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Abstract The magmatic hydrothermal Pulang Cu deposit
(Triassic) and the Beiya Au-Cu deposits (Eocene) are located
in the Sanjiang copper porphyry belt, southwest China. Zircon
chemistry was used to constrain the magmatic evolution and
oxidation state of the porphyries. The results show that por-
phyries of the Beiya district formed from an early oxidized
melt and a later relatively reduced and more evolved magma,
whereas Pulang experienced a normal Cu porphyry evolution-
ary trend. The Pulang porphyries crystallized from more oxi-
dized magma (ΔFMQ + 2.9–4.6, average = 4.0 ± 1.0, n = 3)
with an average temperature of 709 ± 6 °C compared to the
Beiya porphyries (ΔFMQ + 0.6–3.5, average = 1.9 ± 1.3,
n = 5) with a mean magmatic temperature of 780 ± 22 °C.
These data, combined with data from other Cu- and Au-rich
porphyries in the Sanjiang belt (i.e., Machangjing Cu, Yao’an
Au), are consistent with previous experimental work showing
that elevated Cu and Au solubilities in magma require oxidiz-
ing conditions. A compilation of existing geochemical data for
magmatic zircons from fertile and barren porphyry systems

worldwide establishes an optimal diagnostic interval on
CeIV/CeIII-TTi-in-zircon and (Eu/Eu*)N plots for generating
magmatic hydrothermal Cu-Au deposits.

Keywords Sanjiang orogenic belt . Porphyry-related Cu-Au
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Introduction

Cooling of sulfur-rich oxidized hydrous magma and exsolu-
tion of hydrothermal fluids in the middle to upper crust are the
primary controls on porphyry Cu-Au systems (Burnham
1980; Blevin and Chappell 1992; Hedenquist and
Lowenstern 1994). The solubility of Cu and Au in hydrous
silicate melts was proven to be affected by the amount and
proportion of dissolved sulfate and sulfide in S-bearing mag-
ma, whereas oxygen fugacity controls the speciation of sulfur
(Barnes 1979; Hamlyn et al. 1985; Bornhorst and Rose 1986;
Jugo 2004; Jugo et al. 2005). The magma oxidation state can
be constrained by empirical redox proxies (Soloview 2015).
Typical methodologies, such as whole-rock Fe3+/Fe2+ ratio
measurements (Brett and Sato 1984), amphibole oxygen
thermobarometry (Scaillet and Evans 1999; Ridolfi et al.
2010; Ridolfi and Renzulli 2012), and ilmenite-magnetite ox-
ygen thermobarometry (Buddington and Lindsley 1964;
Ghiorso and Sack 1991; Lepage 2003), are all adequate in
evaluating the magmatic redox state of unaltered intrusive
rocks. However, hydrothermal alteration and magmatic hy-
drothermal ore formation invariably affect the primary texture
and bulk-rock chemistry of Cu-Au porphyry intrusions and
may conceal the original igneous rock signature. Accessory
minerals such as zircon can better retain the primary chemical
information due to slow growth and dissolution (Watson
1996) and low intracrystalline diffusivities (Cherniak et al.
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1997). Thus, chemically stable zircon populations are well
suited to record the evolution of a magmatic system, and the
associated fluctuations in fO2-T conditions.

The Sanjiang orogenic belt in southwest China hosts sev-
eral large Cu-Au porphyry deposits that formed in distinct
tectonic settings (Mao et al. 2014). These include the
subduction-related Triassic Pulang porphyry Cu deposit in
the Zhongdian arc (the southern part of Yidun arc), and the
post-collisional Tertiary Beiya porphyry-skarn Au-Cu de-
posits within a potassic igneous belt along the Ailaoshan-
Red River shear zone. The two deposits are the focus of our
study. We attempt to evaluate the fO2-Tconditions and magma
evolution through the trace element concentration of zircons
that crystallized in the two porphyries. We then compare these
data with other published global data to propose a discrimina-
tion diagram for ore-bearing and ore-barren porphyries.

Geological background

Yidun arc

The NNW-trending Yidun arc is surrounded by the Qiangtang
terrane to the west, Songpan-Garze fold belt to the northeast,
and Yangtze craton to the southeast, respectively. The Garze-
Litang and Jinshajiang suture zones lie to the east and west of
the Yidun arc, respectively (Fig. 1). The Zhongza massif in the
western part of the Yindun arc, divided by the NS-trending
Xiangcheng-Geza fault, comprises carbonate-dominated
Paleozoic metasedimentary rocks intercalated with mafic vol-
canic rocks. It is suggested to have been separated from the
western Yangtze craton by opening of the Garze-Litang
Ocean in the Late Permian (Chen et al. 1987; Chang 1997;
Hou et al. 2003). In contrast, the eastern Yidun arc is dominated
by Late Triassic volcano-sedimentary successions consisting of
flysch and mafic-felsic arc-related volcanic rocks (BGMRSP
1991). The Late Triassic throughMiocene dioritic-granitic plu-
tons extend for more than 500 km from north to south, and
become progressively younger towards the east (BGMRSP
1991; Hou et al. 2003).

The Yidun arc underwent three main tectonic, magmatic,
and metallogenic events during Triassic subduction of oceanic
crust, Jurassic-Cretaceous collision, and post-collision, and
then affected by Cenozoic intracontinental strike-slip shearing
and convergence (Mo et al. 1993; Li et al. 2011; Deng et al.
2014). A continuous glaucophane schist belt (Sha 1998) and
an ophiolitic suite along the suture zone (Zeng et al. 2004) are
products of the subduction. The NW-oriented Triassic stocks
and dikes comprise hypabyssal quartz diorite porphyry, quartz
monzonite porphyry, and granite porphyry. Some of these are
the causative intrusions for Cu ± Mo ± Au mineralization.
These adakite-like calc-alkaline porphyries (e.g., Pulang,
Xuejiping, and Langdu) resulted from the Triassic westward-

dipping subduction of the Garze-Litang Ocean below the
Yidun arc (Pan et al. 2003; Li et al. 2011; Wang et al.
2014a). The collision between the Yidun arc and the
Yangtze craton took place in the Jurassic and Cretaceous fol-
lowing final closure of the Garze-Litang Ocean. The Late
Cretaceous A-type granites in the northern Yidun arc are as-
sociated with W-Sn mineralization, whereas Cu-Mo mineral-
ization is mainly related to the coeval magmatism in the south-
ern Yidun arc. The Late Cretaceous magmatism in the south-
ern Yidun arc formed in a post-subduction setting. However,
different viewpoints on the controls of the magmatism include
the collision between the Lhasa and Qiangtang terranes (Wang
et al. 2014b; Peng et al. 2014) or lithospheric-scale
transtensional faulting within the Yidun arc (Yang et al.
2015) during Late Cretaceous.

Jinshajiang-Ailaoshan shear zone

Lateral tectonic escape caused by the collision between India
and Asia resulted in the formation of the Ailaoshan-Red River
shear zone in Paleocene (Tapponnier et al. 1990; Leloup et al.
1995; Yin and Harrison 2000). Strike-slip motion on the shear
associated with lithospheric extension resulted in the emplace-
ment of the Eocene-Oligocene alkaline magmatic belt that is
2000-km long and 50–80-km wide (Chung et al. 2005).
Contemporaneously, formation of a series of Tertiary rift ba-
sins across the Qiangtang terrane and the western Yangtze
craton, extrusion of alkaline basalt, and development of a pos-
itive gravity anomaly pattern along the Jinshajiang-Red River
fault system took place. These formed in a post-collisional
extensional setting (Zhang et al. 1987; Turner et al. 1996;
Deng et al. 2010), or transpressional setting during continental
subduction (Wang et al. 2001) that possibly corresponded to
the opening of the South China Sea (Leloup and Kienast 1993;
Liang et al. 2007). The Eocene-Oligocene alkaline-rich intru-
sions are associated with many porphyry and skarn Au-Cu
deposits (Hu et al. 2004; Xu et al. 2007; Lu et al. 2013; Tran
et al. 2014). Three typical porphyry suites (Beiya, Yao’an, and
Machangqing) are located to the east of Jinshajiang suture,
which marks the closure of the Jinshajiang Ocean in the
Late Triassic (Mo et al. 1993), whereas the Eocene Yulong
porphyry copper belt is located to the west along the
Jinshajiang suture.

Deposit geology

Pulang Cu deposit

The Pulang Cu deposit (99° 59′ 23″ E, 28° 02′ 19″ N, elevation
3500–4600 m) is hosted by a series of Late Triassic subvolcanic
intrusions emplaced into the Late Triassic clastic rocks and an-
desite of the Tumugou Formation (Figs. 2a and 3). The deposit
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Fig. 1 (a) Geological map showing the distribution of major continental
blocks and sutures in southeast Asia (Metcalfe 2006; Metcalfe 2013). (b)
Tectonic framework of the Sanjiang domain in southwest China, showing
the major terranes, suture zones, volcanic arcs, and location of the Pulang

porphyry Cu-Au deposit and the Beiya porphyry-skarn Au-Cu district (Zi
et al. 2012; Deng et al. 2014). Original figure from Zhu et al. (2015), and
with publication permission from Economic Geology
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contains inferred reserves of 1.3 Gt with an average grade of
0.34% Cu, 0.18 g/t Au, and 1.27 g/t Ag (Li et al. 2011). It is
locally controlled by NW-trending faults. The Pulang igneous
stocks comprise of quartz diorite, quartz monzonite, granodio-
rite, and minor monzodiorite covering an area of 8.9 km2.

Mineralization in the Pulang porphyry deposit is genetical-
ly associated with both quartz diorite porphyry and quartz
monzonite porphyry (228–212 Ma) (Wang et al. 2008; Pang
et al. 2009; Liu et al. 2013). The quartz diorite porphyry is the
most abundant rock and forms nearly 80% of the suite. The
rock is gray in color and exhibits a phaneritic matrix of pla-
gioclase (65%), quartz (5%), hornblende (< 1%), and minor
K-feldspar, with phenocrysts of plagioclase (25%) and horn-
blende (< 5%). Phyllic and propylitic alteration are present.
The quartz monzonite porphyry forms 20% of the suite. The

rock is gray with a phaneritic groundmass of oligoclase
(25%), K-feldspar (25%), quartz (15%), and biotite (5%),
and phenocrysts of plagioclase (15%), K-feldspar (10%), bio-
tite (5%), and minor quartz. Phyllic, potassic, and silicic alter-
ation are present. A post-mineral granodiorite porphyry dike
cuts the quartz monzonite porphyry dike. The granodiorite
porphyry contains phenocrysts of plagioclase, K-feldspar, bi-
otite, quartz, and hornblende in a matrix of plagioclase, quartz,
hornblende (15%), and biotite (5%). The orebodies are mainly
within the phyllic and potassic alteration zones which are
superimposed on the quartz monzonite porphyry and the
quartz diorite porphyry (Fig. 3). Disseminated, veinlet, and
breccia-related mineralization developed. A detailed petro-
graphical description is available in Liu et al. (2015b) and Li
et al. (2011).

600m(a)
1km

N

Sectio
n o

f F
ig

. 3

Section A-A’ of Fig.4

(a) (b)

Section B-B’ of Fig.4

Q

Q

Wandongshan

Dashadi

Hongnitang

Bijiashan

Weigangpo

Bailiancun

Guogaishan

Jingouba

o

100.16 E
o

100.20 E
o

100.24 E

o

2
6

.
1

8
N

o

2
6

.
1

4
N

o

2
6

.
1

2
N

175
95 96 97 98 99 00

176

07

06

05

04

03

02
31

BY05

BY01

BY02

BY03

PL03

PL02

PL01

Quaternary

Slate and sandstone in the upper

second member of Tumugou Fm.

Slate, sandstone and andesite in the

lower second member of Tumugou Fm.

Sericite slate and sandstone,

interbedded with limestone in 

the first member Tumugou Fm.

Quartz diorite porphyry

Quartz monzogranite porphyry

Granodiorite porphyry

Hornfelsization zone

Quaternary

Limestone of Middle 

Triassic Beiya Fm.

Sandtone of Lower

Triassic Qingtianbao Fm.

Basalt of Upper 

Permian Emeishan Fm.

Quartz monzonite porphyry

Quartz syenite porphyry

Fault breccia

Hydrothermal breccia

Geological boundary

orebody

Fault

Sample location

Syncline

B
e

iy
a
 S

y
n

c
li
n

e

Sericite zone
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Beiya Au-Cu district

The Beiya Au-Fe-Cu porphyry and skarn district (100° 08′ 38″
E, 26° 07′ 43″ N, elevation 1700–1900 m) is spatially and
temporally associated with several small and buried Eocene-
Oligocene potassic porphyritic intrusions covering a total area
of 0.34 km2 (Figs. 2b and 4). The estimated ore reserves are
130Mt at a grade of 2.42 g/t Au, 0.48%Cu, 25.5% Fe, 38.85 g/
t Ag, 1.24% Pb, and 0.53% Zn (He et al. 2016). The Beiya ore
district is located along the limbs of the N-S-trending Beiya
syncline. It mainly consists of two mineralized zones, with
the Wandongshan, Hongnitang, and Dashadi deposits on the
west limb of the syncline, and the Weiganpo and Bijiashan
zones on the east limb. The peripheral Matouwan and
Bailiancun deposits occur in the periphery of the district. The
Wandongshan deposit is the currently the location of the main
workings and is developed by an open pit (Figs. 2b and 4b). It
yields supergeneAu ores that were weathered and leached from
the hypogene porphyry and skarn ores. Hypogene mineraliza-
tion is primarily manifested as skarn-type, with subordinate
porphyry, fracture-controlled, and quartz (ankerite)-sulfide
types (Mao et al. 2017; Xu et al. 2007a).

The country rocks in the Beiya district include ca. 260 Ma
flood basalts (Xu et al. 2001) of the Upper Permian Emeishan
Formation, sandstones and hornfels of the Lower Triassic
Qingtianbao Formation, and limestones of the Middle
Triassic Beiya Formation (He et al. 2015). The contact zone
between the Triassic limestone and alkaline porphyries is the
main host for the metalliferous skarn (Fig. 4). Hydrothermal
breccia associated with Au-Fe-Cu mineralization is also pres-
ent at the Hongnitang deposit. The period of this igneous

activity is coeval with regional potassic mafic magmatism in
the western part of Yunnan province (37–34 Ma; Lu et al.
2013; Deng et al. 2015; He et al. 2015; Liu et al. 2015a).

The Tertiary intrusions in the Beiya district comprise vol-
umetrically abundant quartz monzonite porphyry and quartz
syenite porphyry stocks (37.0–34.6 Ma, LA-ICP-MS zircon
U-Pb), granite porphyry (36.6–34.7 Ma, LA-ICP-MS zircon
U-Pb), and post-mineralization lamprophyre dikes (Deng
et al. 2015; Liu et al. 2015a). The porphyry and skarn miner-
alization is associated with the quartz monzonite and quartz
syenite porphyries (Table 1, Fig. 4). The quartz monzonite
porphyry at the Dashadi deposit is light gray and porphyritic,
with phenocrysts of K-feldspar (30–35%), plagioclase (20–
25%), and minor quartz in a groundmass of K-feldspar and
quartz. The quartz monzonite porphyry at the Weiganpo,
Bailiancun, and Matouwan deposits has high contents of bio-
tite and amphibole phenocrysts. The quartz syenite porphyries
at the Wandongshan, Hongnitang, and Bijiahan deposits are
gray-white in color and microgranular and porphyritic, with
phenocrysts of K-feldspar (35–45%), quartz (5–10%), and
minor plagioclase, and a groundmass of K-feldspar and
quartz. The main rock phases are described in Liu et al.
(2015a). Subordinate porphyry-type disseminated and vein-
type Au-Cu mineralization is typically hosted within fractures
and small shears (Mao et al. 2017). Pervasive potassic alter-
ation overprinted the intrusions, altering plagioclase to K-feld-
spar. Silification, and phyllic and propylitic alteration also
occur. Overall, porphyry mineralization within these stocks
is weak and they lack typical alteration zoning.

The granite porphyry intrusion hosts porphyry-type miner-
alization with abundant Au-rich pyrite and subordinate
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chalcopyrite, galena, and other sulfides. Potassic and phyllic
alteration has also overprinted the intrusion. The mineraliza-
tion in the granite porphyry is roughly synchronous with the
other porphyry and skarn mineralization in this district (Deng

et al. 2015; Liu et al. 2015a). The vein-type pyrite within the
granite porphyry intrusions has a higher Au content (1–
10 ppm) than the pyrite (0.01–1 ppm Au) from the Fe-Au
orebodies and skarn in limestone associated with porphyritic

Table 1 Mineralogy and location of porphyry samples from Pulang Cu deposit and Beiya Au-Cu district in the Sanjiang orogenic belt

Sample Deposit Location Lithology Primary mineralogy Alteration

Phenocrysts Groundmass

PL01 Pulang X17597658, Y3103360 QDP Pl, Amp Pl, Qtz, Amp, Kfs Phyllic, propyllic,

PL02 Pulang ZK713, 567.5 m QDP Pl, Amp Pl, Qtz, Amp, Kfs Phyllic, propyllic,

PL03 Pulang ZK416, 172.5 m QMP Pl, Kfs, Bi, Qtz Pl, Kfs, Qtz, Bi Phyllic, potassic

BY01 Beiya Weiganpo QMP Kfs, Pl, Bt Kfs, Qtz Argillic, potassic, phyllic

BY02 Beiya Hongnitang QSP Kfs, Qtz, Pl Kfs, Qtz Argillic, potassic, phyllic

BY03 Beiya Hongnitang QSP Kfs, Qtz, Pl Kfs, Qtz Argillic, potassic, phyllic

BY04 Beiya Matouwan QMP Pl, Kfs, Amp, Bt, Qtz Kfs, Qtz Argillic, potassic, phyllic

BY05 Beiya Wandongshan QSP Kfs, Qtz, Pl Kfs, Qtz Argillic, potassic, phyllic

QDP, quartz diorite porphyry; QMP, quartz monzonite porphyry;QSP, quartz syenite porphyry; Kfs, K-feldspar;Qtz, quartz; Pl, plagioclase; Bt, biotite;
Amp, amphibole
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monzogranite (Deng et al. 2015). These two magma pulses
share similar geochemical and isotopic signatures to the am-
phibole xenoliths in the potassic felsic intrusions in the west-
ern part of Yunnan province, suggesting an origin from K-rich
thickened lower crust during the melting of metasomatized
subcontinental lithospheric mantle (Deng et al. 2015; Liu
et al. 2015a).

Sample preparation and analytical methods

Samples from the quartz diorite porphyry (PL01, PL02) and
quartz monzonite porphyry (PL03) at the Pulang deposit, and
quartz monzonite porphyry (BY01, BY04) and quartz syenite
porphyry (BY02, BY03, BY05) in the Beiya district were
prepared for zircon separation. Zircon separation was con-
ducted by conventional heavy liquid and magnetic separation
techniques. Representative grains were handpicked and
mounted in epoxy resin, and then polished to reveal their
internal structures. Reflected and transmitted light photomi-
crographs were examined for all zircons, as were
cathodoluminescence (CL) scanning electron microscope

images, to identify the internal structure of zircons and ensure
that the laser ablation analytical points were wholly within the
rim or the core. The xenocrystic zircons in the Beiya porphy-
ries (Deng et al. 2015) are characterized by partially over-
grown clear core-rim structures, or by corroded textures.
Such crystals were carefully removed prior to analysis. Most
zircons were previously prepared for laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dat-
ing (not reported here) to exclude inherited zircons. Where
possible, if the zircon crystal was large enough, multiple anal-
yses were conducted on single grains to evaluate core-to-rim
chemical variation. Additionally, melt inclusions and fractures
were avoided during the laser ablation analyses of zircons
according to details from the CL images. The measured P,
Ca, Sr, and Al contents of zircons were also used to monitor
sub-surface inclusions. In this study, most zircon analyses
have very low P, Ca, Sr, and Al concentrations.

Trace elements, including rare earth element (REE) contents
of the zircons, were determined by LA-ICP-MS at the National
Research Center of Geoanalysis in Beijing, China. The LA-ICP-
MS analyses used a Finnigan MAT ELEMENT II high-solution
inductively coupled plasma spectrometer (HR-ICP-MS) with a
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high-performance interface coupled with a New-Wave UP-
193nm Nd: YAG UV laser. Ablation was carried out by a He-
Ar gas mixture (flow rate of 0.73 L He/min and 0.85 L Ar/min)
and the resulting vaporwas combinedwith argon before delivery
into the ICP-MS. The analyses were conducted using a 35-μm
spot diameter, a 10-Hz frequency, a 0.25-mJ/pulse power, during
a 70-s analysis including 20 smeasurement of gas blank, follow-
ed by ablation of the sample for approximately 40 s by raster.
Each group of ten zircon analyses was bracketed by analysis of
standard glass NIST612, NIST 610, andKl2g to correct for mass
bias drift during analysis. The calibration procedure using inter-
nal standards and matrix normalization followed Hu et al.
(2011). The full data set for minor and trace elements obtained
by LA-ICP-MS is provided as ESM I. The fO2-T calculation
methods are documented in the ESM II, in which fO2 is calcu-
lated through the La-Pr interpolation method. The CeIV/CeIII

ratio is estimated through the lattice-strain model that was exten-
sively used in previous studies.

Results

Trace elements

Zircons from the Pulang and Beiya porphyries have Hf con-
centrations ranging from 8500 to 10,700 ppm and 6900 to
16,700 ppm, respectively (Fig. 5a). Similar to other studies of
felsic stocks (Claiborne et al. 2010; Dilles et al. 2015), the
hafnium content decreases, and Zr/Hf and Th/U ratios of zircon
increase with declining Ti-in-zircon model crystallization tem-
perature (Fig. 5a–c). Zircons in the studied fertile porphyries
typically exhibit low light REE and elevated heavy REE con-
tents, with distinctive positive Ce but comparable negative Eu
anomalies (Fig. 6). The zircon Ce anomalies of the Pulang
porphyries are comparable to those of the Beiya porphyries
(Fig. 5d, e). The Eu anomalies are modest and similar among

the porphyries, yielding average values between 0.5 and 0.7,
but a small proportion of zircons from the Beiya porphyries
exhibits lower negative Eu anomalies than the Pulang porphy-
ries (Fig. 6).

Estimates of magmatic oxidation state by different
methods

The estimated ΔFMQ values (La-Pr interpolation) of the
Pulang porphyries are 2.9–4.6 (average = 4.0 ± 1.0, n = 3)
which are slightly higher than those of the Beiya porphyries
(0.6–3.5, average = 1.9 ± 1.3, n = 5), but are comparable with
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the results obtained in the published amphibole chemistry
(Fig. 7). Our results for the Beiya porphyries resemble those
calculated from amphibole chemistry (NNO + 1.7, 660–
805 °C; W. Y. He, oral commun., February 24, 2017).

Discussion

Zircon/rock partition coefficients

The ratios of rare element concentrations in zircons versus
those of the host rocks are compared with the experimental

and natural partition coefficients from previous studies
(Fig. 8). The obtained average zircon/rock partition coeffi-
cients of the studied porphyry samples are consistent with
the Dzircon/melt value of Sano et al. (2002) but slightly
higher than the Dzircon/rock from other studies (Rubatto
and Hermann 2007; Hanchar and Van Westrenen 2007;
Luo and Ayers 2009). As discussed in Claiborne et al.
(2006), Hanchar and Van Westrenen (2007), and Nardi
et al. (2013), the estimated REE patterns calculated
through Dzircon/melt values of Sano et al. (2002) and zircon
REE compositions are consistent with the whole-rock REE
patterns, indicating the behavior of trace elements in the
melt is predictable from partition coefficient mineral/melt
(Fujimaki 1986; Green 1994; Luo and Ayers 2009). The
consistency of our Dzircon/rock values with Sano et al.
(2002) may suggest that the whole-rock composition re-
flects the composition of the magma from which it crystal-
lized. To support this suggestion, we use the calculated
average Dzircon/rock values of the zircon populations from
the published literature for comparison and obtain a good
agreement (Fig. 8, ESM-III and reference in). One may
argue that the zircon grains could crystallize late during
the solidification of felsic magmas, thereby reducing the
validity of whole-rock REE values as melt REE composi-
tion. However, the phosphorus contents of the studied por-
phyries are low (< 0.5 wt%), indicating that the effects of
other REE-bearing minerals (e.g., apatite and monazite,
which are early crystallization phases in magma) on bulk
composition should be limited. This result also suggests
that the REE elements are mostly controlled by zircon
structure and are little affected by undetected mineral in-
clusions. We thus propose that the melt composition main-
ly determines the rare element contents in the studied
zircons.

Table 2 Ti-in-zircon
temperature, CeIV/CeIII (lattice-
strain model) and fO2 (La-Pr
interpolation) values calculated
using zircon chemistry

Samples Ti-in-zircon temperature (°C) 10,000/T (K) CeIV/CeIII lg(fO2) δFMQ

PL01 704.3 10.2 405.6 −12.1 4.6

PL02 708.1 10.2 407.4 −13.7 2.9

PL03 715.5 10.1 383.3 −11.9 4.6

Average 709.3 10.2 398.7 −12.6 4.0

1σ 5.7 0.1 13.4 1.0 1.0

BY01 766.6 9.6 253.1 −12.7 2.9

BY02 793.3 9.4 412.5 −11.5 3.5

BY03 791.7 9.4 371.4 −14.4 0.6

BY04 747.8 9.8 268.1 −13.9 2.0

BY05 799.6 9.3 190.0 −11.9 0.6

Average 779.8 9.5 299 −12.9 1.9

1σ 22 0.2 91 1.3 1.3

The fO2 and δFMQ are calculated through La-Pr interpolation methods, whereas the CeIV /CeIII ratios are esti-
mated based on lattice strain model for comparison with other literature. The detailed discussion of the calculation
methods is shown in Digital Supplement II
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Zircon as recorder of magmatic evolution

The above discussion provides us insights that the rare ele-
ment composition of zircon is determined by the composition
of the melt coexisting with crystallizing zircon. Using Hf as an
indicator of fractionation (Claiborne et al. 2006) and Ti as a
proxy for temperature (Ferry and Watson 2007), the rimward
decrease of Ti in zircons from the Pulang porphyry samples is
consistent with crystallization by oversaturation upon cooling.
A systematic decrease in the Zr/Hf ratio and increase in Y, Th,
and U concentrations support this conclusion. The Ti-in-
zircon temperatures of the Pulang felsic stocks yield a tight
range of 704–715 °C, averaging 709 ± 6 °C, whereas those of
the Beiya porphyry system exhibit a wider range of 767–
793 °C, averaging 780 ± 22 °C (Table 2). The highly variable
geochemical parameters (e.g., REE content, CeIV/CeIII, Ce/
Nd, Hf) of zircons from the Beiya porphyries, and opposing
zonation patterns in single crystals, argue against a simple
magmatic evolution of the Beiya porphyries (Fig. 9, Table 3).

The negative correlation between Ce/Nd and Th/U ratios
indicates that zircon fractionation controls Ce content. The
CeIV/CeIII ratio inversely correlates with the Th/U ratio, sug-
gesting that elevated Ce may be impacted by the effects of
variable oxygen fugacity. The narrow range of CeIV/CeIII, Th/
U, and Zr/Hf ratios, as well as the Hf concentrations, are
expected in an undisturbed oxidized parental magma reser-
voir. However, the Beiya porphyries seem to crystallize over
a wider range of fO2 and over a longer time interval (wide
range of Hf), and the redox state remains constant or tends
to become more reduced with Hf increases above 11,000 ppm
(Fig. 10b). The opposite trend of CeIV/CeIII versus Hf com-
pared to the typical pattern for the Pulang porphyry stock
samples indicates that the magma chamber generating the
Beiya porphyry intrusions was perturbed.

In summary, the rimward increase of Ti-in-zircon mod-
el temperature and decrease of CeIV/CeIII ratio in the zir-
con crystals (Fig. 9d–f), and the larger scatter in all geo-
chemical parameters (Fig. 10) for the Beiya porphyries,

Table 3 Representative chemical
parameters of core-rim pairs of
zircons from Pulang and Beiya
porphyries

Analysis no. Location T (°C) Hf (ppm) Th/U Zr/Hf Ce/Nd CeIV/CeIII

PL01–20 Rim 560 10,592 0.70 45.4 38.2 616

PL01–21 Core 692 8742 0.89 55.7 11.4 122

PL02–2 Rim 685 9609 1.16 54.9 21.8 314

PL02–3 Core 762 8959 0.97 54.9 6.6 98

PL02–4 Rim 719 9032 1.11 54.6 28.8 389

PL02–23 Rim 676 8676 1.10 55.9 26.4 398

PL02–24 Core 731 9137 1.08 53.4 23.0 507

BY02–2 Core-Rim 871 8374 0.38 55.6 5.0 82

BY02–3 Core 773 7731 0.30 60.6 14.6 235

BY02–4 Rim 1071 10,641 0.27 43.5 12.0 256

BY03–12 Core 633 10,599 0.14 43.5 17.1 364

BY03–13 Rim 891 10,470 0.33 45.1 15.3 261

BY03–17 Core 957 7003 1.21 68.1 3.1 9.7

BY03–18 Rim 1021 7357 1.82 62.7 5.1 13

The calculated model temperatures vary within ±30 °C (2б)
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are best interpreted as the rejuvenation by hotter, younger,
relatively reduced magmas of an initial oxidized magma
pool. In contrast, the typical compositional zonation of
zircons from the Pulang porphyries mimic simple cooling
and chemical differentiation of the host magma (Ginibre
et al. 2007).

The thermal and physical state of upper crustal magma
chambers may be disrupted by the incremental injection of
small magma pulses. The injection of external magma
pulses revealed by reversal of chemical (e.g., Ti-in-zircon
temperature, CeIV/CeIII) zonation in zircon indicates mass
and energy exchange between a magma body with its

external environment (Streck 2008). In the Beiya district,
the presence of Au-bearing granite porphyry dikes intrud-
ing the quartz monzonite porphyry stock (Deng et al. 2015)
also supports multiple pulses from a deep magma chamber.
The fluctuation of temperature and oxygen fugacity esti-
mated from elemental variation of magnetites cystallized
from the different stages of hydrothermal fluids in the
Beiya deposits also indicates the introduction of younger
melt into the pre-existing unconsolidated magma system
(Sun et al. 2017). Hence, we believe that the zircon signa-
ture of the Beiya porphyries resulted from a mixing process
in the upper crust.
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Fig. 10 Correlation between CeIV/CeIII and (a) Th/U, (b) Hf, (c) T, and
(d) Eu/Eu* values. The CeIV/CeIII values are calculated by the lattice
strain model (Ballard et al. 2002). The large symbols in Fig. 10d represent
the average values of each samples. The boundary values of maximum
Ti-in-zircon temperature of unaltered igneous zircon and hydrothermal
zircons are following Hoskin and Schaltegger (2003) and Fu et al. (2009).
Near eutectic temperatures are after Dilles et al., (2015). (1–2)
Chuquicamata and El Abra Cu-fertile (1) and barren porphyries (2) in
northern Chile (Ballard et al. 2002). (3) El Teniente Cu-Mo-fertile
porphyries in central Chile (Muñoz et al. 2012). (4) Porphyries from
Oyu Tolgoi Cu-Au district in southern Mongolia (Wainwright et al.

2011). (5) Quellaveco Cu-Mo-fertile porphyries in southern Peru
(Simmons 2013). (6–7) Medet Cu-fertile (6) and barren porphyries (7)
in Bulgaria (Peytcheva et al. 2009). (8) Battle Mountain Cu-Au-fertile
porphyries and (9) Carlin Au-related porphyries in northern Nevada,
USA (Farmer 2013). The porphyry rocks in China are from (10)
Dabaoshan Mo-Cu (Li et al. 2012a), (11) Yulong Cu-Mo (Li et al.
2012b), (12) Machangqing Cu (Guo et al. 2011), and (13) Langdu Cu
(Jin et al. 2013), (14) Hongniu skarn Cu deposit, and (15) Triassic Cu-
fertile porphyry in Zhongdian arc. (16) I-type granite and (17) A-type ore-
barren granite, and (18) S-type ore-barren granite in Tibet (Wang et al.
2012)
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Magmatic fO2 conditions for generating Cu-Au-bearing
melts

A high magmatic fluid flux ensures the exsolution of an aque-
ous volatile phase, which is considered as the sine qua non for
magmatic hydrothermal ore-forming systems (Richards
2011). The investigated Cu-Au-related porphyries commonly
contain amphibole or biotite phenocrysts and are characterized
by high Sr/Y and La/Yb ratios, as well as listric-shaped nor-
malized REE patterns, which indicate high water content (Li
et al. 2011; Lu et al. 2013). Another key issue in generating a
magmatic hydrothermal Cu-Au deposit is the ability of mag-
ma to transport metals into the upper crust.

Magma generated at fO2 ≥ FMQ + 2 (Mungall 2002) or +2.3
(Jugo 2009) would preserve Cu and Au contents in silicate
melts due to the instability of sulfide phases. The estimated
oxygen fugacity using amphibole chemistry for the Pulang
Cu porphyry is NNO + 2.8 (Liu et al. 2013). This result is
consistent with the values calculated by zircon chemistry, im-
plying a relatively oxidized magma for the porphyry. The de-
termined zircon CeIV/CeIII values are comparable to those of
the Yulong and Machangqing Cu porphyries along the
Jinshajiang belt, and the Dexing Cu porphyry in southeastern
China (Fig. 10). Our samples also mostly fall close to those of
the Chuquicamata-El Abra samples, indicating that the elevated
redox state of these porphyry suites favors Cu mineralization.

The qualitative oxygen fugacities of other two adjacent post-
collisional porphyry systems generated from 37 to 33 Ma in
westernYunnan (i.e., theMachangqing porphyry Cu-Mo system
and the Yao’an porphyry Au system) have ever been estimated
through other methods (Bi et al. 2009).We re-use the data from
Bi et al. (2009) to obtain estimated crystallization temperatures
and redox states. The results show the Yao’an Au-fertile porphy-
ry (820 °C, ~FMQ + 0.9) andMachangqing Cu-fertile porphyry
(730 °C,~FMQ + 2.7) are also the products of oxidized magma,
similar to the Pulang (~709 ± 6 °C, ~FMQ+ 4.0 ± 1.0, n= 3) and
Beiya porphyries (~780 ± 22 °C, ~FMQ + 1.9 ± 1.3, n = 5)
within our defined error range. We thus propose that formation
of Cu-Au-bearing porphyries requires elevated oxygen fugac-
ities but varible temperatures.

Evaluating the economic potential of porphyry-related
Cu-Au deposits

Magmatic oxidation state controls sulfur speciation and metal
solubility in magmas (Hamlyn et al. 1985; Bornhorst and
Rose 1986; Jugo 2004; Jugo 2009) and high magmatic water
contents ensure exsolution of aqueous volatile phases. The
CeIV/CeIII ratio calculated through the lattice-strain model is
a common indicator of magmatic oxidation state, and the (Eu/
Eu*)N ratio is instrumental in indicating either high oxidation
state or magmatic water contents (Richards 2011; Ballard et al.
2002; Dilles et al. 2015). Ballard et al. (2002) examined fertile

and barren porphyry stocks and showed that the productive
porphyries exhibited relatively high ratios (CeIV/CeIII > 300
and EuN/EuN* > 0.4). However, the later published large
amounts of data are not well explained in this discrimination
diagram. Based on the compiled database, an optimal more
constrained interval for Cu-Au porphyry formation is thus
shown in Fig. 10c, d. Most zircons from the porphyries show
CeIV/CeIII values lower than 3000, and Eu/Eu*N less than 0.8,
and crystallization temperatures ranging from 650 to 850 °C.

Conclusions

(1) In contrast to the Pulang Cu-fertile porphyry, the Beiya
porphyries formed by at least two different melt pulses.
Zircon geochemistry obtained by LA-ICP-MS can be
used to estimate magma redox state. The calculated Ti-
in-zircon temperatures and FMQ values of Pulang are
709 ± 6 °C and 4.0 ± 1.0 (n = 3), whereas those values
for Beiya porphyries are 780 ± 22 °C and 1.9 ± 1.3
(n = 5), respectively.

(2) Combined with a compilation of published zircon data,
an optimal interval on CeIV/CeIII-TTi-in-zircon and (Eu/
Eu*)N diagrams for producing magmatic hydrothermal
Cu-Au deposits is identified. We foresee that the dia-
grams can help reduce risk at the first exploration step
for porphyry Cu-Au deposits, therefore decreasing the
economic and environmental cost.
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