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Abstract
It has been well established that metal and sulfur sources in mineral deposits can be very difficult to identify, especially for ore
deposits hosted in sedimentary rocks. Using the world’s largest Sb deposit at Xikuangshan in southern China as a case study, this
study combined Hg isotopes and in situ sulfur isotope measurements to constrain the sources of Sb and sulfur. A variation of
1.1‰ in δ202Hg (0.04 to 1.15‰) was observed in stibnite ore samples, suggesting that mass-dependent fractionation of Hg
isotopes occurred during the formation of the deposit. Significant mass-independent fractionation of Hg isotopes, with △199Hg
ranging from − 0.03 to − 0.17‰, was also observed in the ore samples, suggesting that Hg transported by the ore fluids was
inherited from Proterozoic basement metamorphic rocks as these rocks show similar △199Hg signatures (− 0.03 to 0.07‰). In situ
sulfur isotope measurements yielded δ34S values that cluster in the range of + 6.8 to + 10.2‰, providing evidence that sulfur
contained in ore fluids may also have been dominantly derived from underlying Proterozoic basement metamorphic rocks
(δ34S = +5.6 to + 11.5‰). Using the new results from Hg and S isotopes, we proposed that deep-circulated meteoric water
mobilized Sb, Hg, and S from the Proterozoicmetamorphic basement, ascended along deep faults, and subsequently deposited Sb
at favorable structural zones as a result of boiling of the hydrothermal fluids, generating the world-class Xikuangshan Sb deposit.
This study also highlights the combined use of Hg-S isotopes as a novel method to provide new and additional insights into the
source regions of ore materials for sedimentary-hosted Sb deposits.
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Introduction

Identifying the source region of metals contained in hydro-
thermal ore deposits hosted in sedimentary rocks is a

challenge as conventional isotope signatures may not neces-
sarily constrain metal sourcing. Over the past decade, several
studies used unconventional isotopes of ore metals (e.g., Hg,
Cu, Fe, Zn, Mo, Pb, Cd, Ge, Re, and Os) as a direct tracer of
metal sources (Mathur et al. 2002, 2010; Dauphas et al. 2004;
Morelli et al. 2007; Smith et al. 2008; Kelley et al. 2009;
Darling et al. 2012; Meng et al. 2015; Yin et al. 2016; Zhu
et al. 2017; Debret et al. 2018). However, the application of
metal isotopes to hydrothermal ore deposits hosted in sedi-
mentary rocks remains scarce, and therefore, case studies are
needed to validate metal isotopes as a viable method for
constraining the sources of metals.

Mercury is abundant in sulfide minerals in hydrothermal
deposits (Schwartz 1997; Rytuba 2003; Yin et al. 2016).
Mercury isotope geochemistry has recently been employed as
a tool for understanding the sources of Hg and perhaps other
chalcophile metals in hydrothermal ore deposits. Mercury iso-
topes undergo mass-dependent fractionation (MDF). Since Hg
has seven natural stable isotopes (196Hg, 198Hg, 199Hg, 200Hg,
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201Hg, 202Hg, and 196Hg), with a relative mass difference of
4%, Hg-MDF is readily occurring during most chemical (e.g.,
photoreduction, ligand exchange, sorption, precipitation, and
abiotic methylation), physical (e.g., diffusion, evaporation,
and volatilization), and biological processes (e.g., microbial
methylation, demethylation) (Bergquist and Blum 2009; Yin
et al. 2010). In some cases, the isotope fractionation of Hg is
mass-independent, resulting in so-called mass-independent
fractionation (MIF). Unlike Hg-MDF, Hg-MIF mainly occurs
during photochemical reactions (Blum et al. 2014). A large
variation of Hg-MDF and Hg-MIF signals, in terms of
δ202Hg and △199Hg, respectively, have been reported in natural
samples. The MIF signature of Hg observed in natural samples
is thought to be related to Hg photochemical reactions (Blum
et al. 2014; Yin et al. 2016). In hydrothermal processes, the
release of Hg from source rocks seems to cause little Hg-
MDF (< ± 0.5‰ in δ202Hg; Smith et al. 2008), but the boiling
of hydrothermal fluids and redox reactions can result in signif-
icant Hg-MDF (up to 4‰ in δ202Hg; Smith et al. 2005).
Hydrothermal processes do not cause significant Hg-MIF
(Smith et al. 2005, 2008; Sherman et al. 2009; Tang et al.
2017; Yin et al. 2019). The effects of Hg-MIF can therefore
act as a direct source tracer of Hg in hydrothermal deposits
since syngenetic Hg in magmatic/mantle materials is character-
ized by the absence of MIF (Δ199Hg ~ 0), but epigenetic Hg in
sedimentary rocks show a large variation ofΔ199Hg (Yin et al.
2016 and references therein). Some hydrothermal sulfide de-
posits show small but significant Hg-MIF signals, which have
been interpreted by inheritance of epigenetic Hg via sedimen-
tation and hydrothermal leaching (Sonke et al. 2010; Yin et al.
2016; Xu et al. 2018).

In addition, sulfur isotopes can provide a direct constraint
on the sources of sulfur in hydrothermal deposits. Although
bulk analysis methods for sulfur isotopes can produce high-
precision analyses, recent studies have shown that laser abla-
tion multi-collector inductively coupled plasma mass spec-
trometry (LA-MC-ICP-MS) analyses of sulfur isotopes offer
several advantages over bulk analysis method such as higher
spatial resolution across individual mineral grains (10–
100 μm) and provide useful geochemical information such
as features of mineral growth at the sub-grain scale
(Craddock et al. 2008; Bühn et al. 2012; Yuan et al. 2018).
Therefore, in situ sulfur analysis has been employed as a tool
to understand the sources of sulfur in hydrothermal fluids
(Mason et al. 2006; Hou et al. 2016).

The Xikuangshan Sb deposit in southern China is the
world’s largest source of Sb. This deposit has a total proven
Sb metal reserve of about 2.5 Mt, with an average grade of
about 4% Sb (Hu et al. 2017). Although the deposit has been
the focus of several previous studies, the genesis of the ore
deposit remains controversial owing to a lack of conclusive
constraints on the sources of metals and sulfur. Two opposing
viewpoints have been proposed to explain the ore genesis of

this deposit: (i) intrusion-related and (ii) strata-bound models
(Hu et al. 2017 and references therein). The former argued that
ore materials were mainly derived from deep-seated magmas
without significant contribution of Devonian host rocks (Liu
et al. 1985), whereas the latter proposed that metals in this
deposit were dominantly derived from sedimentary and meta-
morphic rocks without any genetic links to magmas (Chen
et al. 1983; Ma et al. 2003).

In this study, we report Hg isotope data from Xikuangshan
in conjunction with in situ sulfur isotope data to provide new
insights into the sources of Sb, Hg, and S. The study high-
lights the potential of combined Hg-S isotope measurements
to constrain the sources of ore materials for sedimentary-
hosted Sb deposits.

Regional and ore deposit geology

The South China Block is made up of the Yangtze Block to the
northwest and the Cathaysia Block to the southeast which
were welded together along the Jiangshao suture zone (Zhao
et al. 2011; Hu and Zhou 2012; Yao et al. 2016; Fig. 1). The
Xikuangshan Sb deposit is located in central Hunan province,
in the eastern part of the Yangtze Block. Outcropping strata in
central Hunan can be defined by two major lithotectonic units:
(i) basement low-grade (greenschist facies) metasedimentary
rocks of Middle to Late Proterozoic and Early Paleozoic age,
and (ii) overlying sedimentary rocks of Late Paleozoic to
Cretaceous age (BGMRHN 1988). The former is composed
lithologically of thin-layer metasandstones, tuffaceous slates,
and megafossiliferous metasedimentary rocks, which are
mainly distributed along the margins of the Xiangzhong
Basin and some interior sub-uplifts. The latter consists of
mainly thick-bedded, massive carbonates,with minor amounts
of shales, siltstones, and iron formations (Fig. 1; Liu et al.
1985; Shi et al. 1993; Ma et al. 2002). Early Devonian
(410–400 Ma) and Late Triassic (230–200 Ma) graitic rocks
outcrop in the periphery of the district (Fu et al. 2015; Chen
et al. 2016; Xie et al. 2019).

The Xikuangshan Sb deposit (111° 27′ 30″ E, 27° 40′ 30″
N) is located at the intersection of the NE-striking Chengbu-
Taojiang regional fault and NW-striking Xikuangshan-
Lianyuan basement fault (Fig. 1). Middle-Upper Devonian
and Lower Carboniferous strata are the only rocks exposed
in the deposit area, which are dominated by carbonates and
locally interbedded with siltstone, argillite, and shale (Peng
et al. 2003; Fan et al. 2004). The Sb mineralization is mainly
hosted in the central portion of the Devonian Shetianqiao
Formation and, to a lesser extent, in the lower part of the
Devonian Shetianqiao Formation. The central part of the
Devonian Shetianqiao Formation is composed of sandstone,
carbonate, and mudstone layers from lower to upper and has a
total thickness of > 350 m. The carbonate layer hosts the bulk
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of mineralization and is dominantly limestone interlayered
with thin sandy mudstone. The mudstone layers above the
carbonate layer are thought to have acted as a barrier to rising
ore fluids, resulting in the precipitation and accumulation of
Sb in the limestone (Jin et al. 2001; Yang et al. 2006a). These
strata have been intensely deformed into a kilometer-scale,
NNE-trending major fold structure referred as the
Xikuangshan complex anticline (Fig. 2a; Peng et al. 2003;
Yang et al. 2006b). The fault F75, which is a part of the re-
gional Chengbu-Taojiang fault, cuts the northwest limb of the
Xikuangshan complex anticline. Almost all orebodies occur in
the footwall of this fault (Fig. 2a). A NNE-trending
lamprophyre dike is the only outcropping intrusive rock in
the deposit area (Hu et al. 1996; Peng et al. 2003; Fan et al.
2004). Although the precise age remains unclear, the dike is
believed to have formed prior to the Sb mineralization (Liu
and Jian 1983; Liu et al. 1985; Xie et al. 2001).

The Sb mineralization in the Xikuangshan deposit consists
of the four ore blocks, referred to as Laokuangshan,
Tongjiayuan, Wuhua, and Feishuiyan (Hu et al. 1996; Peng
et al. 2003; Fig. 2a). Orebodies in the Xikuangshan deposit are
chiefly stratiform, generally extending from 30 to 600m along
the strike and 1300–1800 m down in dip with a thickness of
1–5 m (locally up to 20 m), and are strictly controlled by
interlayer fault zones in silicified carbonates (Fig. 2b). More
than 80% of the Sb metal reserves come from stratiform
orebodies with irregular hydrothermal veins (Fig. 3). The ores
are monotonous in composition with stibnite as the only eco-
nomic metallic mineral, and no mercury minerals were found;
gangue minerals are dominated by quartz and calcite with
minor barite, fluorite, talc, and gypsum (Peng et al. 2003;
Hu and Peng 2018). The detailed mineral paragenesis for the
Xikuangshan deposit is divided into early-stage and late-stage
mineralization, and the features of each stage have been
documented by Lin (2014) and Hu and Peng (2018). Wall

rock alteration related to Sb mineralization comprises domi-
nantly silicification and carbonatization, as well as local weak
fluorite alteration (Kuang 2000; Peng et al. 2003).
Silicification is pervasive in the deposit and Sb orebodies nev-
er appear to exceed the limit of silicic alteration (Fig. 2b; Hu
et al. 1996; Yang et al. 2006b). Available fluid inclusion data
suggest that the ore-forming fluids at Xikuangshan had
epithermal temperatures of 150 to 250 °C and salinities <
5 wt% NaCl equiv. (Lin 2014; Hu and Peng 2018). The data
from hydrothermal calcite Sm-Nd dating and (U-Th)/He dat-
ing of zircon in altered wall rocks showed that the minerali-
zation is Mesozoic with an age of ca. 120–150Ma (Peng et al.
2003; Fu et al. 2019).

Samples and analytical methods

Fifteen stibnite ore samples were collected from underground
workings at different mine levels ranging from level 25# at an
elevation of − 142 m to level 2# at an elevation of + 320 m in
the Feishuiyan and Laokuangshan blocks. Three major types
of ores were collected (Fig. 4), namely (i) quartz-stibnite; (ii)
calcite-quartz-stibnite; and (iii) calcite-stibnite. In addition,
seven wall rock samples, including four barren rocks (XKS-
2@1, XKS-3@1, XKS-4@2, and XKS-7@2) and three al-
tered rocks (XKS-2@2, XKS-7@6, and XKS-9@2), were
collected. As no metamorphic basement rocks were exposed
in the Xikuangshan district, four metamorphic rocks were col-
lected from the nearby Xuefengshan uplift (Fig. 1), which is
dominated by the metamorphic slate of the Banxi Group.

Mercury isotope analysis

Approximately 100 g of each ore samplewas crushed. Stibnite
grains were handpicked under a binocular microscope, and

Fig. 1 Location of the
Xikuangshan Sb deposit in
southern China (modified from
Hu et al. 2017). CB Cathaysia
Block, IB Indochina Block, JOB
Jiangnan Orogen Belt, JSS Jiang-
Shao Suture, NCC North China
Craton, QDOB Qinling-Dabie
Orogen Belt, SMS Song-MA
Suture, YB Yangtze Block, XLF
Xikuangshan-Lianyuan Fault,
CTF Chengbu-Taojiang Fault
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handpicked stibnites in each sample were combined as a sam-
ple, which was manually crushed into 150 mesh in an agate
mortar prior to chemical analysis. About 1 kg of each rock
sample was crushed and sieved to 150 mesh. Approximately
0.1 g of ore samples and 0.4 g of rock samples were digested
(95 °C, 6 h) with 5 mL aqua regia (HCl:HNO3 = 3:1, v/v).
Certified reference material (NIST SRM 2711a, Montana soil)
was digested using the same process. After storing overnight,
the Hg concentrations in the digests were measured using cold
vapor atomic absorption spectrometry (CVAAS), following
the procedures detailed in Li et al. (2005). Recoveries of Hg
for NIST SRM 2711a were between 90 and 110% (n = 3), and
the relative variability of sample triplicates were < 8%.

The Hg isotope compositions of all samples were deter-
mined using Neptune Plus MC-ICP-MS (Thermo Electron
Corp, Bremen, Germany) at the State Key Lab of Ore
Deposit Geochemistry, Institute of Geochemistry, following
the method by Yin et al. (2016). Mercury concentrations in
sample digests were monitored by MC-ICP-MS using 202Hg
signals, and the Hg concentrations estimated by 202Hg signals

were within 10% of that measured by CVAAS. The 202Hg
intensities were about 1.3 V per ng/mL Hg and 202Hg signals
for blanks were about 1.0 × 10−3 V. Standard-sample
bracketing (SSB) was used during the sample analysis. MDF
is reported as xxxHg, which means the per mil deviations from
an international Hg standard, NIST SRM 3133 (Blum and
Bergquist 2007):

δxxxHg ¼ xxxHg=198Hg
� �

sample=
xxxHg=198Hg
� �

NIST3133

h i
−1

n o
� 1000

where xxx is the mass of each Hg isotope ranging from 196 to
204. MIF of Hg isotopes is reported using ΔxxxHg, which
means the deviation of the measured isotope ratio from the
theoretical ratio predicted by MDF and can be calculated
using the following equations (Blum and Bergquist 2007):

Δ199Hg ¼ δ199Hg− δ202Hg� 0:2520
� �

Δ200Hg ¼ δ200Hg− δ202Hg� 0:5024
� �

Δ201Hg ¼ δ201Hg− δ202Hg� 0:7520
� �

The diluted solutions were prepared to have an acid con-
centration of 10–20%, and Hg concentrations and acid matri-
ces of the NIST SRM 3133 were matched to the bracketed
samples. UM-Almadén secondary standard solutions were di-
luted to 1 ng/mL Hg in 10% acid and measured in the same
way as the samples. The overall mean and uncertainty for

Fig. 3 Photographs of ore types.
a Stratiform ores. b, cVein ores. d
Irregular ores. e Lentiform ores. f
Breccia ores

�Fig. 2 Geological setting of the Xikuangshan Sb deposit in southern
China. a Geological map showing the locations of the four ore blocks
Laokuangshan, Tongjiayuan, Feishuiyan, and Wuhua (modified after
from Peng et al. 2003). b A-A’ section showing the occurrence of
orebodies and their relationship with silicic alteration (modified after
Tao et al. 2002)
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UM-Almadén (δ202Hg = − 0.55 ± 0.15‰; Δ201Hg = − 0.04 ±
0.06‰;Δ199Hg = − 0.01 ± 0.04‰, 2σ, n = 7) and NIST SRM
2711 (δ202Hg: − 0.14 ± 0.09‰; Δ199Hg: − 0.21 ± 0.04‰;
Δ201Hg: − 0.20 ± 0.05‰; 2σ, n = 3) are comparable with pre-
vious studies (Blum and Bergquist 2007; Sherman et al. 2009;
Donovan et al. 2013; Yin et al. 2016).

In situ sulfur isotope analysis

In situ sulfur isotopic compositions of stibnites in ore samples
and sedimentary pyrites in host rocks were analyzed by LA-
MC-ICP-MS at the State Key Laboratory of Continental
Dynamics, Northwest University, China. The laser ablation
system (RESOlution M-50), consisted of an excimer laser
(193 nm), a two-volume laser ablation cell (Laurin Technic
S155, 155 mm× 105 mm), a squid smoothing device, and a
computer-controlled high-precision X-Y stage, was linked to
MC-ICP-MS (Nu Plasma 1700) for in situ S isotope analysis.
The Nu 1700 MC-ICP-MS system equipped with sixteen
Faraday cups and three ion counters was used to determine
the sulfur isotopic compositions of the PSPTs. The cup con-
figurations for sulfur were as follows: an H5 cup for 34S, an
Ax cup for 33S, and an L4 cup for 32S. Helium was used as
carrier gas (0.28 L/min) for the laser ablation process, and it
entered the cell body at its bottom to fill the cell. Helium from
both bottom and top through the funnel cell entrained the
sample aerosol and argon (0.98 L/min) was admixed down-
stream, in front of the squid signal smoothing device, into the
MC-ICP-MS. Details on the method are given by Chen et al.
(2017). Instrumental mass bias was corrected using the SSB
approach with repeated measurements of the standard refer-
ence (IAEA-S-1, Ag2S), before and after each sample. To

monitor the accuracy of data during analysis, the in-house
standard Cpy-1/GC (δ34S = − 0.7 ± 0.3‰) was analyzed every
8 unknown spots. Analytical uncertainty of δ34S is < 0.1‰.

Results

Mercury concentrations and isotopic compositions

The total Hg (HgT) concentrations and Hg isotopic composi-
tions of the samples are summarized in Table 1. The
Proterozoic basement metamorphic rocks and barren host
rocks have low HgT concentrations of 0.02 to 0.06 ppm
(mean = 0.04 ppm) and 0.44 to 1.25 ppm (mean =
0.77 ppm), respectively. In contrast, stibnite samples and al-
tered host rocks showed high HgT concentrations, ranging
from 11.25 to 97.43 ppm (mean = 37.51 ppm) and 3.85 to
8.09 ppm (mean = 6.21 ppm), respectively. The 15 stibnite
samples show δ202Hg ranging from 0.04 to 1.15‰ (mean =
0.41 ± 0.68‰, 2σ) and Δ199Hg ranging from − 0.17 to
− 0.03‰ (mean = − 0.11 ± 0.08‰, 2σ). The three altered
rocks have δ202Hg values of 0.07 to 0.52‰ (mean = 0.33 ±
0.30‰, 2σ) andΔ199Hg of − 0.14 to − 0.02‰ (mean = − 0.04
± 0.12‰, 2σ), which are similar to that of ore samples. The
four barren rock samples show relatively lower δ202Hg values
(− 2.22 to − 0.04‰; mean = − 0.71 ± 2.04‰; 2σ) but similar
Δ199Hg (− 0.11 to 0.16‰; mean = − 0.01 ± 0.24‰, 2σ). The
four metamorphic basement rocks have δ202Hg values of
− 0.36 to 0.60‰ (mean = 0.11 ± 1.04‰, 2σ) and Δ199Hg of
− 0.03 to 0.07‰ (mean = 0.00 ± 0.08‰, 2σ). The overall var-
iations of Δ199Hg for all samples (− 0.17 to − 0.02‰) are
much higher than the analytical uncertainty for the UM-

Fig. 4 Scanning electron
microscopy images of ore types
encountered at the Xikuangshan
Sb deposit. a Quartz-stibnite ores.
b, c Quartz-calcite-stibnite ores
with minor pyrite. d Calcite-
stibnite ore. Cal calcite, Py pyrite,
Qtz quartz, Stib stibnite
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Almadén (2σ = 0.04‰). Most ore samples (11 of 15) with
reliable MIF have Δ199Hg/Δ201Hg ratios of 1.12 ± 0.38 (σ,
n = 11), which approximate to the photo-reductive Δ199Hg/
Δ201Hg ratios of 1 to 1.3 (e.g., Bergquist and Blum 2007;
Zheng and Hintelmann 2009). However, no discernable cor-
relation trends were observed between HgT and either δ202Hg
or Δ199Hg.

Sulfur isotopic compositions

A total of 50 spots were analyzed, including 43 stibnite grains
in ore samples and 7 pyrite grains in host rocks, and the results
are shown in Table 2 and Fig. 5. The 43 stibnite grains show
relatively narrow δ34S ranges of + 6.8 to + 10.2‰, with an
average of + 9.2 ± 0.6‰ (n = 43, 2σ). No systematic trends
in δ34S values are observed among all samples. In contrast,
sedimentary pyrite grains from host rocks yield much higher
δ34S values of − 26.0 to + 21.9‰ (+ 19.1 ± 6.0‰, 2σ, n = 7),
suggesting they have a distinct origin from stibnite.

Discussion and conclusions

Hg isotope constraints on the sources of ore metals

In the Xikuangshan deposit, no Hgminerals were identified. It
is believed that stibnite is the major carrier of Hg, not only as
stibnite is the dominant sulfide mineral and the most Hg-
enriched mineral (mean of HgT = 37.5 ppm) in this deposit
but also due to that Hg can substitute with Sb in stibnite during
its formation (Rytuba 2003). In fact, Sb and Hg are both
chalcophile elements with similar chemical properties, sug-
gesting that Hg generally has the same or similar sources as
Sb (Arehart 1996; Hu et al. 2017; Nevolko et al. 2019).

The δ202Hg values (0.04 to 1.15‰) andΔ199Hg (− 0.17 to
− 0.03 ‰) of stibnite, which present the isotopic signature of
the majority of Hg in Xikuangshan, are within the range of
reported in Hg and Pb-Zn deposits (Smith et al. 2005, 2008;
Yin et al. 2016; Tang et al. 2017; Xu et al. 2018). Hg-MIF
signals in natural samples were induced byHg(II) photoreduc-
tion at Earth’s surface (Blum et al. 2014; Yin et al. 2016). As
hydrothermal processes do not induce Hg-MIF (Smith et al.
2005, 2008; Tang et al. 2017), Hg-MIF can be directly used as
a source tracer of Hg in hydrothermal deposits. As shown in
Fig. 6, significant Hg-MIF signals, with △199Hg ranging from
− 0.3 to 0.3‰, have been reported in sedimentary and meta-
morphic rocks, whereas magmatic rocks showed insignificant
Hg-MIF (△199Hg = 0 ± 0.1‰). Most of our stibnite samples
showed significant Hg-MIF signals with △199Hg of
< − 0.1‰, which is distinct from that of magmatic rocks, sug-
gesting either sedimentary rocks or metamorphic rocks con-
tribute Hg in the Xikuangshan deposit. However, according to
δ202Hg values, our samples differ from sedimentary rocks but

overlap with metamorphic rocks. As limited Hg-MDF
(δ202Hg < ± 0.5‰) occurs during the leaching of Hg from
source rocks (Smith et al. 2008), the large difference of
δ202Hg between stibnite samples (0.41 ± 0.68‰, 2σ, n = 15)
and sedimentary rocks (− 3 to 1‰, with an average of − 0.73
± 0.88‰, 2σ, n = 69) suggests that Hgwas not originated from
sedimentary rocks. We, therefore, hypothesized that Hg, and

Table 2 In situ sulfur isotopic compositions of sulfide minerals in the
Xikuangshan Sb deposit in central Hunan province

Analysis ID Sample types Minerals δ34Sv-CDT (‰) 2σ

XKS-s-1@01 Stibnite ores Stibnite 9.93 0.15
XKS-s-1@02 Stibnite ores Stibnite 9.85 0.13
XKS-1-2@01 Stibnite ores Stibnite 10.16 0.13
XKS-1-2@02 Stibnite ores Stibnite 9.89 0.12
XKS-1-8@01 Stibnite ores Stibnite 9.81 0.14
XKS-1-15@01 Stibnite ores Stibnite 9.84 0.13
XKS-2-2@01 Stibnite ores Stibnite 6.81 0.13
XKS-2-2@02 Stibnite ores Stibnite 9.00 0.14
XKS-3-5@01 Stibnite ores Stibnite 9.89 0.12
XKS-3-7@01 Stibnite ores Stibnite 7.56 0.12
XKS-3-7@02 Stibnite ores Stibnite 7.83 0.11
XKS-4-1@01 Stibnite ores Stibnite 9.43 0.13
XKS-4-3@01 Stibnite ores Stibnite 9.59 0.12
XKS-4-3@02 Stibnite ores Stibnite 9.23 0.12
XKS-5-5@01 Stibnite ores Stibnite 7.34 0.13
XKS-5-5@02 Stibnite ores Stibnite 8.31 0.13
XKS-6-3@01 Stibnite ores Stibnite 9.78 0.13
XKS-6-3@02 Stibnite ores Stibnite 9.72 0.12
XKS-6-3@03 Stibnite ores Stibnite 9.63 0.12
XKS-6-3@04 Stibnite ores Stibnite 9.48 0.12
XKS-6-3@05 Stibnite ores Stibnite 9.95 0.12
XKS-7-9@01 Stibnite ores Stibnite 10.23 0.12
XKS-7-9@02 Stibnite ores Stibnite 9.91 0.12
XKS-7-9@03 Stibnite ores Stibnite 9.89 0.11
XKS-9-5@01 Stibnite ores Stibnite 10.05 0.12
XKS-9-5@02 Stibnite ores Stibnite 10.10 0.12
XKS-11-3@01 Stibnite ores Stibnite 7.91 0.11
XKS-11-3@02 Stibnite ores Stibnite 8.06 0.13
XKS-13-6@01 Stibnite ores Stibnite 7.81 0.13
XKS-13-6@02 Stibnite ores Stibnite 8.13 0.14
XKS-13-8@01 Stibnite ores Stibnite 9.91 0.13
XKS-13-8@02 Stibnite ores Stibnite 10.12 0.13
XKS-15-1@01 Stibnite ores Stibnite 7.99 0.12
XKS-15-1@02 Stibnite ores Stibnite 7.49 0.13
XKS-19-2@01 Stibnite ores Stibnite 8.36 0.12
XKS-19-2@02 Stibnite ores Stibnite 7.64 0.20
XKS-23-8@01 Stibnite ores Stibnite 9.64 0.11
XKS-23-8@02 Stibnite ores Stibnite 9.77 0.12
XKS-23-8@03 Stibnite ores Stibnite 9.95 0.13
XKS-23-8@04 Stibnite ores Stibnite 9.99 0.12
XKS-25-2@01 Stibnite ores Stibnite 9.12 0.12
XKS-25-2@02 Stibnite ores Stibnite 9.84 0.12
XKS-25-2@03 Stibnite ores Stibnite 9.44 0.12
XKS-1-8@01 Host rocks Pyrite 18.74 0.17
XKS-1-8@02 Host rocks Pyrite 21.94 0.31
XKS-1-10@01 Host rocks Pyrite 21.43 0.12
XKS-1-10@02 Host rocks Pyrite 18.52 0.13
XKS-1-12@01 Host rocks Pyrite 19.90 0.46
XKS-1-12@02 Host rocks Pyrite 17.75 0.38
XKS-13-6@01 Host rocks Pyrite − 25.97 0.56
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Sb because of its similar chemical properties, were mainly
derived from the Proterozoic basement metamorphic rocks.
This is supported by the following additional evidence: (i)
relatively “fresh” sedimentary rocks generally have very low
Sb contents (average 0.9 ppm), whereas the Sb contents range
up to 46 ppm in “altered” host rocks, indicating an external
source of Sb (Ma et al. 2003; Hu et al. 2017); (ii) the
Proterozoic basement metamorphic rocks have the highest
Sb abundance (7.8 to 27.2 ppm; Lu et al. 2001; Ma et al.
2002) in the studied region; and (iii) leaching experiments
demonstrated that the extractable Sb from basement rocks
range between 20 and 90% at 200 °C (Ma et al. 2002),

suggesting that they are likely significant metal contributors
for this giant Sb deposit.

Although the leaching of Hg from source rocks does not
induce a significant change of δ202Hg (< ± 0.5‰; Smith et al.
2008), the stibnite samples show a variation of 1.11‰ in
δ202Hg, suggesting MDF may have occurred within the ore
bodies. The boiling of hydrothermal fluids and redox reactions
can result in significant Hg-MDF (up to 4‰ in δ202Hg; Smith
et al. 2005). Our results show a positive correlation between
δ202Hg and sampling depth (Fig. 7). A similar increase of
δ202Hgwith depth has also been observed in epithermal systems
in northern Nevada, USA, which has been explained by the
evaporation of isotopically light Hg(0) during boiling of hydro-
thermal fluids (Smith et al. 2005). Boiling results in the loss of
H2S, CO2, and Hg0 from hydrothermal fluids, which cause the
precipitation of sulfide minerals (Spycher and Reed 1989;
Simmons and Christenson 1994; Christenson and Mroczek
2003). Laboratory experiments also confirmed that the volatili-
zation of Hg0 from aqueous phase cause Hg-MDF of > 1‰ in
δ202Hg, with the vaporizedHg0 preferentially enriched in lighter
Hg isotopes (Zheng et al. 2007). At Xikuangshan, recent fluid
inclusion data provide some convincing evidence for the boiling
process. For example, fluid inclusions with variable vapor/liquid
proportions were observed within hydrothermal gangue min-
erals (Lin 2014). Additionally, dramatic fluctuations of pressures
were recorded (Hu and Peng 2018) which could promote the
occurrence of boiling during ore formation. Therefore, boiling is
suggested as a major process responsible for the variation of
δ202Hg observed in this study.

Sources of sulfur in ore fluids

Stibnite is the principal sulfide in the ores of the Xikuangshan
deposit, and in comparison with sulfide, the amount of sulfate
minerals (barite and gypsum) is negligible; therefore, the δ34S
values of stibnite can represent that of the total sulfur in ore

Fig. 7 Covariation of the sampling elevations vs. δ202Hg in stibnite from
the Xikuangshan Sb depositFig. 5 Histogram of sulfur isotopic values of sulfide minerals from the

Xikuangshan Sb deposit and potential source rocks. Data sources:
mantle-derived sulfides: Chaussidon et al. (1989); pyrite in lamprophyre
dikes: Yang (1986); sulfides in basement metamorphic rocks: Jiang
(1990), Ma et al. (2003), and Gu et al. (2012)

Fig. 6 Plot of δ202Hg vs. △199Hg values in stibnite from Xikuangshan Sb
deposit, displaying a comparison of Hg isotopes between Xikuangshan
deposit and lithological reservoirs. The range of sedimentary rocks was
defined by the data from Smith et al. (2008), Thibodeau et al. (2016),
Grasby et al. (2017), Gong et al. (2017), Yin et al. (2017), andWang et al.
(2018); the range of magmatic rocks was defined by the data from Smith
et al. (2008) and metamorphic rocks are defined by the data from Smith
et al. (2008) and Xu et al. (2018)
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fluids of this deposit (Seal 2006). Distinct from previous re-
sults using traditional methods (δ34S values ranging from
− 3.3 to + 16.8‰; Zou 1988; Ma et al. 2003; Fan et al.
2004; Yang et al. 2006a), our new results by in situ analysis
suggest that the δ34S values of stibnite ores, regardless of
mineral paragenesis, are concentrated in a narrow range
(+ 6.8 to + 10.2‰; Fig. 5). The clustering of the sulfur isotope
values indicates that the sulfur in ore fluids of different min-
eralization stages had a common origin or was derived from
the same source region. As documented by Hu et al. (1996)
and Peng et al. (2003), the NNE-striking 10-km-long
lamprophyre dike is the only intrusion identified in the deposit
area (Fig. 2a). Pyrite in this dike exhibits lighter δ34S values
(− 6.3 to − 3.9‰; Yang 1986), implying that the dominant sul-
fur in ore fluids was unlikely derived from the lamprophyric
dike or the upper mantle. Additionally, a large variation of δ34S
values (− 26.0 to + 21.9‰) within pyrite grains within
Devonian host rocks was observed (Table 2). If the ore fluids
whose sulfur component was derived dominantly from the host
rocks, the δ34S values of ore fluids should be identical to that of
Devonian initial seawater sulfate (δ34S of + 12.2 to + 17.2‰;
Ohmoto and Rye 1979). These δ34S values, however, are much
heavier than those of ore fluids obtained in this study (+ 6.8 to
+ 10.2‰; mean = + 9.2 ± 0.6‰), suggesting no significant con-
tribution of sulfur from the Devonian host rocks.

Alternatively, our new in situ sulfur isotope data is compa-
rable with the mean δ34S values of sulfides in the Proterozoic
basement rocks (δ34S = + 5.6 to + 11.5‰; Jiang et al. 1990;
Ma et al. 2003; Gu et al. 2012; Fig. 5). Therefore, we propose
that the Proterozoic basement metamorphic rocks are likely
the predominant source of sulfur during the formation of stib-
nites in the Xikuangshan deposit.

Implications for ore genesis

Available C-H-O isotopic data suggested that ore fluids for the
Xikuangshan Sb deposit were dominated by deep-circulated
meteoric water (Ma et al. 2003). Numerical modeling also
suggested that the ore fluids mainly originated from meteoric
water (Yang et al. 2006a). In addition, previous work noted
that the Devonian host strata had low Sb content (0.7–
2.3 ppm; Peng et al. 2001) making them an unlikely source
of Sb. Using evidence from previous work in conjunction with
Hg-S isotopes data obtained in this study, we propose that the
Sb, Hg, and S transported by the ore fluids were predominant-
ly derived from the underlying Proterozoic basement meta-
morphic rocks. A model can be invoked that assumes deep
circulation of meteoric water, mobilization of Sb, Hg, and S
from basement metamorphic rocks underlying the
Xiangzhong basin, ascending of the hydrothermal fluids along
deep faults, and subsequently deposition of Sb ore minerals
within favorable structural traps resulting in the formation of
the world-class Xikuangshan Sb deposit.
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