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Abstract Molybdenite is a common mineral accompanying
Sn–W, Au, and base metal mineralizations located in different
geotectonic units of the Bohemian Massif, but it is also wide-
spread in granitoids and/or related quartz veins/pegmatites
forming disseminated Mo mineralization. Thirty Re–Os ages
were obtained for molybdenite samples from the Bohemian
Massif to provide constraints on the timing and duration of
mineralization event(s) within the framework of previously
published geochronological data for the host and/or associated
rocks. The obtained data for Sn–W–(Li) deposits in the
Erzgebirge metallogenetic province indicate the predomi-
nance of one and/or multiple short-time mineralization events
taking place between ∼319 and 323 Ma, with the exception of
the Krupka deposit associated with the Altenberg–Teplice cal-
dera where the data may suggest prolonged activity until
∼315 Ma. The ages of the Pb–Zn–(Au–Mo) Hůrky u
Rakovníka and Fe–Cu–As Obří důl mineralizations from the
exocontacts of the Čistá pluton and Krkonoše-Jizera Plutonic
Complex, respectively, provide evidence for synchronous em-
placement of the ore and the associated granitic rocks. In

contrast, the Padrť Fe–As–Mo mineralization postdates the
age of the associated Padrť granite. Disseminated Mo miner-
alization in Cadomian and Variscan granitoids and/or related
to quartz veins/pegmatites provides Re–Os ages that overlap
with the previously published geochronological data for the
host rocks, suggesting coeval evolution. Molybdenite samples
from the Sázava suite granites of the Central Bohemian
Plutonic Complex (CBPC) have resolvable younger ages than
their host granites, but similar to the age of spatially related Au
mineralization which is associated with the latest evolution of
the CBPC.
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Introduction

The Re–Os system (187Re → 187Os) represents a long-lived
isotopic systemwith direct application to the study of sulfides,
highly siderophile elements, and related ores (e.g., Stein et al.
2000; Morgan et al. 2002; Morelli et al. 2010). Molybdenite
(MoS2) is a very common mineral in many hydrothermal ore-
bearing systems (e.g., Au–Mo, Cu–Mo, Sn–W, and Pb–Zn).
Compared to other sulfides, it has high concentrations of Re
(typically parts per million levels) due to similar valence and
ionic radii as Mo, but contains no or very little common Os,
resulting in very high Re/Os (typically 10,000 or higher).
Therefore, it offers the possibility of its direct dating by the
Re–Os system through single analyses and calculation of a
model age (Selby and Creaser 2001; Stein et al. 2001;
Markey et al. 2007; Lawley and Selby 2012). In spite of
well-discussed problems including the possible heterogeneity
of the molybdenite separates or decoupling of 187Re and 187Os
after crystallization and during metamorphism (Stein et al.
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2001; Košler et al. 2003; Selby and Creaser 2004; Aleinikoff
et al. 2012), the reliability of Re–Os molybdenite ages has
been demonstratedmany times through a consistency between
the Re–Os and U–Pb ages for related rocks (e.g., Stein et al.
2001; Porter and Selby 2010; Xia et al. 2015).

The Bohemian Massif hosts a substantial number of Au,
Sn–W, U, and base metal deposits/mineralizations located in
different geotectonic positions. Some of them represent an
important resource of precious and/or strategic metals (e.g.,
Au or U), but most deposits and even whole mineralization
types lack precise dating, and thus the temporal evolution of
ore formation in the Bohemian Massif remains a matter of
debate. Such information is highly demanding as the
metallogenic and geodynamic evolution of the Bohemian
Massif shares many common features with the rest of the
Variscides (e.g., Massif Central in France and Iberian Belt in
Spain). Molybdenite is a mineral commonly accompanying
several deposits occurring in the Bohemian Massif, but it is
also widespread in the granitic intrusions of Cadomian (∼600–
550 Ma) and Variscan to post-Variscan (∼370–290 Ma) ages
in different geotectonic units (Drábek et al. 1993). In spite of
this fact, there are few molybdenite Re–Os ages available, and
most are reported from Au deposits (Žák et al. 1998a;
Zachariáš et al. 2001; Zachariáš and Stein 2001), with the
results sometimes being a matter of debate. Only a few data
were reported for other mineralization styles such as Sn–W
deposits (Romer et al. 2007) or Mo–Th–Nb–REE mineralized
marbles (Drábek and Stein 2015).

In this study, we report an extensive dataset of Re–Os ages
for 30 molybdenite samples from the Bohemian Massif, asso-
ciated with Sn–W, base metal (Fe–Cu–As, Pb–Zn, and Fe–
As), or Au mineralization, as well as data for disseminated
molybdenite occurring in granitic intrusions and/or related
quartz veins/pegmatites. These data are discussed with respect
to previously published geochronological data derived from
zircon (U–Pb), whole-rock and silicate minerals (Rb–Sr, K–
Ar, and Ar–Ar), or thorianite–monazite–uraninite–columbite
(Th–U–Pb) from associated and/or host rocks.

Geology of the Bohemian Massif

The Bohemian Massif is the easternmost remnant of the
Middle to Late Paleozoic Variscan belt in Europe usually
interpreted as a result of collision of the Laurussia-Baltica
and Gondwana continents with the intervening Avalonia and
Armorica microplates (Franke 1989; Matte 2001; Cháb et al.
2010) or just two-plate convergence of Laurussia and
Gondwana in the Paleozoic (Kroner and Romer 2013). The
massif itself represents a tectonic collage of continental ter-
ranes with different composit ional and temporal
tectonostratigraphic evolution, and its assembly during the
Variscan orogeny is a matter of debate (e.g., Franke 1989;

Matte et al. 1990; Schulmann et al. 2009, 2014; Kroner and
Romer 2013, 2014). Nevertheless, it has been traditionally
divided into four major tectonic units (Kosmatt 1927; Matte
et al. 1990; Schulmann et al. 2009): Teplá–Barrandia,
Saxothuringia, Moldanubia, and Moravo-Silesia (Fig. 1). All
these units have been intruded by voluminous granitic plutons
forming large batholiths and complexes such as the Central
Bohemian Plutonic Complex or the Moldanubian Batholith
(Fig. 1).

The Teplá–Barrandian Unit consists of Cadomian base-
ment (∼550–500 Ma) metamorphosed at low grade, intruded
by Cambro–Ordovician plutons, and finally covered by Late
Cambrian to Devonian sedimentary and volcanic rocks (e.g.,
Franke 1989; Zulauf et al. 1997; Sláma et al. 2008; Hajná et al.
2011). Later, the unit was intruded by a large number of Late
Devonian–Early Carboniferous (∼370–337 Ma) calc-alkaline
granitic plutons (e.g., Central Bohemian Plutonic Complex,
Štěnovice and Čistá plutons) along the Teplá–Barrandian–
Moldanubian boundary. The plutons have variable composi-
tions, suggesting different melt sources and processes during
magma emplacement (e.g., Janoušek et al. 1995, 2000, 2010;
Žák et al. 2011a, 2014a, b, and references therein).

The Saxothuringian Unit comprises Neoproterozoic
volcano-sedimentary sequences (e.g., Linnemann et al.
2008) intruded by the Lusatian Granitoid Complex of Late
Neoproterozoic to Cambrian age (∼590–500Ma; Kröner et al.
1994; Tichomirova 2002; Białek et al. 2014) and overlain by
Paleozoic volcano-sedimentary rocks (McCann 2008, and
references therein). During the Variscan orogeny, the high-
strain domain of the Saxothuringian Unit (Kroner and
Romer 2010), presented essentially in the Krušné
Hory/Erzgebirge, has undergone extensive (U)HP–HT meta-
morphism and reworking followed by the intrusion of
evolved, mildly to strongly peraluminous granitic bodies
hosting Sn–W mineralization in the Erzgebirge (e.g., Breiter
et al. 1999; Förster et al. 1999; Förster and Romer 2010;
Breiter 2012). The northeastern part of the Saxothuringian
Unit, represented by the low-strain domain (Kroner and
Romer 2010) in the Lusatia/West Sudetes area, was intruded
by Early Carboniferous (∼330–305 Ma) granitic plutons such
as the peraluminous Krkonoše-Jizera Plutonic Complex
(Slaby and Martin 2008; Žák et al. 2013; Kryza et al. 2014)
or the Königshain granite (Förster et al. 2012).

The Moldanubian Unit is a middle-lower crustal unit with
variable metamorphic grades recorded by LP/HT paragneiss
to (U)HP–HT eclogite-granulite and peridotite (e.g., Fiala
1995; Vrána et al. 1995; Medaris et al. 2005; Faryad 2009;
Lexa et al. 2011). Twomajor suites of granitic rocks ranging in
age from ∼340 to 300 Ma can be distinguished in the
Moldanubian Unit: (1) I/S-type to peraluminous S-type gran-
itoids forming together the composite and large Moldanubian
Batholith (e.g., Finger et al. 1997; Breiter 2010; Žák et al.
2011b) and (2) ul trapotassic grani toids/syeni tes
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(Bdurbachites^) such as the Třebíč and/or Tábor pluton (Holub
1997) representing the melts derived from a metasomatized
and heterogeneous mantle source mixed with anatectic melts
(e.g., Janoušek et al. 2000).

The Moravo-Silesian (Brunovistulian) unit consists of a
Cadomian basement (∼600–570 Ma) composed of metamor-
phosed volcano-sedimentary rocks (schist and phyllite), I-type
granitoids forming the Brno and Thaya/Dyje Batholiths,
migmatites, metabasites, and gneisses (Dudek 1980; Finger
et al. 2000; Kröner et al. 2000; Linnemann et al. 2008).
During ∼345–340 Ma, an extensive sequence of flysch sedi-
ments was deposited on the eastern side of the Brunovistulian
Unit (Maluski et al. 1995; Schneider et al. 2006).

Molybdenite occurrences, their relationship to ore
mineralizations, and studied samples

Molybdenite is a widespread mineral associated with different
types of rocks and mineralization styles occurring in the
Bohemian Massif (e.g., Drábek et al. 1993; Pašava et al.
2015, 2016). Four different molybdenite groups can be distin-
guished with respect to mineralization type, host rock, trace

element chemistry, and associated ore minerals: (1) molybde-
nite associated with Sn/W-bearing greisenized granite and re-
lated quartz veins; (2) molybdenite related to Au mineraliza-
tion; (3) molybdenite from base metal mineralization; and (4)
disseminated molybdenite in granitoids and/or related quartz
and pegmatite veins. Altogether, 30 molybdenite samples
from these groups were sampled and analyzed for their Re–
Os ages. Their location is shown in Fig. 1.

The Sn–W–(Li) deposits of greisen type represented by
cassiterite, wolframite, and zinnwaldite are related to strongly
fractionated granites of S and A types within the
Saxothuringian Unit along the Czech–German boundary
(Erzgebirge). Several deposits such as Cínovec/Zinnwald,
Krupka, Krásno, and/or Sadisdorf belong to the Krušné
Hory/Erzgebirge metallogenetic province (Hösel et al. 1995,
1997). In these deposits, molybdenite is a trace mineral within
greisens and/or related quartz veins where it forms larger
grains (e.g., at Krupka up to 1 cm in diameter) or, more com-
monly, small (<2 mm) grains dispersed in the greisen matrix.
The trace element chemistry reveals that greisen-related mo-
lybdenite has a unique chemistry with very low Re contents
(0.4 ppm, on average) paralleled by high Cu, As, and Zn
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(Pašava et al. 2016). The studied molybdenite samples form
up to 1 cm large grains located in quartz veins in granites and
greisens (Krupka and Cínovec, respectively) or dispersed in
greisen (Krásno, Jáchymov, and Sadisdorf).

The Au mineralizations of the Bohemian Massif are pre-
dominantly located within quartz veins associated with gran-
itoids of the Central Bohemian Plutonic Complex (Fig. 1)
forming a large gold district which includes important de-
posits such as Mokrsko-Čelina, Jílové, Kasejovice, or
Petráčkova hora (Morávek 1996; Zachariáš et al. 2001,
2013, 2014). Other mineralization styles include individual
localities of Au-bearing quartz veins in the metamorphic rocks
of the Moldanubian Unit (e.g., Kašperské Hory: Strnad et al.
2012; Roudný: Zachariáš et al. 2009) and polymetallic Zn–
Pb–Cu–Au (Zlaté Hory) and Fe–Au–Mo (Vidly) mineraliza-
tions in the Moravo-Silesian Unit. With the exception of the
Vidly deposit, molybdenite is restricted to Au-bearing quartz
veins at several localities related to the Central Bohemian
Plutonic Complex and Kašperské Hory where it forms an
accessory, mostly finely disseminated (<1 mm) mineral to-
gether with other sulfides such as pyrite, pyrrhotite, and arse-
nopyrite. The analyzed sample of molybdenite was collected
at the Mokrsko-West deposit (Josef adit) at the contact of a
barren quartz vein with surrounding granodiorite.

Several base metal (Fe–Cu–As–Zn) mineralizations locat-
ed in the Teplá–Barrandian (Padrť, Hůrky u Rakovníka, and
Všestary), Moldanubian (Ransko), and Saxothuringian (Obří
důl) Units are accompanied bymolybdenite (Fig. 1). At Padrť,
molybdenite occurs as isolated flakes (up to 5 mm) within
quartz veins and host quartzite together with abundant arseno-
pyrite (Fe–As–Mo mineralization; Žák et al. 2014a, b). The
Hůrky Pb–Zn–(Au–Mo) mineralization (sphalerite, galenite,
and molybdenite) is developed within quartz veins associated
with fenitized (alkaline metasomatic) zones of theČistá grano-
diorite (Klomínský 1962; Žáček et al. 2008). The studied fine-
grained (<1 mm) molybdenite grains were separated from
quartz. The Obří důl base metal deposit is formed by
pyroxene-garnet skarn hosting polymetallic mineralization
represented by pyrrhotite, chalcopyrite, and arsenopyrite
(Fe–Cu–As association) with minor pyrite, sphalerite, molyb-
denite, cassiterite, scheelite, and other ore minerals (Pašava
et al. 2016). The molybdenite for this study was separated
from garnet-rich skarn where it forms 2- to 6-mm crystals
dispersed in the matrix. Molybdenite from Všestary was ob-
tained from the deep Vy-1 borehole penetrating the
Cretaceous Basin. At level 634.5 m, very abundant molybde-
nite associated with pyrite forms crystals and spherical aggre-
gates with dimensions up to 1 mm dispersed in quartz veins
cross-cutting felsic porphyries (Malkovský et al. 1974).

Disseminated molybdenite mineralization is widespread in
the granitoids of Cadomian (e.g., Brno and Dyje Batholiths)
and Variscan (e.g., Central Bohemian Plutonic Complex or
Moldanubian Batholith) ages and/or related quartz vein and

pegmatites (Fig. 1). In granitoids, the sampled molybdenite
forms grains, aggregates up to 8 mm in size mostly filling
cracks, or fissures, whereas quartz veins and pegmatite from
Dolní Bory contain disseminated molybdenite within the ma-
trix or enclosed in quartz. The Skalsko pegmatite veins repre-
sent an anomalous type of molybdenite-rich pegmatite with
average contents of about 0.19 wt% Mo (Morávek et al.
2010). Molybdenite from the Dolní Rožínka pegmatite (bar-
ren type) was sampled underground in the Rožná uranium
mine.

Methods

Larger (>5 mm) molybdenite grains were separated from the
matrix by rock crushing and handpicking. However, about
half of the samples are represented by fine-grained
molybdenite, and their separates were obtained using the
protocol of Lawley and Selby (2012) as follows. Larger pieces
(several grams) of quartz containing molybdenite were placed
in a polyethylene beaker and up to 15 ml of concentrated HF
(Romil UpA)was added. Themixture was stirred occasionally
and left for 48 h to reach complete quartz dissolution. The
remaining molybdenite fraction was rinsed several times by
deionized water and finally dried at room temperature. The
final separate was checked optically and cleaned manually
where necessary.

The rhenium and osmium concentrations and isotopic de-
terminations of molybdenite were obtained in two different
laboratories: the joint Re–Os geochronology lab of the
Institute of Geology of the Czech Academy of Sciences and
the Czech Geological Survey (GLU/CGS lab) and the Crustal
Re–Os geochronology laboratory of the Canadian Centre for
Isotopic Microanalysis at the University of Alberta (UofA
lab).

The GLU/CGS lab utilizes the Re spike–Os normal method
(Selby and Creaser 2001) following the analytical protocol
described in detail previously (Kohút et al. 2013). In brief,
an aliquot of molybdenite separate was weighted into a
Carius tube, mixed with the 185Re spike–Os normal solution,
and decomposed using 2 ml of concentrated HCl and 4 ml
concentrated HNO3 at 220 °C for 2 days (Shirey and Walker
1995). Osmium was extracted from reversed aqua regia by a
mixture of CHCl3 and HBr (Cohen and Waters 1996), and the
final fraction was purified by microdistillation (Birck et al.
1997). Rhenium was separated by anion exchange chroma-
tography using AG 1×8 resin (Eichrom) and its isotopic com-
position was determined by sector field inductively coupled
plasma mass spectrometry (SF-ICP-MS) using the Element 2
(Thermo) instrument at the Institute of Geology of the Czech
Academy of Sciences or the multi-collector ICP MS Neptune
at the Czech Geological Survey (see Žák et al. 2014a, b for
details on the latter method). In-run precision of rhenium
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isotopic ratio measurements was always better than ±0.4 %
(2σ). Osmium was loaded onto Pt filaments and its isotopic
composition was obtained by negative thermal ionization
spectrometry (Creaser et al. 1991; Völkening et al. 1991)
using the Finnigan MAT 262 at the Czech Geological
Survey. Internal precision of the analyses was always better
than ±0.1 % (2σm), whereas external precision was monitored
on the UMCP standard solution (Johnson-Matthey), yielding
187Os/188Os value of 0.11380 ± 20 (2σ). The accuracy of the
whole analytical protocol was checked by repeated analyses
(n = 3) of Henderson mine molybdenite reference material
(NIST RM 8599), which yielded an average age of 27.6 ±
0.2Ma, similar to the reference values ofMarkey et al. (2007).

At the UofA lab, the 187Re and 187Os concentrations in
molybdenite were determined by isotope dilution mass spec-
trometry using Carius tube, solvent extraction, anion chroma-
tography, and negative thermal ionization mass spectrometry
techniques (Selby and Creaser 2004). A mixed double spike
containing known amounts of isotopically enriched 185Re,
190Os, and 188Os analysis is used (Markey et al. 2007).
Isotopic analysis used a ThermoScientific Triton mass spec-
trometer with Faraday collectors. Total blanks for Re and Os
are less than <3 and 2 pg, respectively, which are insignificant
for the Re and Os concentrations in molybdenite. The age
determined for NIST RM 8599 during the course of this work
(November 2015) was 27.73 ± 0.13 Ma, in accord with the
recommended age.

Results

The Re–Os concentrations and model ages of the studied mo-
lybdenite samples are summarized in Table 1.

With only two exceptions (Krupka-Knetl and Krásno), mo-
lybdenite related to Sn–W mineralization is characterized by
very low Re contents, below 1 ppm, in agreement with in situ
LA-ICP-MS results published recently by Pašava et al. (2016)
and, consequently, low 187Os values. In contrast, the Krupka-
Knetl and Krásno molybdenite samples contain ∼9.9 and
3.06 ppmRe, respectively. Nevertheless, all molybdenite sam-
ples related to Sn–W mineralization display similar Re–Os
ages in the narrow interval between ∼315 and ∼323 Ma, with
the youngest age found at the Krupka deposit (∼315–319Ma).

Two molybdenite samples from the Mokrsko-West Au de-
posit yield undistinguishable Re–Os ages of 342.6 ± 2.2 and
343.6 ± 2.2 Ma, similar to the previously published Re–Os
age for molybdenite from the Mokrsko-East Au deposit
(342.9 ± 1.4 Ma; Zachariáš and Stein 2001).

Molybdenite related to base metal mineralization is charac-
terized by elevated to very high Re contents (up to 602 ppm at
Padrť; Žák et al. 2014a, b), and the ages vary from 312.7 ±
1.4 Ma for the Obří důl Fe–Cu–As skarn mineralization to

376.9 ± 2.4 Ma in molybdenite from the Hůrky u Rakovníka
Pb–Zn–Mo–Au deposit within the Čistá pluton.

Disseminated molybdenite mineralization related to granit-
oids and/or associated quartz veins and pegmatites shows
highly variable ages reflecting the age of the host rock. The
molybdenite samples from Cadomian granitoids of the
Brunovistulian Unit at Černá Hora (Brno Batholith) and
Derflice (Dyje Batholith) yield the oldest ages of 596.9 ± 2.7
and 583.8 ± 3.7 Ma, respectively. In comparison, molybdenite
related to Variscan and/or post-Variscan granitoids returned
ages in the range between 345.9 ± 1.5 and 341.3 ± 2.2 Ma
for the Central Bohemian Plutonic Complex, 320.4 ± 1.5 and
317.3 ± 1.4 Ma for the Moldanubian Batholith, and 303.2 ±
1.9 and 297.7 ± 2.1 Ma for the youngest Žulová pluton. A
single molybdenite sample from the Nasavrky/Železné Hory
Plutonic Complex yielded an age of 341.5 ± 2.2 Ma.

Twomolybdenite samples from pegmatites occurring close
to each other within the metamorphic rocks of the Moravian
part of the Moldanubian Unit (Dolní Bory and Rožná) yield
undistinguishable ages of 335.4 ± 1.6 and 333.7 ± 1.5 Ma,
respectively.

Discussion

Constraints on the age of Sn–W mineralization

The medium-sized composite S-type plutons with greisen-
type Sn–W deposits in cupolas of the youngest sub-
intrusions appear in the western (Krásno deposit in the
S l a vkov ský l e a a r e a ) and cen t r a l (Geye r a nd
Ehrenfriedersdorf deposits in the German Erzgebirge) parts
of the province, accompanied by small intrusions of A-type
granites disseminated throughout the whole Erzgebirge. The
style of mineralization varies from pervasive greisenization
(Cínovec and Sadisdorf deposits) through magmatic-
hydrothermal quartz (±feldspar) veins (Krupka) to pervasive
hydrothermal alteration of rhyolite in the exocontact
(Altenberg).

In spite of numerous studies, the exact timing of the Sn–W
mineralization in the Erzgebirge metallogenetic province has
been a matter of debate for a long time (e.g., Kempe 2003;
Kempe et al. 2004; Romer et al. 2007, 2010, and others). This
is especially due to a complex evolution of these granite- and
volcanic-related mineralized systems including multiple mag-
matic pulses with different melt sources, large-scale hydro-
thermal overprint, metamorphic and tectonic effects, and spe-
cific chemical conditions. This results in the disturbance of
typically used geochronological systems such as Rb–Sr, U–
Pb, or K–Ar/Ar–Ar. For example, there are virtually no reli-
able zircon U–Pb data due to extremely high U contents (up to
∼15wt%UO2; Förster et al. 1999; Breiter et al. 2006) detected
in zircon resulting in its metamict nature, whereas U–Pb
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dating of monazite is complicated due to its possibly multiple
overprint by several magmatic and metamorphic events.
Consequently, the reported ages for Sn–W mineralization
and related granites/volcanic rocks in the Erzgebirge so far
span an age range from ∼290 to ∼330 Ma (Gerstenberger
et al. 1995; Förster 1998; Kempe et al. 1999, 2004; Romer
et al. 2007, and references therein). On the other hand, as
noted by Romer et al. (2007), the most reliable conventional
U–Pb analyses of uraninite, monazite, and apatite paralleled
by two Re–Os molybdenite ages from Altenberg yield a more
narrow age interval between ∼313 and 331 Ma. Chemical
composition (peak concentrations of Ag, As, Bi, Cu, Nb, Pb,
Te, Zn, and W) and the presence of nano- to microscale inclu-
sions (including native Bi and locally accompanied by a Pb–
Bi–Cu phase, bismuthinite, galena, wolframite, and scheelite)
in molybdenite from greisen-type occurrences reflect the close
relationship to Sn–Wmineralizing events (Pašava et al. 2016).
Our new Re–Os data for molybdenite samples from four dif-
ferent Sn–W deposits clearly show that the mineralization
events on the western (323.3 ± 1.6 Ma at #5 Krásno and
319.0 ± 1.7 Ma at #6 Jáchymov) and eastern (322.4 ± 5.5 Ma
at #1 Cínovec and 321.4 ± 3.8 Ma at #2 Sadisdorf) sides of the
Erzgebirge are contemporaneous. This indicates the predom-
inance of one and/or multiple short-time Sn–Wmineralization
event(s) in the Erzgebirge metallogenetic province, which oc-
curred around ∼320 Ma. At the Krásno and Jáchymov de-
posits, this age is identical to the age of related granites of
the Eibenstock–Nejdek pluton (Table 1), indicating the close
temporal relationship. Similarly, the Re–Os molybdenite ages
determined at Cínovec and Sadisdorf overlap with the
Altenberg–Teplice caldera rocks represented by the Mikulov
Rhyolitic Ignimbrite, Altenberg greisen and related quartz
veins, and the Teplický vrch granite porphyry cross-cutting
Altenberg–Teplice rocks (Table 1). Therefore, our new data
demonstrate that Sn–W mineralization in the Erzebirge is
closely related to the granites and does not postdate granitic
magmatism. Nevertheless, resolvable younger Re–Os ages
determined for molybdenite from the Krupka deposit (#4 with
315.3 ± 2.3 Ma and #3 with 317.7 ± 2.0 Ma/319.2 ± 2.0 Ma)
may indicate a prolonged mineralizing activity at the
Altenberg–Teplice caldera until ∼315 Ma.

Relationship between molybdenite and base metal
mineralization

The Hůrky u Rakovníka Pb–Zn–(Au–Mo) mineralization
is related to fenitized parts of the Čistá granodiorite pluton
with a reported Pb–Pb zircon age of 371 Ma, with an over-
optimistically small uncertainty of only 1 Ma (Venera et al.
2000). The obtained molybdenite Re–Os age of 376.9
± 2.4 Ma for molybdenite (#7) is slightly older than the
zircon age, but within the range of Ar–Ar ages on musco-
vite and whole rock (∼375–380 Ma) from the nearby Tis

granite interpreted as Early Variscan tectonothermal over-
print (Dallmeyer and Urban 1994). Together, these ages
indicate a coeval age of mineralization and host rocks.

The Obří důl Fe–Cu–As mineralization is associated
with skarn in the exocontact of the composite granitic
Krkonoše-Jizera Plutonic Complex which has been recent-
ly dated by the high-precision CA-ID-TIMS U–Pb zircon
method, providing identical ages of 312.5 ± 0.3 and 312.2
± 0.3 Ma for two different granite facies (Kryza et al.
2014). Our Re–Os age of molybdenite from the Obří důl
(#10) skarn base metal mineralization of 312.7 ± 1.4 Ma is
in excellent agreement with the granite U–Pb zircon ages,
providing evidence for the simultaneous formation of
skarn with its base metal mineralization and the
Krkonoše-Jizera Plutonic Complex.

At Padrť (#8), the age of Fe–As–Mo base metal min-
eralization obtained from the Re–Os age for molybde-
nite (337.2 ± 2.2 and 339.8 ± 2.5 Ma) postdates the age
of the associated Padrť granite (Table 1), which is in
agreement with the low-temperature character (∼300 °C)
of quartz related to molybdenite formation (Žák et al.
2014a, b).

The position of the Vy-1 borehole (Všestary #9 molybde-
nite) with respect to the tectonic units of the BohemianMassif
is hard to constrain due to extensive cover by the Czech
Cretaceous Basin. Nevertheless, the obtained Re–Os age of
335.3 ± 1.5 Ma implies a Variscan age of the molybdenite
mineralization and perhaps also of the hosting volcano-
sedimentary sequence.

Temporal relationship between molybdenite, related
granitoids, and Au mineralization

Cadomian intrusions

Two Cadomian batholiths on the eastern side of the Bohemian
Massif host molybdenite mineralization (Fig. 1). The Brno
Batholith is formed by the Western and Eastern Granitoid
Complexes separated by the Central Metabasite Zone (e.g.,
Leichmann and Höck 2008). Geochronological data obtained
so far indicate an older age of the Eastern Complex (599
± 1 Ma; Fritz et al. 1996) in comparison to the Western
Complex (∼579–588 Ma; Van Breemen et al. 1982; Fritz
et al. 1996). Our molybdenite from Černá Hora (#12) in the
Eastern Complex yields a Re–Os age of 596.9 ± 2.7 Ma. The
Dyje/Thaya Batholith has a poorly constrained age, with data
for (meta)granitoids spanning a wide range between ∼560 and
∼596 Ma (Table 1). A single Re–Os age derived from molyb-
denite enclosed in granodiorite at the locality Derflice (#13)
shows an intermediate age (583.8 ± 3.7 Ma), and therefore,
further chronological interpretations are difficult without ad-
ditional data.
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Variscan and post-Variscan intrusions

The Central Bohemian Plutonic Complex forms a large body
along the boundary between the Teplá-Barrandian and
Moldanubian Units (Fig. 1). It consists of three major mag-
matic suites: (1) Sázava suite with an age of 354.1 ± 3.5 Ma
(Janoušek et al. 2004); (2) Blatná suite yielding ages of 346.1
± 1.6 and 346.7 ± 1.6 Ma (Janoušek et al. 2010); and (3)
Čertovo břemeno (durbachite) suite with an age of 343
± 6 Ma (Holub et al. 1997). Two molybdenite samples (#14
Vrančice and #15 Příbram) from the Blatná suite granodiorites
re tu rn ages of 345 .9 ± 1 .5 and 344 .9 ± 1 .6 Ma ,
undistinguishable fromU–Pb zircon ages and suggesting con-
temporaneous emplacement of molybdenite mineralization
and host granitoids. On the other hand, two molybdenite sam-
ples related to the Sázava suite (#16 Kamenný Přívoz and #17
Skalsko) show almost identical Re–Os ages of 341.5 ± 2.2 and
341.3 ± 2.2 Ma, respectively, resolvably younger than the host
granitoids. However, they are similar to the Re–Os ages of
molybdenite from Au mineralizations related to the Central
Bohemian Plutonic Complex (#11 Mokrsko-West, 342.6
± 2.2 and 343.6 ± 2.2 Ma; this study; Bělčice, Mokrsko-East,
and Petráčkova Hora, 339–346 Ma; Zachariáš et al. 2001;
Zachariáš and Stein 2001). Taking these molybdenite ages
together, they overlap with the reported Ar–Ar cooling ages
of the Central Bohemian Plutonic Complex (336–343 Ma;
Matte et al. 1990; Dörr et al. 1998; Žák et al. 1998b) and the
Jílové gold deposit (339.0 ± 1.5 Ma; Zachariáš et al. 2013).
This implies a close relationship of molybdenite and Au min-
eralization with the latest evolutionary stages of the Central
Bohemian Plutonic Complex. This is also supported by the
chemical composition of molybdenite (highest average Au
values—24 ppm in molybdenite from different types of min-
eralization in the Bohemian Massif) and distribution of
microinclusions in molybdenite (native Au, Au(Ag), Bi–
Au–Te phase, Bi–Te–Ag phase, Ag–Se phase, and Ag–Te
phase; Pašava et al. 2016).

Peraluminous (S-type) granites forming two major granite
plutons—Weinsberg and Eisgarn—predominantly compose
the Moldanubian Batholith. The age of both plutons overlap
in the range of ∼320–330 Ma (Table 1). Molybdenite from
Hůrky (#19) and Pohled (#20) in the Eisgarn granite yield
Re–Os ages of 320.4 ± 1.5 and 317.3 ± 1.4 Ma, respectively,
suggesting molybdenite crystallization coeval with the host
granites. In addition to the predominant Eisgarn and
Weinsberg plutons, several small intrusions accompanying
these two types yield much younger ages down to ∼316 Ma
(e.g., Mauthausen type; Table 1), and some of them are char-
acterized by high Sr contents and common molybdenite min-
eralization (Breiter 2010). The studied molybdenite samples
from Kozí Hora (#21) with ages of 317.2 ± 2.2 and 314.8
± 2.3 Ma occur within quartz veins related to greisenized parts
of the Mauthausen-type granitoids, and the Re–Os ages are in

excellent agreement with the U–Pb zircon ages. However, it
should be kept in mind that molybdenite from Kozí Hora is
characterized by very low Re contents (∼0.5 ppm) and the
absence of determined common Os for this particular sample
may possibly alter the accuracy of the obtained age (e.g.,
Zimmerman and Stein 2010). The close relationship between
greisenization and molybdenite mineralization at Kozí Hora is
also evidenced by the anomalous molybdenite chemistry with
As (up to 505 ppm), W (up to 499 ppm), Cu (up to 469 ppm),
Zn (up to 482 ppm), and Sn (up to 53 ppm; Pašava et al. 2016).

The Žulová pluton belongs to the so-called Sudetic
Granitic Belt (Finger et al. 2009) in the Saxothuringian Unit,
which consists of several granitic massifs (Krkonoše-Jizera,
Strzegom-Sobótka, Strzelin, Klodzsko-Zlaty Stok, and
Žulová) intruded between ∼312 and 283 Ma (U–Pb zircon:
Turniak and Bröcker 2002; Turniak et al. 2005a, b; Oberc-
Dziedzic et al. 2013; Kryza et al. 2014; Laurent et al. 2014;
Re–Os molybdenite: Mikulski and Stein 2012). The granites
of the Žulová pluton have a prolonged magmatic history from
melting to emplacement at ∼300–292 Ma (Laurent et al.
2014). This would be in agreement with three Re–Os ages
obtained for molybdenite from the Žulová granodiorite (#22
and #23) spanning the range from ∼298 to ∼303 Ma.

The age of the Železné Hory/Nasavrky pluton is poorly
constrained by a whole-rock Rb–Sr age of ∼320 Ma
(Scharbert 1987). However, the similar I-type calc-alkaline
composition may indicate its close connection to the Central
Bohemian Plutonic Complex (Cháb et al. 2010). The molyb-
denite from Skuteč (#18) located in the eastern periphery of
the pluton returns a Re–Os age of 340.5 ± 2.3 Ma. This is
much older than the previous Rb–Sr age, but identical to the
nearby (ultra)basic Ransko intrusion with a Re–Os age of
341.5 ± 7.9 Ma (Ackerman et al. 2013), suggesting possibly
contemporaneous mafic–felsic magmatism in this area.

Disseminated molybdenite mineralization related
to pegmatites within the Moldanubian Unit

The Moldanubian Unit of the Bohemian Massif hosts abun-
dant pegmatite bodies with common rare metal mineraliza-
tions (e.g., Novák and Povondra 1995; Novák et al. 2012).
Their age was previously investigated by U–Pb dating of
columbite/tantalite (Melleton et al. 2012) and monazite
(Novák et al. 1998). Considering both studies, two ages of
pegmatite emplacement can be distinguished (∼333 ± 3 and
∼325 ± 4 Ma), with the former event being predominant and
related to HT–HP melting events during exhumation of the
lower crust. Two pegmatites fromDolní Bory (#24) and Dolní
Rožínka (#25), which belong to the Strážek pegmatite field,
yield undistinguishable Re–Os ages of 335.4 ± 1.6 and 333.7
± 1.5Ma, providing evidence for their relationship to the older
pegmatite event.
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Conclusions

The Bohemian Massif represents a complex terrane collage
assembled during the Variscan orogeny and hosting a variety
of ore deposits (e.g., Sn–W, Au, U, and base metals).
Molybdenite is a common mineral accompanying some of
these mineralization styles, but it is also widespread in the
granitic intrusions and/or related quartz veins/pegmatites oc-
curring throughout all geotectonic units. The Re–Os geochro-
nology of molybdenite from four Sn–W deposits in the
Erzgebirge metallogenetic province (Krásno, Jáchymov,
Cínovec, and Sadisdorf) yields a narrow age interval of 319–
323 Ma, indicating one and/or multiple short-time mineraliza-
tion events closely associated with the felsic host rocks.
However, resolvable younger Re–Os ages (315–319 Ma) of
molybdenite from the Krupka Sn–W deposit within the
Altenberg–Teplice caldera may indicate a prolonged mineral-
ization activity until ∼315 Ma. The molybdenite Re–Os ages
for base metal deposits developed at the fenitized parts of the
Čistá pluton (Hůrky) and skarn in the exocontact of the gran-
itoids of the Krkonoše-Jizera Plutonic Complex (Obří důl)
suggest coeval age of mineralization and associated granitic
rocks. On the other hand, the base metal mineralization at
Padrť postdates the age of the associated Padrť granite. Most
Re–Os ages for disseminated Mo mineralizations in the gra-
nitic bodies and pegmatites of Cadomian and Variscan age
overlap with the previously published U–Pb and Ar–Ar geo-
chronological data for the host rocks, which indicates a con-
temporaneous evolution. However, molybdenite related to the
Sázava suite granites of the Central Bohemian Plutonic
Complex (CBPC) returns resolvable younger ages than the
host granites, but similar to previously obtained Re–Os ages
for molybdenite from spatially related Au mineralizations.
This may imply a close relationship to the latest evolution
stages of the CBPC.
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