
ARTICLE

Subsurface deposition of Cu-rich massive sulphide
underneath a Palaeoproterozoic seafloor hydrothermal system—the
Red Bore prospect, Western Australia

Andrea Agangi1 & S. M. Reddy1 & D. Plavsa1 & C. Vieru2
& V. Selvaraja3 & C. LaFlamme3

& H. Jeon4
& L. Martin4

&

T. Nozaki5 & Y. Takaya6 & K. Suzuki5

Received: 30 January 2017 /Accepted: 27 December 2017 /Published online: 1 February 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here
we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in
Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade
mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite
and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brec-
ciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation
ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope
analyses of pyrite and chalcopyrite indicate a narrow range of δ34SVCD (− 0.2 to + 4.6 ‰), and no significant mass-
independent fractionation (− 0.1 <Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests
secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation
at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other
massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu
enrichment and narrow δ34S ranges. Although a possible explanation for some of these characteristics is leaching of S and
metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along
very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor
mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore
mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising
fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic
roots of a VHMS system.

Editorial handling: D. Huston

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00126-017-0790-0) contains supplementary
material, which is available to authorized users.

* Andrea Agangi
aagangi@uj.ac.za

1 Department of Applied Geology, Curtin University,
Bentley, WA 6012, Australia

2 Thundelarra Ltd., 186 Hampden Road, Nedlands, WA 6009,
Australia

3 Centre for Exploration Targeting (CET), University of Western
Australia, 35 Stirling Highway, Crawley, WA 6009, Australia

4 Centre for Microscopy, Characterisation and Analysis (CMCA),
University of Western Australia, 35 Stirling Highway,
Crawley, WA 6009, Australia

5 Research and Development (R&D) Center for Submarine Resources,
Japan Agency for Marine-Earth Science and Technology
(JAMSTEC), 2-15 Natsushima-cho,
Yokosuka, Kanagawa 237-0061, Japan

6 Department of Resources and Environmental Engineering, School of
Creative Science and Engineering, Waseda University, 3-4-1 Okubo,
Shinjuku-ku, Tokyo 169-8555, Japan

Mineralium Deposita (2018) 53:1061–1078
https://doi.org/10.1007/s00126-017-0790-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00126-017-0790-0&domain=pdf
http://orcid.org/0000-0001-6315-3918
https://doi.org/10.1007/s00126-017-0790-0
mailto:aagangi@uj.ac.za


Introduction

Volcanic-hosted massive sulphide (VHMS) deposits are the
source of significant amounts of Cu, Zn, Pb, Ag and Au
(Large 1992; Galley et al. 2007). These deposits form in sub-
marine environments, at both extensional and convergent mar-
gin settings (Yeats et al. 2014; Huston et al. 2010; Galley et al.
2007; Binns et al. 2007), where convective sea water circula-
tion, driven by magma intrusion at shallow crustal depths,
deposits metals when these heated fluids are discharged back
into sea water (Ohmoto 1996; Ross and Mercier-Langevin
2014). VHMS deposits occur discontinuously throughout
Earth’s history from the Archaean to the Phanerozoic
(Huston et al. 2010; Sharpe and Gemmell 2002) and are con-
sidered to be the fossilised equivalents of present day massive
sulphides deposited at the emergence of submarine hydrother-
mal systems (de Ronde et al. 2005; Hannington 2014;
Petersen et al. 2014).

This mechanism of ore deposition implies two end mem-
bers for the source of metals: the country rocks (including
sediments, volcanic rocks and the basement) and the magma
that drives convective circulation. The leaching of country
rocks by circulating sea water is a widely accepted mechanism
as a source of metals, for example in Kuroko-type VHMS
deposits (Ohmoto 1996). More recently, substantial evidence
has emerged pointing to a significant magmatic contribution
for both fluids and metals in ancient and present day systems
(Huston et al. 2011; Moss et al. 2001; Gemmell et al. 2004).
Sea water involvement in the deposition of VHMS
mineralisation is indicated by (1) low, sea water-like salinity
of fluid inclusions (5–6 wt% Naeq on average; Peter et al.
2007), although high-salinity brines and vapours have been
observed in some modern vents and ancient VHMS deposits
(Shanks III 2001; Solomon et al. 2004), likely due to phase
separation; (2) δ18O (> 5‰) and δ34S of sulphate minerals
indicating equilibrium with sea water at the time of deposition
(de Ronde et al. 2014); 3) O and H isotope composition of
alteration minerals associated with sea water interaction with
hot magmatic rocks (Shanks III 2001; Shanks III 2012) and of
fluids emitted at present-day submarine centres (de Ronde
et al. 2005); and 4) in the specific case of Archaean VHMS
deposits, multiple S isotope signatures of sulphide minerals
yieldingΔ33S < 0, implying sourcing of S from Archaean sea
water sulphate (Farquhar et al. 2011; Bekker et al. 2009; Chen
et al. 2015). On the other hand, studies of volcanic rocks
associated with VHMS deposits (Timm et al. 2012; Moss
et al. 2001) and melt inclusions in unmineralised rocks from
the Manus basin (Kamenetsky et al. 2001; Yang and Scott
1996) have shown that magmas are potential sources of metals
in this type of deposits. A magmatic involvement is expected
to be reflected in geochemical and isotopic compositions of
some VHMS deposits, such as enrichment of Cu-Au-Ag-Bi-
Se, intermediate to high-sulfidation assemblages, high fluid

δ18O, narrow δ34S ranges and aluminous alteration (Peter
et al. 2007; Huston et al. 2011). However, it is difficult to
determine whether these observations are the result of
magmatic-hydrothermal fluid input or leaching of volcanic
rocks by sea water-derived fluids.

Here, we present textural and mineralogical observations,
trace element and S isotope compositions of recently discov-
ered mineralisation, called the Red Bore prospect of central
Western Australia (Fig. 1) and evaluate its formation in the
light of the previous discussion. This mineralisation includes
pipe-like massive chalcopyrite ore spatially related to VHMS
deposits hosted in a Palaeoproterozoic mafic volcanic succes-
sion. The geometry and the very Cu-rich composition set this
mineralisation apart from VHMS mineralisation at the district
scale.

Geological setting

Regional geology

Sulphide mineralisation at Red Bore is hosted by the mafic
igneous rocks of the Narracoota Formation within the Bryah
Basin (Fig. 1). The volcano-sedimentary Bryah and Padbury
Groups were deposited along the northern margin of the
Yilgarn Craton between 2000 and 1800 Ma (Occhipinti et al.
1998, 2004; Pirajno and Occhipinti 2000) and are interpreted
to have formed on a continental margin or in a rift setting
(Occhipinti et al. 1998; Pirajno et al. 2004; Pirajno and
Occhipinti 2000). A recent model proposed that extension
was preceded by upwelling caused by the impingement of a
mantle plume (Pirajno et al. 2016). The Karalundi Formation
is the lowest unit of the Bryah Basin and includes a clastic
sedimentary succession (conglomerate, wacke, siltstone,
black shale) and mafic volcanic rocks (Pirajno and
Occhipinti 2000). The Narracoota Formation overlies the
Karalundi Formation and forms a predominant proportion of
the succession in the Bryah Basin. It is composed of volumi-
nous mafic to ultramafic volcanic rocks, and intrusive rocks.
The mafic rocks contain pillow basalt, hyaloclastite basalt,
sheeted dykes, a layered mafic-ultramafic igneous complex
and minor felsic rocks, and show evidence for sea floor meta-
somatism in the form of tremolite-talc-chlorite-bearing assem-
blages (Pirajno and Occhipinti 2000; Pirajno et al. 2000;
Occhipinti et al. 2004). The Narracoota Formation is overlain
by metasediments of the Ravelstone Formation and Horseshoe
Formation, which include wacke, shale, siltstone, chert and
banded iron formation (Pirajno et al. 2000). Rocks of the
Bryah Group have undergone multiple stages of deformation
and greenschist facies metamorphism during formation of the
Capricorn Orogen in the Proterozoic (Hynes and Gee 1986;
Reddy and Occhipinti 2004).
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Sediments andmafic rocks associatedwith theKaralundi and
Narracoota formations contain Cu-Au-Ag VHMS deposits at
DeGrussa and Horseshoe Lights and the high-grade Monty de-
posit (Pirajno et al. 2000; Hawke et al. 2015b; Sandfire
Resources Report, 2016). The Cu-Au-Ag DeGrussa deposit is
mostly hosted in turbiditic sedimentary rocks, and consists of
four steeply dipping lensoid ore lodes separated from each other
by two large faults, with a combined strike length of 800m. Due
to deformation related to the Jenkin fault (Fig. 1) and the lack of
outcrop, the stratigraphic relationships between DeGrussa and
Red Bore are not clear in the field. The stratabound sulphides at

DeGrussa are massive, fine-grained and consist of pyrite, chal-
copyrite, and pyrrhotite with lesser sphalerite, galena, marcasite,
and molybdenite. Chalcocite, malachite, azurite, chrysocolla,
cuprite and native copper are present in the supergene ore zone.
VHMS mineralisation at DeGrussa has recently been dated at
2027–2011 Ma (Re-Os on molybdenite) and 2040–2030 Ma
(Pb-Pb on galena modelled according to Stacey and Kramers
1975), an age overlapping with the age of volcanism (Hawke
et al. 2015b). Total estimated resources at April 2016 are 10.7
Mt. of ore containing 4.5% Cu and 1.8 g/t Au (Sandfire
Resources Report 2016). The Monty deposit is composed of
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Fig. 1 a Simplified geological map of the Bryah, Padbury, and Yerrida
Basins and distribution of VHMS and other ore deposits. Inset: location
of the Capricorn Orogen in Western Australia between the Pilbara and
Yilgarn cratons is indicated in grey shade. Modified from Pirajno et al.
(2000); sulphide Re-Os ages from Hawke et al. (2015b). b Map of mag-
netic anomalies of the Red Bore area with location of some drill holes.

Airborne magnetic survey included 1799 km flown at sensor height of
30 m using a Radiation Solutions RD-500 spectrometer (more informa-
tion on the magnetic survey available in the 09/02/2015 Report at www.
thundelarra.com/news/). c Down-hole plots of Cu assays. d Simplified
logs of two cores (TRBDD06 and TRBDD08)

http://www.thundelarra.com/news
http://www.thundelarra.com/news


chalcopyrite, pyrite and pyrrhotite with minor sphalerite
and galena, and contains resources of 700,000 t at ap-
proximately 10% Cu and 2 g/t Au (Sandfire Resources
Report 2016).

Drill core description

Surface expression of Red Bore mineralisation is represented
by the presence of a gossan and a geographically restricted
magnetic anomaly (Fig. 1b). Closely spaced drilling (more
than30 drill holes, a few m to a few tens of m apart) carried
out by Thundelarra Ltd. has intersected steeply-dipping elon-
gate mineralisation containing massive chalcopyrite and mas-
sive magnetite. The mineralisation does not extend along
strike, suggesting a Bpipe-like^, rather than tabular geometry.
Double intersections may indicate the presence of two sepa-
rate mineralised bodies or tectonic duplication. Drill core li-
thology is dominated by dolerite, coarse (mm-scale)-grained
massive mafic rocks (gabbro, ultramafic rocks), mafic volca-
nic and volcaniclastic rocks (lava and possibly hyaloclastite),
and fine-grained, finely-bedded sedimentary rocks.
Mineralisation is largely hosted in mafic rocks (mostly doler-
ite) of the Narracoota Formation and to a lesser extent, by
sedimentary rocks. The mineralisation extends from the
near-surface (shallowest intersection at 6 m depth) to at least
~ 100 m (Fig. 1c). The mineralisation is open at depth, and its
total extent is not known.

In several samples, the volcanic-intrusive host rocks show
signs of semi-brittle deformation. The mineralisation is
surrounded by a narrow (< 2 m wide) alteration zone repre-
sented in core samples by a fine-grained Bbleached^ pale
green rock mostly composed of talc, carbonate, chlorite and
silica. There is no evidence of a hydrothermal system (veins)
developed around the mineralisation, as veins were not
intersected outside the mineralised zone.

Analytical techniques

Samples collected during this study were analysed using scan-
ning electron microscopy, whole- rock geochemistry, laser-
ablation inductively coupled plasma mass spectrometry, sec-
ondary ion mass spectrometry for multiple S isotopes and
negative thermal ionisation mass spectrometry for Re-Os iso-
topes. Analytical methods are presented in ESM E-1.

Sample description

Drill core description

The cores have intersected mineralisation for a length of up to
10–12 m and show a zoned distribution of minerals, with a

massive chalcopyrite zone (up to 7 m) in the centre and a
discontinuous massive magnetite zone at the margin (see
ESM E-2 for drill hole locations and orientation). The central
ore zone (Fig. 2a) is composed of massive chalcopyrite (>
90%; for example, a 7.05-m intersection at 28.4 wt% Cu,
1.3 ppm Au and 32 ppm Ag was found in drill core
TRBDD09) with needle-like silicate inclusions, pyrite and
minor covellite [CuS]. The marginal zone is composed of
massive magnetite (> 90%) with minor chalcopyrite and py-
rite, and carbonate-rich veinlets (Fig. 2b). The mineralisation
is oxidised in the top 25 m, and contains Fe- and Cu-oxy-
hydroxides. In addition, disseminated pyrite and chalcopyrite
are hosted by finely-bedded sedimentary rocks in the south-
western part of the tenement.

The massive magnetite is brecciated in places, forming a
monomictic matrix-supported chaotic breccia (Fig. 2b).
Clasts of this breccia are mostly angular, up to ~ 10 cm in
size, composed of magnetite-replaced mafic rocks, and are
cross-cut by brown carbonate veinlets. These veinlets do
not cross-cut the surrounding matrix. The matrix has a grain
size of up to a few mm and is composed of magnetite and
silicate minerals. Cement between clasts could not be iden-
tified from hand specimens. Minor sulphide veinlets (chal-
copyrite in particular) cross-cut both the matrix and the
clasts (Fig. 2c).

Microtextures

Massive chalcopyrite ore contains abundant elongate sili-
cate inclusions, such as amphibole and talc, which have
been variably silicified (Fig. 3a). These silicate inclusions
are distributed along planes, thus defining a foliation, al-
though individual crystals are randomly oriented, and are
interpreted as hydrothermal. Sulfidation of silicate needles
can be observed in some cases, whereby chalcopyrite or
pyrite form μm-scale grains on previous silicates (Fig. 3b).
Samples of massive magnetite are non-foliated and com-
posed of sub-round magnetite grains, up to 100 μm in size,
which are partly rimmed by haematite. Massive magnetite
samples contain chalcopyrite and pyrite occurring as mm-
to sub-mm-scale veinlets or as interstitial grains (Fig. 3c).
In addition, magnetite is cross-cut by Fe-carbonate veinlets
that also contain Ca-amphibole and minor sulphide phases
(chalcopyrite, sphalerite, Co-sulphide) (Fig. 3d). Semi-
quantitative EDS analyses indicate that sphalerite contains
up to 7.5 wt% Fe.

Pyrite occurs in both massive chalcopyrite and massive
magnetite samples as anhedral grains and veinlets with an
apparent Bcleaved^ texture (Fig. 3b). EDS semi-quantitative
analyses indicate the presence of variable amounts of Co and
high-magnification SEM images suggest a nanoscale granular
texture. This pyrite may by the product of sulfidation of a
silicate (e.g. amphibole). Bismuth-Te-Se phases, in some
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cases coexisting with a Te-Ag phase (Fig. 3b–e), occur either
as inclusions up to 50–60 μm in size or along μm-scale vein-
lets in pyrite and chalcopyrite. These Bi-Te-Se grains contain
between ~ 24–41 wt% Te, and ~ 5 and 10 wt% Se (EDS).
Anhedral S-Co-O-Si grains that show zoned texture in BSE
images occur in both massive chalcopyrite and massive mag-
netite samples. X-ray element maps of these grains indicate
that S, Cu and Co (up to 35 wt%) are enriched at the margins
and along cracks, whereas Si and O contents decrease towards
grain margins and cracks (Fig. 3f), thus indicating replace-
ment of a silicate mineral. Copper sulphide (~CuS0.9 covellite,
of likely supergene origin) occurs as anhedral, cracked grains
in massive chalcopyrite. The alteration halo around
mineralisation contains Mg-Fe silicate (Fe-bearing talc, or
minnesotaite), Si, Ca-Fe-carbonate, Ca-(±K)-bearing amphi-
bole and chlorite. Semi-quantitative EDS analyses indicate
that this amphibole contains 11–21 wt% CaO and Mg/
(Mg + Fe) = 0.41–0.71.

Analytical results

Bulk assays

Bulk assays indicate contents of Cu from 0.03 to 30.1 wt%,
Au up to 20 ppm and Ag up to 40 ppm (Fig. 4). Copper
concentrations have a broad positive correlation with Au and
Ag, although some analyses have distinctively high Au and
Ag and relatively low Cu (Au/Cu × 10,000 ≥ 5). There is also
a broad negative correlation between Au/Cu and Ag, indicat-
ing that the highest Au/Cu values are found in moderately
chalcopyrite-rich samples.

Mineral chemistry (LA-ICP-MS)

Chalcopyrite contains up to ~ 8 ppm Au and up to 240 ppm
Ag (Fig. 5, ESM Table 1). The highest Au and Ag concentra-
tions were measured in chalcopyrite veinlets emplaced at the
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Fig. 2 Drill core samples from
Red Bore. a Massive
chalcopyrite, sample TRCDD09
32.0 m. b Massive magnetite
breccia. Clasts are cross-cut by
Fe-Ca-carbonate (cb) veinlets that
do not extend into the matrix. c
External contact of the ore body.
Chalcopyrite veinlets (Ccp, some
arrowed) truncate magnetite
(Mag) at the contact with talc-
silica-carbonate-amphibole al-
tered host rock (sil)



margin of the mineralised body (sample TRBDD08 51.7 m).
Tellurium is mostly < 10 ppm and Bi < 30 ppm in both chal-
copyrite and pyrite, although the presence of Bi-Te ± Se inclu-
sions resulted in significantly higher concentrations (Bi and Te
up to more than 1000 ppm) and positive correlations between
these elements in some spot analyses. Selenium content
(mostly ~ 100–1200 ppm in chalcopyrite) is strongly variable
between samples but has narrow ranges within samples and
between minerals of the same samples (Fig. 5). Plots of signal
intensity as counts per second (cps) versus analysis time (s)
confirm the presence of various inclusions of Bi-Te ± Se and

Te ± Ag ± Au phases in both chalcopyrite and pyrite (Fig. 6).
Selenium concentrations are only partly controlled by
inclusions.

Chalcopyrite contains higher Zn and Sn concentrations
(~ 10 to 740 ppm Zn) than other minerals (pyrite contains <
50 ppm Zn). Molybdenum concentrations of chalcopyrite at
the margin of the ore body (TRDCC09 35.5 m) are higher and
more variable (Mo ~ 1–80 ppm) than those from the centre
(Fig. 5). Pyrite is the main carrier of Ag (~ 300–600 ppm), Pb
(~ 30–700 ppm), Tl (~ 1–15 ppm), Cr and Re (up to ~ 3 and
1.4 ppm, respectively), and has low concentrations of As and
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Fig. 3 Ore microtextures at Red
Bore. a (and inset) Massive
chalcopyrite with needle-like sili-
cate inclusions. BSE image, sam-
ple TRBDD09 35.5 m. b
Anhedral pyrite and partially
sulfidised silicate needles (some
arrowed) in chalcopyrite. Note the
Bcleaved^ texture of pyrite. BSE
image, sample TRCDD09
31.5 m. cMassive magnetite with
chalcopyrite veinlets. BSE image,
sample TRCDD04 31.5 m. d Fe-
carbonate-amphibole veinlet with
minor sulphides (chalcopyrite,
sphalerite, Co-sulphide) cross-
cutting massive magnetite. BSE
image, sample TRBDD09 38m. e
Inclusion of Bi-Te and Ag-Te in
pyrite. BSE image, sample
TRCDD04 31.5 m. f BSE image
and X-ray element maps of zoned
S-Co-O-Si mixed phase in
strongly silicified needle-like
crystals (BSE, sample TRBDD09
35.5 m). Note S-replacement
along rim and cracks (sulfidation
of silicates). Abbreviations: Am
amphibole, cb carbonate, Ccp
chalcopyrite, Mag magnetite, Py
pyrite, Sp sphalerite, sil silicates
(variably silicified talc and
amphibole)



Sb (< 20 ppm and < 1 ppm, respectively). Magnetite has low
concentrations of Ti (< 70 ppm), V (< 60 ppm) and Ni (up to
30 ppm) and overlaps with magnetite from banded iron for-
mation and metamorphic magnetite in the discrimination plots
of (Nadoll et al. 2014) (Fig. 7). However, manganese (up to
2500 ppm Mn) is higher than hydrothermal magnetite, and
similar to magmatic magnetite from mafic rocks (Dare et al.
2014). The Cu content of magnetite is between 50 and
2600 ppm (omitting a few higher outlying values likely due
to chalcopyrite inclusions), and Sn is between 1 and 10 ppm.

Values of 208Pb/206Pb and 207Pb/206Pb of chalcopyrite and
pyrite measured by LA-ICP-MS during trace element analysis
span a wide range (208Pb/206Pb ~ 0.48–2.30), and define a
linear trend in the 208Pb/206Pb vs. 207Pb/206Pb plot (ESM
Fig. 1). The highest values of 208Pb/206Pb and 207Pb/206Pb
overlap with values expected from Palaeoproterozoic crust
according to the model of Stacey and Kramers (1975).
Disseminated chalcopyrite and pyrite largely overlap with
208Pb/206Pb and 207Pb/206Pb measured at DeGrussa (Hawke
et al. 2015b; Belousov et al. 2016). Overall the values define a
rather continuous trend, but spot analyses of sulphides
forming veinlets in massive magnetite samples have more
radiogenic (lower) values of 208Pb/206Pb and 207Pb/206Pb in
comparison with analyses from massive and, especially, dis-
seminated mineralisation.

In situ S isotope analyses (SIMS)

Multiple S isotopes (32S, 33S and 34S) of chalcopyrite and
pyrite were analysed in eight samples collected at down-hole
depths between 31.5 and 66.0 m from five cores. Chalcopyrite
and pyrite yielded δ34S between + 1.12 and + 4.63‰, and
δ34S values between − 0.27 and + 4.19‰, respectively
(Fig. 8, ESM Table 2). However, most analyses of both pyrite
and chalcopyrite (> 80% of the 87 spots) yielded δ34S values
between + 3.0 and + 4.6‰ (Fig. 8). Values of δ34S below +
3.0‰ are mostly scattered, and lie up to 2‰ lower than other

analyses in the same sample (Fig. 8b). If these outlying anal-
yses are excluded, ranges of δ34S in single samples are ex-
tremely narrow (≤ 1‰). Variations of δ34S between samples
do not correlate with sampling depth or sample texture (i.e.
massive or veinlets). In samples where both phases were
analysed, chalcopyrite tends to have slightly higher δ34S
values than pyrite (~ 0.5–0.8‰ on average, greater than the
δ34S 2σ error of 0.33‰ for chalcopyrite). Deviations from
mass-dependent fractionation are not significant (− 0.1
<Δ33S < + 0.05‰).

Re-Os isotope analyses

The samples have Re and Os contents of 6.20–99.6 ppb and
59.5–1030 ppt, respectively. 187Re188/Os ratios are between
1770 and 57,900, and have a broad positive correlation with
187Os/188Os ratios. The regression on all ten analyses gives a
very poor age of 1030 ± 170 Ma (MSWD of 9050) and a
meaningless negative initial 187Os/188Os of − 45. A regression
on six out of ten analyses (excluding samples BM002185 and
BM002188) yielded a marginally improved age of 959 ±
110 Ma (MSWD of 50), and an initial 187Os/188Os of 40
(ESM Fig. 2).

Discussion

Sulphide deposition from a magmatic fluid at Red
Bore? Geologic, elemental and isotopic evidence

In VHMS deposits, elemental and isotopic data of the ore and
associated alteration have been used to support either deriva-
tion of metals from sea water leaching of surrounding rocks or
derivation from magmas. However, these data can be equivo-
cal as Bmagmatic^ signatures may be acquired either by direct
magmatic-hydrothermal input or by leaching of volcanic
rocks by circulating sea water (Huston et al. 2011; Urabe
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and Marumo 1991). Therefore, the role of magmatic fluids in
the formation of VHMSmineralisation can be better evaluated
based on a combination of factors, including deposit- to
micro-scale geological and textural observations, mineral as-
sociations and geochemical data. For example, in VHMS sys-
tems associatedwith felsicmagmatism, the spatial association of
VHMS mineralisation with intrusions (Galley 2003) and with
aluminous, advanced argillic alteration, similar to alteration

typically associated with porphyry style deposits (e.g. at Mt.
Lyell; Large et al. 1996) has been used to infer a causative
relationship between granitic magmatism and mineralisation.
In contrast to these felsic-associated systems, talc-
carbonate-silica-amphibole alteration assemblages at
Red Bore resemble those found in mafic-hosted sea floor
hydrothermal systems. In mafic volcanic-hosted VHMS
deposits of Cyprus, typical alteration assemblages are
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dominated by quartz and chlorite, replacement of feld-
spar, with local epidote and haematitic jasper (Adamides
2010). These deposits show evidence of deposition both
at the surface (exhalative) and in the subsurface. Most
deposits occur along faults, and mineralisation textures

indicate replacement of host rocks (Adamides 2010). At
Rudny-Altai, where Besshi-style deposits hosted in mafic
igneous and sedimentary rocks have been recognised, the
alteration assemblage is dominated by amphibole (antho-
phyllite), chlorite and quartz (Lobanov et al. 2014).
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The enrichment in Cu, Au and Ag is typical of VHMS
deposits associated with mafic volcanic rocks, either
Cyprus/Besshi-types (Galley et al. 2007; Adamides
2010), or mid-oceanic ridge style (Murphy and Meyer
1998). High concentrations of these elements may indicate
a magmatic association even in other types of VHMS de-
posits. For example, after reviewing radiogenic and stable
isotope data on Kuroko-type deposits, Urabe and Marumo
(1991) concluded that most Cu is of magmatic origin. In
contrast, Ohmoto (1996) attributed most metals to leaching
of host lithologies by circulating sea water derived fluids.
The tendency of Cu and other chalcophile elements, such
as Au and Ag, to partition into magmatic fluids coexisting
with silicate melts is well-reported (Lowenstern et al. 1991;
Heinrich et al. 1992). For example, in mafic magmas of the
Manus basin, a sudden decrease of Cu and Au during frac-
tionation has been interpreted as evidence of loss of these
elements to an exsolving S-rich volatile phase (Sun et al.
2004). Magmatic vapours derived from mafic magmas tend
to be Cu-rich and Cu-phases such as chalcocite (Cu2S),
covellite (CuS) and chalcopyrite have been found as in-
crustations formed by these fluids at volcanic vents or
trapped as fluid inclusions in phenocrysts (Simon and
Ripley 2011; Agangi and Reddy 2016). In modern subma-
rine hydrothermal systems, several studies suggest that
magmatic volatiles are likely responsible for the transport

and deposition of metals such as Cu and Au and other
chalcophile elements (de Ronde et al. 2005, 2014;
Berkenbosch et al. 2012; Petersen et al. 2014). High Se
contents in VHMS deposits are also considered as indica-
tive of derivation from a magmatic source (Hannington
2014), although others have proposed that Se could be
sourced from black shales (Layton-Matthews et al. 2008).
Selenium concentrations in pyrite and chalcopyrite at Red
Bore and at DeGrussa are high in comparison with other
VHMS deposits in Western Australia (Belousov et al.
2016), which may provide further indications of a magmat-
ic input. Similar high Se values have been measured in bulk
samples of ultramafic-hosted VHMS (Murphy and Meyer
1998) and in single sulphide phases from mafic-ultramafic
modern VHMS deposits (Wohlgemuth-Ueberwasser et al.
2015) (Fig. 9).

Bi-Te-(Se) phases have only in some cases been described
in VHMS deposits, as occurring in the deep portion of de-
posits (Cu-rich stringer zone) in the Iberian Pyrite Belt
(Marcoux et al. 1996) and Jabal Sayid deposit of Saudi
Arabia (Sabir 1980) or in sulphide chimneys (Maslennikov
et al. 2013; Berkenbosch et al. 2012). Besides VHMS de-
posits, Bi-Te phases have been reported in orthomagmatic,
skarn, porphyry and epithermal deposits, where they form
compounds with Au, Ag, Pt group elements and other pre-
cious metals (Ciobanu et al. 2005, 2006; Dora et al. 2014). Te-
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Bi-(Au) phases are also known to be deposited from high-
temperature volcanic gases (Symonds et al. 1987; Henley
et al. 2012), and Te intake in chalcopyrite is believed to be
enhanced at high temperature (Hannington et al. 1991).
Therefore, Te, Bi, Se and Au, as a suite are compatible
with a magmatic-hydrothermal derivation and have been
proposed as being indicative of a magmatic source
(Galley et al. 2007; Berkenbosch et al. 2012; Lehmann
et al., 2013).

Values of δ34S in VHMS deposits overall span a wide
range (Hannington 2014; Lobanov et al. 2014). The fact
that many VHMS deposits contain sulphates with δ34S that
mirrors the δ34S of sea water at the time of deposition is
good evidence for direct involvement of sea water sulphate
(Huston et al. 2010). However, VHMS hosted in mafic-
dominated volcano-sedimentary successions tend to have
narrow ranges of δ34S (Besshi-type ~ 0–4‰, Fig. 8) in
comparison with felsic volcanic-hosted VHMS deposits,
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which have higher and more varied S isotope compositions
(Lydon 1984; Petersen et al. 2014; Hannington 2014;
Cloutier et al. 2015). Vent fluids discharged at sediment-
poor mid-ocean ridges also tend to have narrow δ34S ranges
(between 0 and 6‰; Marini et al. 2011). In sulphide-poor
mafic complexes, such as the Merensky Reef of the
Bushveld Complex or the Stillwater Complex, for which
the S may have been accommodated by the melt, rather
than incorporated from country rocks, sulphides have sim-
ilar compositions, δ34S = 0–4‰ (Ripley and Li 2003) (Fig.
8). The homogeneity of most δ34S values (80% of analyses
are between + 3.0 to + 4.6‰, Fig. 8) of chalcopyrite and
pyrite at Red Bore is consistent with precipitation from a
homogenous (one-phase) fluid of magmatic origin.
Precipitation of chalcopyrite from H2S is expected to cause
relatively minor fractionation of S isotopes (δ34S variation
< 1 ‰; Kajiwara and Krouse 1971). Thermochemical sul-
phate reduction results in strong fractionation between sul-
phate and sulphide (δ34S sulphate - δ34S sulphide = 17‰ at
temperatures of 300–350 °C, relevant for Red Bore;
Ohmoto 1986). Assuming a Palaeoproterozoic sea water
sulphate δ34S value of ~ 20‰ (Farquhar et al. 2011, ESM
Fig. 3), sulphide originated through this mechanism would
have δ34S = 3–20 ‰, depending on the proportion of sul-
phate reduced. However, the fact that no sulphate was
found at Red Bore may indicate that the fluids were rela-
tively reduced and sulphate was not the dominant species in
the mineralising fluids (Murphy and Meyer 1998).
Biogenic sulphate reduction produces sulphide with strongly
negative δ34S (≥−30‰). Thus, the absence of δ34S < 0‰ in
our samples is not compatible with such processes. Further,
the absence of mass-independent fractionation of S isotopes
excludes the possibility that sedimentary S may have been
remobilised from surrounding Archaean terrains (Bekker
et al. 2009).

The slightly lower and scattered δ34S measured in some of
our analyses (δ34S ~ < 2.5‰) may be due to minor events of
phase separation in the mineralising fluid. Vapour separation
is associated with partial oxidation of S to form SO4

−2

(Drummond and Ohmoto 1985) according to the equation
H2S (aq) +4H2O→ SO4

2−(aq) + 2H+ + 4H2(g). Separation
of a SO4

2−-rich vapour would have preferentially extracted
heavy S isotopes, imparting lower δ34S values to the remain-
ing fluid. This may have occurred locally during transient
pressure release due to, for instance, tectonic movements.
However, later remobilisation processes related with the long
and complex tectonic history of the basin cannot be excluded.

Secondary remobilisation revealed by Re-Os
and Pb-Pb isotopes

Given the scatter of Re-Os isotope values, we do not attri-
bute any specific geochronological meaning to these

analyses. The Re-Os data indicate Re and Os remobilisation
during the complex tectonic history of the area. The linear
trend observed in plots of Pb isotope ratios can be explained
a s due t o two end -membe r m ix i ng o f c r u s t a l
Palaeoproterozoic Pb and a highly radiogenic Pb compo-
nent. The age of this Pb mixing event cannot be constrained,
and it is not clear whether the two events indicated by Re-Os
and Pb systematics coincide. Thus, despite the fact that the
textures, S isotopes and geochemical characteristics observed
at Red Bore do not show obvious evidence of metamorphism
or intense deformation, the occurrence of cryptic secondary
remobilisation can be revealed by Re-Os and Pb isotope
systems.

Red Bore and DeGrussa: part of the same
hydrothermal system?

A genetic relationship between the Red Bore mineralisation
and the strata-bound VHMS deposit at DeGrussa has been
previously suggested (Hawke et al. 2015b; Pirajno et al.
2016). This interpretation is supported by the close spatial
association, by mineralogical and geochemical arguments,
for example the abundance of chalcopyrite, the enrichment
in Cu, Au, Ag. However, the elongate geometry, level of
mineralisation/grade (massive chalcopyrite with up to ~
30 wt% Cu and low concentrations of Pb and Zn), the
abundant massive magnetite mineralisation and the direct
association with mafic intrusive host (dolerite) at Red Bore
strongly contrast with DeGrussa and other VHMS deposits
known in the region, which are mostly hosted by terrige-
nous sedimentary rocks. Typically, VHMS mineralisation
tends to form sulphide-rich lensoid bodies, largely strata-
bound and with thicknesses in the order of tens of metres
and typically low aspect ratios (depth-to-lateral extent ra-
tio). Massive sulphide mineralisation is formed at, or close
to, the water-sediment interface, and is underlain by silica-
sulphide stockwork style mineralisation (Shanks III 2012;
Ohmoto 1996). Typical VHMS deposits associated with
mafic volcanism have high Cu/(Cu + Zn) with Cu rarely
exceeding 5–6 wt%, even in Cu-rich deposits (Galley
et al. 2007; Shanks III 2012; Lobanov et al. 2014). Au-
bearing pyrite-chalcopyrite discordant Bpipes^ have been
described at Mount Morgan and Reward deposits,
Australia (Large 1992). The Reward deposit has been at-
tributed to the class of VHMS deposits based on the pres-
ence of strata-bound massive Zn-Pb-Cu lenses, alteration
styles and ore textures (Large 1992). Murphy and Meyer
(1998) descr ibed Au-r ich mass ive cha lcopyr i t e
mineralisation hosted in mafic and ultramafic rocks of the
Logatchev hydrothermal field of the Mid-Atlantic ridge. In
these deposits, sulphate (anhydrite) is rare, whereas it is
abundant in associated Zn-rich deposits, a feature that
Murphy and Meyer (1998) attribute to limited sea water
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contribution in Cu-rich deposits. The depth of deposition
of the Red Bore mineralisation in the context of a
submarine hydrothermal system cannot be assessed
with certainty, given the absence of pressure indica-
tors. However, the absence of widespread alteration
suggests that the ore bodies did not form within the
wide alteration zone typically associated with VHMS
deposits.

At DeGrussa, reported δ34S of sulphides span the range +
0.25 to +9.82‰ (Hawke et al. 2015a), overlapping with our
results at Red Bore, but also extending towards higher values.
This may be due to mixing of magmatic fluids with sea water
at, or near, the surface. In sea floor hydrothermal systems, as
magmatic fluids rise towards the surface, they will inevitably
mix with sea water-derived fluids, so that the resulting sul-
phide deposits will carry the geochemical features of both
components. In someVHMS systems where a magmatic input
has been inferred, the upwards widening of ranges of δ34S in
present-day hydrothermal vents (Petersen et al. 2014) as well
as the upwards increase of Δ33S (− 1.5 to + 1.2) in Archaean
VHMS (Jamieson et al. 2013) suggests that VHMS-forming
fluids become progressively sea water-enriched as they rise
towards the surface. Seawater sulphate contributions to an-
cient VHMS deposits and present-day systems are estimated
to vary from 3 to > 40% (de Ronde et al. 2014; Jamieson et al.
2013; Chen et al. 2015). For example, hydrothermal fluids
emitted at Clark volcano, Kermadec arc, and responsible for
sea bed sulphate-sulphide mineralisation (dominated by bary-
te, anhydrite and gypsum, or silica-Fe, with minor pyrite,
sphalerite and galena), have been interpreted to be a mix of
40% sea water with K-rich lava-derived magmatic fluids (de
Ronde et al. 2014). Bell (2016) has measured S isotopes of
various sulphides at DeGrussa using SIMS, and found that
texturally primary pyrite, pyrrhotite and chalcopyrite have rel-
atively low δ34S (mostly +1 – +7‰), whereas overprinting
euhedral pyrite has δ34S of +8.4 – +29.1‰. This raises the
possibility of contamination of bulk analyses by secondary
pyrite.

Significance of magnetite mineralisation
and magnetite breccia

Massive magnetite mineralisation is not present in all VHMS
deposits, although VHMS systems in volcano-sedimentary
successions where the volcanic component is predominantly
mafic (Besshi and Cyprus types) are associated with banded
iron formation (Galley et al. 2007; Sebert et al. 2004; Lydon
1984; Hannington 2014). These distal chemical precipitates
(exhalites) are believed to form by precipitation from sea floor
hydrothermal plumes during the early stages of hydrothermal
activity (Peter and Goodfellow 2003; Peter et al. 2007). In
these deposits, magnetite is found together with finely layered
quartz, magnetite, chlorite, Fe-carbonate, calcite and trace

sulphides. Magnetite in these exhalites typically has high
Mn (103–106 times sea water composition) and low Ti content
(Peter and Goodfellow 2003; Dare et al. 2014). Magnetite is
present in the Besshi-type Windy Craggy VHMS deposit of
Canada, and intergrown magnet i te and sulphide
mineralisation has been described in the metamorphosed Cu-
rich VHMS Fyre Lake deposit, Canada, and the Rudny-Altai,
Russia, VHMS deposit (Sebert et al. 2004; Lobanov et al.
2014). Massive magnetite truncated by massive sulphide de-
position has been described in Neoarchaean Cu-Zn VHMS
deposits at Gossan Hill, Western Australia (Sharpe and
Gemmell 2002). These authors interpreted this magnetite to
have been deposited in the sub-surface, by sea water-derived
hydrothermal fluids at T > 300 °C, low-fS2 low-fO2, and re-
ducing conditions, and the occurrence of carbonate in this
massive magnetite suggests the presence of CO2 in the fluids.
The spatially-restricted magnetite halo around the massive
chalcopyrite, as well as an abundance of carbonate veins in
magnetite overprinted by later brecciation, suggest that Red
Bore mineralisation is likely to have formed in a similar
scenario.

Brecciation of magnetite in the Red Bore ore may have
been caused by sudden release of overpressured fluids, simi-
larly to what is observed in hydrothermal systems associated
with intrusions (hydrothermal breccia). This mechanism has
been proposed for breccia intersected by drilling in hydrother-
mal sea floor systems in the Manus basin (Binns et al. 2007).
Fluid release during short-lived events of magma instability
associated with volcanic activity has also been proposed (e.g.
Christopher et al. 2010). Alternatively, brecciation may be
caused by other processes, such as tectonic movements along
faults. Fault movements and fluid release would have likely
been closely related in a volcanically and tectonically active
setting (Richards 2013), such as the one believed to be respon-
sible for the formation of the Narracoota Formation, so that
distinguishing between different mechanisms may not be
possible.

A mineralisation model for Red Bore and comparison
with modern sea floor hydrothermal systems

The direct observation of modern submarine hydrothermal
vents represents a unique way of testing genetic mechanisms
for VHMS systems formed in the geological past. Drilling
through one of these systems hosted in turbiditic sediments
in the Juan de Fuca spreading centre has revealed the presence
of a deep (200–210 m below sea bed), Cu-rich massive sul-
phide zone with 50 vol% sulphides and 8–16 wt% Cu that
impregnated relatively coarse-grained clastic sediments
(Zierenberg et al. 1998). This zone, termed deep copper zone
(DCZ) extends horizontally underneath an impermeable silic-
ified horizon, in contrast to the vertical vein-rich zone that
directly underlies the deposits on the surface (as described
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by Ohmoto 1996). These authors interpreted the DCZ as the
lower part of a Bfeeder zone^ to the hydrothermal system.
Hardardóttir et al. (2009) have measured the composition of
deep fluids in hydrothermal wells in Iceland, that were sam-
pled at a depth of 1.3–1.5 km and temperature of 284–295 °C.
These authors found high concentrations of metals (Fe 9–
140 ppm, Zn 79–393 ppm, Cu 207–261 ppm, Pb 120–
290 ppm), orders of magnitude higher than black smoker
fluids, and interpreted this compositional difference as indi-
cating substantial metal deposition at depth in this type of
environments. These data may imply that an underappreciated
deep metal deposition takes place in association with VHMS
deposits.

These observations lead us to interpret the Red Bore
mineralised pipes as being the result of sub-surface deposition
during strongly focussed fluid flow, possibly along structural
discontinuities. In our preferred model, the mineralisation rep-
resents the escape pathway for magmatic-hydrothermal fluids
released by a mafic intrusion. As an alternative, leaching of
volcanic rocks may also explain the narrow δ34S and high Se,
admitting low sulphate contribution from S-poor sea water in
Palaeoproterozoic times. However, a model implying
magmatic-derived fluids seems to better fit different pieces
of evidence. The first stage of mineralisation included the
deposition of massive magnetite along the fluid conduit by
low-fS2 fluids, with subsequent brecciation due to tectonic
or hydrothermal processes. The trace element composition
of magnetite at Red Bore falls in the BBIF^ field of the Al +
Mn vs. Ti + V plot (Fig. 7) and is akin to chemical precipitates
that form banded iron formation in distal areas from subma-
rine hydrothermal vents. Thus, fluids similar to the early Fe-
rich S-poor fluids at Red Bore may have been responsible for
deposition of banded iron formation, which is locally found in
the Bryah Basin and are thought to be associated with sea
floor hydrothermal systems (Peter and Goodfellow 2003).

Massive chalcopyrite was subsequently deposited by S-Cu-
Fe-rich fluids that exploited the same pathway. The anoma-
lously high Cu concentrations at the centre of the
mineralisation are compatible with deposition from a S-Cu-
Fe-rich magmatic volatile phase similar to what described in
mafic magma systems (Lowenstern et al. 1991; Yang and
Scott 1996; Simon and Ripley 2011). Narrow ranges of S
isotopic compositions (δ34S ~ 0 to +4 ‰), the presence of
Bi-Te-Se-(Ag-Au) phases and the low concentrations of Zn
and Pb in comparison with typical VHMS deposits are also
compatible with a magmatic derivation of ore fluids with
minor or no interaction with sea water (Fig. 10).
Eventually, these fluids may have ascended towards the
surface and contributed to the VHMS mineralisation
known in the area (DeGrussa or similar VHMS deposits),
which has lower Cu contents and has δ34S extending to-
wards higher values.

The Cu-Au association is typical of footwall
mineralisation deposited from high temperature (300–
350 °C) fluids or mineralisation at mid-oceanic ridges
(Murphy and Meyer 1998; Galley et al. 2007). In these
high-temperature fluids, Au is mostly interpreted to be
transported as Cl complexes (Huston and Large 1989).
However, others attribute Cu-Au mineralisation in sea floor
mineralisation to the high-temperature oxidation of
Au(HS)2

− (Hannington 2014).
In contrast to other sub-surface VHMS deposits where

ore deposition occurred in stockwork-style veins and pores
of permeable rocks (e.g. volcaniclastic rocks at Hercules
South, Tasmania; Khin Zaw and Large 1992), the absence
of open space-filling textures in our samples suggests that
this type of depositional mechanism was not predominant at
Red Bore. Instead, ore deposition at Red Bore occurred
primarily by replacement, as shown by microtextures indi-
cating sulfidation of precursor minerals (Fig. 3). Another
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prominent difference between Red Bore mineralisation and
Hercules South is the low Cu contents (< 1 wt%) of the
latter, which is compatible with the low fluid temperatures
estimated from fluid inclusion homogenisation tempera-
tures (Khin Zaw and Large 1992).

Conclusions

The recent find at Red Bore prospect, Western Australia,
includes elongate mineralisation several metres wide that
has a zoned distribution of minerals: massive chalcopyrite
at core (with Cu concentrations up to ~ 30 wt%) and brec-
ciated massive magnetite at the margin. Mineralisation is
hosted in Palaeoproterozoic mafic igneous rocks (mostly
dolerite) and surrounded by a narrow talc-silica-carbonate
alteration halo. In addition, disseminated sulphides
intersected in proximity (hundreds of m) to the massive
mineralisation is hosted by finely laminated mudrock.
The mineralisation at Red Bore occurs in proximity to
VHMS hosted sediments and mafic lavas at DeGrussa
and the Cu-Ag-Au-rich composition of both deposits fur-
ther supports a genetic relationship. However, the geometry
of the mineralisation at Red Bore, the occurrence in shal-
low intrusive mafic rocks, as well as its mineralogical and
trace element characteristics, set this mineralisation apart
from associated VHMS deposits in the region and other
VHMS systems worldwide. The mineralisation contains
Ag and Au at hundreds and tens of ppm levels, respectively,
and Bi, Te and Se at concentrations up to 100–1000 ppm.
Gold is hosted in chalcopyrite, pyrite and in Bi-Te-(Se)
phases, and no native Au was found. In situ S isotope anal-
yses of pyrite and chalcopyrite indicate a narrow range of
δ34S (mostly +3.0 to +4.6‰), and Δ33S ~ 0. We interpret
these mineralised bodies as having formed along strongly
focussed pathways of fluid discharge, such as faults, along
which S-rich fluids carried significant amounts of Cu, Fe,
Au, Ag, Bi, Te and Se upwards towards the surface. Metals
may have been derived from a degassing magma or from
leaching of volcanic rocks. These fluids may have contributed
to the overlying VHMS systems. Analyses of both Re-Os
isotopes and Pb isotopes of sulphides at Red Bore indicate
open-system behaviour, and support mixing of crustal Pb with
highly radiogenic Pb.
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