which precipitated when temper-
atures declined.

As mentioned above, disproportionation of SO2 can also
generate reduced H2S enriched in 32S (Ohmoto and Rye 1979;
Herzig et al. 1998). However, this reaction most likely hap-
pened under arc/back arc environment with felsic magmatism,
and the reported δ34S values of H2S range from − 2.4 to −
7.7‰ in the Lau Basin (Herzig et al. 1998), which is much
higher than those of the pyrite-II (− 23.8 to − 3.6‰) from this
Tianzuo field. In addition, disproportionation of SO2 will re-
sult in acid-sulfate alteration assemblages which are absent in
the Tianzuo field (Herzig et al. 1998), this reaction therefore
can be removed when pyrite-II precipitated. Although signif-
icant microbial sulfate reduction has been generally observed
in the sediments covered hydrothermal fields, previous studies
have shown that microbial sulfate reduction was also wide-
spread in the altered basalts and mantle exposed at the seafloor
along the sediment-starved ridges, as indicated by that sulfides
contained in these rocks have significantly negative δ34S
values (Canfield and Teske 1996; Alt and Shanks III 1998,
2011; Allen and Seyfried Jr 2004; Alt et al. 2007). In fact, the
uptake of sulfur by serpentinites in oceanic basement is com-
parable to or greater than that by comparable volumes ofmafic
oceanic crust, as the microbial communities can be supported
by the hydrogen and methane generated by both the alteration
of basalts and serpentinization reactions of ultramafic rocks
with the temperature up to 120 °C (Canfield 2002;
Schwarzenbach et al. 2012). Pyrite-I, -II, and covellite in the
Tianzuo field are low-temperature phase sulfides (< 200 °C),
meaning that the precipitation of these three sulfides were not
significantly influenced by high-temperature gabbroic intru-
sions, this enabled the microbial reduction of seawater sulfate
and addition of low-δ34S sulfide to the wall rocks. Therefore,
it is likely that the leaching of sulfide minerals produced by
microbial sulfate reduction was the main source of sulfur for
pyrite-II during the late low-temperature phase, with the influ-
ence of isotopically heavy residual sulfate and volcanogenic
sulfur being limited (Fig. 4c).

Pyrite-I has similar variability, but much higher δ34S values
(− 0.1 to 12.0‰) than pyrite-II (Fig. 3 and ESM Table 1), and
displays obvious mixing of sulfur sources. As indicated by the
mineralogy of sulfides, pyrite-I has obvious pseudomorphic
texture after pyrrhotite (Fig. 2k–n). The influence of pyrite-II
on pyrite-I is difficult to evaluate as it usually grows around
pyrite-I (Fig. 2k–n and ESM Fig. 1e1-e6), but the generally
positive δ34S values of pyrite-I indicate a limited contribution

of sulfur from microbial sulfate reduction. One mixing end-
member of pyrite-I is likely dominated by volcanogenic sulfur
leaching from the wall rocks, and the other by thermochemical
reduction of earlier formed sulfate during the high-
temperature phase when pyrrhotite precipitated. As with
isocubanite and sphalerite, the high δ34S values of pyrite-I
were likely inherited from sulfur isotopic compositions of
original pyrrhotite.

Conclusions

Sulfides hosted in serpentinized ultramafic rocks in the
Tianzuo hydrothermal field, in an amagmatic segment of the
ultraslow-spreading SWIR, include minerals from different
formation phases. These include high-temperature
isocubanite, sphalerite, and pyrrhotite, and low-temperature
pyrite and covellite. Pyrite may be subdivided into pyrite-I
and -II based on morphology, with the former displaying an
obvious pseudomorphic texture after pyrrhotite. Isocubanite
and sphalerite have high and uniform δ34S values, with ther-
mochemical reduction of sulfate precipitated during early
phase low-temperature hydrothermal circulation contributing
sulfur for these sulfide minerals, and probably for the original
pyrrhotite. Gabbroic intrusions provided heat for driving the
subsequent high-temperature hydrothermal fluid circulation,
creating a homogeneous sulfur environment in the reaction
zone. Pyrite-I, -II, and covellite precipitated when temperature
declined. Pyrite-I has variable and generally positive δ34S
values, and its sulfur was inherited from the original pyrrhotite
through thermochemical reduction of sulfate, mixed with
some additional volcanogenic sulfur. Pyrite-II has the lowest
and most variable δ34S values, and displays significant signs
of microbial sulfate-reducing activity, with the leaching of
sulfide minerals from wall rocks with seawater being the main
sulfur source for this mineral. Intermittent magmatism, togeth-
er with persistent high permeability, probably contributed to
the formation of sulfides in the Tianzuo hydrothermal field,
and this may also be the mechanism for the formation of
sulfides hosted in other ultramafic rocks at slow- and
ultraslow-spreading ridges.
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