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Abstract The Lac Herbin deposit consists of a network of
mineralized, parallel steep-reverse faults within the
synvolcanic Bourlamaque granodiorite batholith at Val-d’Or
in the Archean Abitibi greenstone belt. There are two related
quartz-tourmaline-carbonate fault-fill vein sets in the faults,
which consist of subvertical fault-fill veins associated with
subhorizontal veins. The paragenetic sequence is character-
ized by a main vein filling ore stage including quartz, tourma-
line, carbonate, and pyrite-hosted gold, chalcopyrite, tellu-
rides, pyrrhotite, and cubanite inclusions. Most of the gold is
located in fractures in deformed pyrite and quartz in equilib-
rium with chalcopyrite and carbonates, with local pyrrhotite,
sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography
and microthermometry on quartz from the main vein filling
ore stage reveal the presence of three unrelated fluid inclusion
types: (1) gold-bearing aqueous-carbonic inclusions arranged
in three-dimensional intragranular clusters in quartz crystals
responsible for the main vein filling stage, (2) barren high-
temperature, aqueous, moderately saline inclusions observed
in healed fractures, postdating the aqueous-carbonic inclu-
sions, and considered as a remobilizing agent of earlier pre-
cipitated gold in late fractures, and (3) barren low-

temperature, aqueous, high saline inclusions in healed frac-
tures, similar to the crustal brines reported throughout the
Canadian Shield and considered to be unrelated to the gold
mineralization. At the Lac Herbin deposit, the aqueous-
carbonic inclusions are interpreted to have formed first and
to represent the gold-bearing fluid, which were generated con-
temporaneous with regional greenschist facies metamor-
phism. In contrast, the high-temperature aqueous fluid dis-
solved gold from the main vein filling ore stage transported
and reprecipitated it in late fractures during a subsequent local
thermalevent.

Introduction

The Superior craton in Canada contains 39 % of the global
Archean lode gold endowment, if paleoplacers are not consid-
ered (Mercier-Langevin et al. 2012). Most of the gold comes
from the Archean Abitibi greenstone belt (e.g., Robert et al.
2005; Dubé and Gosselin 2007; Lydon 2007), which is the
largest and best-preserved supracrustal sequence in the
Superior craton, Canada (Card 1990).

The Val-d’Or mining district is located in the southeastern
Abitibi subprovince and hosts classic examples of orogenic
gold deposits along main regional faults and in subsidiary
second- and third-order faults (Fig. 1). Two gold mineraliza-
tion events are reported in the Val-d’Or mining district, one
predating 2692–2686 Ma, and one younger than 2682 ± 2 Ma
(e.g., Feng et al. 1992; Kerrich and King 1993; Robert et al.
2005). The Val-d’Or district is also the site for some of the
pioneering investigations on fluids associated with orogenic
gold deposits. Fluid inclusion studies were typically focused
on auriferous veins from gold deposits hosted by volcanic
rocks (Robert and Kelly 1987; Chi et al. 1992; Robert et al.
1995; Firdaous 1995; Boullier et al. 1998; Olivo and
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Williams-Jones 2002; Neumayr and Hagemann 2002; Olivo
et al. 2006; Neumayr et al. 2007). These investigations report-
ed CO2-bearing, and low- to high-temperature aqueous fluids
with different salinities. The CO2-bearing, low-salinity fluid,
within a temperature range of 250–350 °C is generally con-
sidered as the ore-forming fluid. Nevertheless, open questions
remain about the main processes responsible for ore deposi-
tion, such as fluid immiscibility vs fluid mixing (e.g., Sigma
mine: Robert et al. 1995 vs Olivo et al. 2006), and the rela-
tionship of high-temperature, saline aqueous fluids with the
ore forming events (e.g., Boullier et al. 1998; Olivo et al. 2006
vs Neumayr et al. 2007). In addition, the timing of gold intro-
duction with respect to the succession of thermal events re-
mains a matter of debate, partly related to the lack of evidence
for primary and pseudo-secondary fluid inclusion characteris-
tics in the previous studies.

We carried out the first fluid inclusion study on a gold vein
system at the Lac Herbin deposit in the Val-d’Or mining dis-
trict (Fig. 1). In contrast to most of the previous fluid inclusion
studies, which mainly focused on veins hosted by volcanic
rocks, the mineralized veins are hosted by the granodioritic
Bourlamaque batholith. In this study, we report about a de-
tailed paragenetic sequence of ore-forming hydrothermal
events including eight new tellurides species for the Val-
d’Or mining district and combine detailed petrography,

microthermometry, and Raman spectroscopy of fluid inclu-
sions hosted in quartz, to characterize fluid compositions,
and pressure and temperature conditions. We use the mineral
paragenesis and fluid inclusion data to constrain the timing
and conditions of each hydrothermal fluid event and their
respective link with the ore mineralogy. Finally, we offer a
new interpretation for the high-temperature, moderate salinity
aqueous fluid recognized previously, and discuss its role as a
remobilizing agent of earlier precipitated gold into late
fractures.

Regional geological setting and gold mineralization

The Archean Abitibi subprovince constitutes a segment of a
broad volcanic arc constructed during three major periods of
volcanism at 2730–2725, 2718–2714, and 2705–2700 Ma
(Corfu et al. 1989; Chown et al. 2002). Each volcanic cycle
has a basal komatiitic unit, overlain by tholeiitic basalts, calc-
alkaline, and locally alkaline felsic volcanic rocks, and asso-
ciated metasedimentary rocks (Dimroth et al. 1982; Jensen
and Langford 1985; Ayer et al. 2002). North-south shortening
produced thrusts and folds between 2700 and 2692 Ma,
resulting in the accretion of tectono-magmatic zones along
the regional crustal-scale Destor-Porcupine-Manneville, and
the Cadillac-Larder-Lake dextral strike-slip fault zones
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Fig. 1 Geology of the Val-d’Or mining district, including location of
first-, second-, and third-order faults, the Cadillac-Larder-Lake fault zone
(CLLFZ), and selected gold deposits. Inset shows the location of the
transcrustal fault zones in the Abitibi province, the Malartic Composite

Block (MCB), and the Black River Group (BRG). DPMFZ Destor-
Porcupine-Manneville fault zone. Modified after Neumayr and
Hagemann (2002)
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(Hubert et al. 1984; Ludden et al. 1986; Chown et al. 2002;
Daigneault et al. 2002; Fig. 1). Igneous activity started at ca.
2700 Ma with the emplacement of synvolcanic tonalite-
trondhjemite-granodiorite series, followed by syntectonic
calc-alkaline tonalite-granodiorite-monzodiorite and syn- to
late-tectonic subalkaline monzogranite at ca. 2700–2680 and
ca. 2690–2670 Ma, respectively (Corfu et al. 1989; Rive et al.
1990; Feng and Kerrich 1992; Feng et al. 1992; Chown et al.
2002). The Abitibi belt was metamorphosed to the greenschist
facies at ca. 2690–2670 Ma (Jolly 1978; Dimroth et al. 1983;
Ludden et al. 1986; Card 1990; Wong et al. 1991) along with
three major phases of deformation (i.e., D1 to D3, see details
in Robert 1989, 1990; Desrochers and Hubert 1996; Robert
and Poulsen 2001). A post-tectonic, S-type, garnet-muscovite
granite was emplaced at ca. 2645–2611 Ma and resulted in
contact metamorphism (Feng and Kerrich 1991; Kerrich and
King 1993; Chown et al. 2002).

The Val-d’Or mining district is located in the eastern seg-
ment of the Southern Volcanic Zone of the Archean Abitibi
subprovince along the Cadillac-Larder-Lake fault zone, at the
boundary with the Pontiac subprovince (CLLFZ in Fig. 1). This
fault zone dips to the north and is a reverse shear zone spatially
associated with numerous gold deposits and occurrences
(Robert 1989, 1994; Robert et al. 2005). The host rocks of the
Val-d’Or mining district belong to the volcano-sedimentary
sequences of the Malartic Group and the Louvicourt Group,
intruded by calc-alkaline plutonic rocks (Fig. 1). The Malartic
Group comprises mainly komatiitic and tholeiitic basalt flows
and sills, with minor sedimentary rocks, which are interpreted
as an oceanic floor in an extensional environment related to
mantle plumes, whereas the Louvicourt Group is mainly
composed of mafic to felsic volcanic rocks that formed in a
subduction-related arc setting (Desrochers et al. 1993;
Daigneault et al. 2002; Scott et al. 2002).

Two major auriferous events have been recognized in the
Val-d’Or mining district on the basis of structural and hydro-
thermal features (Robert 1994), supported by crosscutting re-
lationships and isotope dating (Couture et al. 1994). Early
gold-bearing quartz-carbonate (QC) veins are commonly af-
fected by deformation and crosscut by diorite and tonalite
dikes dated at 2692 ± 2 Ma (U-Pb titanite age, Couture et al.
1994) and 2686 ± 2 Ma (U-Pb zircon age, Morasse 1998).
Late gold-bearing quartz-tourmaline-carbonate (QTC) veins
are characterized by banded, subvertical fault-fill veins asso-
ciated with subhorizontal veins crosscuting tonalite dikes,
which have U-Pb zircon and titanite ages of 2685 ± 3 and
2682 ± 2 Ma, respectively (Lamaque deposit, Fig. 1;
Jemielita et al. 1990). Based on these data, the maximum
age of the second gold mineralization event associated with
the QTC veins is considered to be 2682 ± 2Ma. However, it is
still debated if the second ore-forming fluid was coeval with
syn- to late- regional metamorphism at ca. 2682 ± 8 Ma
(Claoué-Long et al. 1990; Kerrich and King 1993; Kerrich

and Kyser 1994) or was a postregional metamorphic event,
as young as 2600 Ma (Jemielita et al. 1990; Wong et al. 1991;
Hanes et al. 1992; Zweng and Mortensen 1993; Anglin et al.
1996; Olivo et al. 2007; Lemarchand et al. 2010; Lemarchand
2012).

The Lac Herbin deposit

The Bourlamaque batholith

The Bourlamaque batholith has an ovoid shape with the lon-
gest axis parallel to the regional structural E-W trend (Jébrak
et al. 1991; Fig. 1). It was dated at 2699 ± 1 Ma using U-Pb
zircon dating (Wong et al. 1991) and emplaced at 1 kbar (Feng
and Kerrich 1992). The batholith is composed of quartz diorite
according to their normative feldspar content (Campiglio
1977); however, Jébrak et al. (1991) reclassified it as a
diorite-tonalite-granodiorite according to the multicationic
classification plot of De La Roche et al. (1980). Surrounding
mafic volcanic rocks are intruded by felsic apophyses, and the
batholith contains mafic enclaves. The batholith is considered
to be synvolcanic and co-magmatic with the Val-d’Or
Formation (Latulippe 1966; Campiglio 1977; Imreh 1984;
Tanner and Trudel 1989). The Bourlamaque batholith
underwent deformation during the D2 event associated with
regional greenschist metamorphism (Goulet 1978; Dimroth
et al. 1983). The D2-related shear zones in the batholith dip
between 35° and 80° to the north and to the south (Belkabir
et al. 1993) and host a complex anastomosing vein network
with discontinuously mineralized shear segments (Fig. 2).
Dioritic porphyritic and aplitic dikes crosscut the batholith
(Campiglio 1977; Lemarchand 2012).

Structural and textural setting of the veins

The Lac Herbin deposit consists of 13 shear zones ranging
from less than 1 to 3.5 m in width. The mineralized net-
work is composed of six main E-W trending reverse shear
zones steeply dipping to the south (LH, HW2, BZ, HW, S1,
and S3 in Fig. 2). The main shear zones are the result of the
D2 regional deformation, and hydrothermal fluids used
these structures as a fluid path. Gold mineralization is as-
sociated with banded veins emplaced within these shear
zones parallel or at low angle to the shear zone foliation.
Two subsidiary mineralized reverse shear zones, S2 and
WE, are merging with the main mineralized veins with a
NW-SE trend, and they were formed as the result of hy-
drothermal activity (Fig. 2; Lemarchand et al. 2010). These
two subsidiary structures are only mineralized at the junc-
tion with the main mineralized structures S3 and S1, re-
spectively. The mineralized shear zones crosscut mafic and
fe l s ic d ikes (Lemarchand 2012) . A network of
postmineralization, barren, and brittle faults (FF in Fig. 2)
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is located subparallel to the mineralized zones, or they
crosscut the latter with an offset of less than 10 cm
(Lemarchand 2012).

Subvertical fault-fill QTC veins are by far the most volu-
minous at the Lac Herbin deposit, and they are consistently
associated with extension veins (Fig. 3a). Fault-fill veins typ-
ically have a banded texture where individual quartz ribbons
are separated by slivers of foliated and sericitized wall rock,
and by slip surfaces marked by tourmaline (Figs. 3b–e). The
incorporation of wall rock slivers is generally considered to be
a natural consequence of incremental vein growth (Robert and
Brown 1986a, b; Moritz and Crocket 1990; Robert and
Poulsen 2001).

Extension veins are contemporaneous with the main fault-
fill veins under a compressional regime with a N-S to SW-NE
direction (Lemarchand et al. 2010), and their thickness ranges
from few centimeters up to a meter. They are at high angle to
the wall rock foliation and extend up to several tens of meters

away from the shear zones hosting the fault-fill veins (Fig. 3a).
Extension veins are characterized by open-space filling tex-
tures with radiating aggregates of tourmaline, and euhedral
quartz, carbonate, and pyrite at the vein wall that grew pro-
gressively as the fracture opened (Fig. 3f).

At the Lac Herbin deposit, proximal to distal hydrother-
mal alteration is developed parallel to the vein and consists
of, alternating carbonate, white mica and chlorite ribbons,
and a groundmass of albite, chlorite, and white mica re-
placing plagioclase (Fig. 4a). At the Beaufor mine hosted
by the Bourlamaque batholith (Fig. 1), Tessier (1990) and
Roussy (2003) described wall rock alteration with a
bleached inner zone consisting of carbonate-sericite-albite,
with a progressive change to an outer zone composed of
hydrothermal chlorite together with igneous plagioclase.
At the Sigma mine, Robert and Brown (1986b) and
Garofalo (2004a, b) reported similar observations for vol-
canic host-rock alteration patterns.

Fig. 2 Zoom on the batholith-
hosted Lac Herbin study area,
illustrating the irregular shape of
the E-Woriented discontinuous
mineralized shear zones. The
A-A′ cross section shows the
structural setting of the Lac
Herbin deposit. From QMX Gold
Corporation
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Vein mineralogy

Quartz is the main vein-filling constituent (80 vol%) and com-
monlycontains inclusionsof tourmalineandpyrite (Figs.3b–d, f
and 4b, g–h), illustrating continuous deposition of quartz, tour-
maline, andpyrite (Robert andBrown1986b). In fault-fill veins,
quartz is typicallywhite and associatedwith tourmaline ribbons
(Figs. 3b–e), which indicate that quartz and tourmaline crystals
experienced non-coaxial deformation. Deformed quartz has re-
crystallization textures with 120° between grain boundaries,
sub-grains formation, and undulose extinction. Grey quartz is
only found in pressure shadows around pyrite. In extension
veins, quartz is typically translucent to grey and associatedwith
tourmaline needles (Fig. 3f), which indicates that it has been
weaklydeformed.Quartzhas amostlyhomogeneous, evengrey
appearance, and cathodoluminescence images rarely reveal
growthzones (Fig.4c).Weobservedonlyonequartzgeneration,
which belongs to themain-vein filling ore stage.

Tourmaline fillings occupy an average volume of 10 to
20 vol%, with locally up to 80 vol%. In fault-fill veins, tour-
maline typically forms parallel ribbons along slip surfaces
(Fig. 3b–e). In extension veins, fibrous tourmaline is perpen-
dicular to oblique to the vein walls (Fig. 3f). Tourmaline
needles form inclusions in quartz and pyrite (Fig. 4b, d).
Tourmaline typically consists of a blue-green core with brown
rims under transmitted light (Fig. 4e). Tourmaline is mainly

dravitic, ranging in composition from Ca-poor, higher X-site
vacancy tourmaline, toward Ca-rich and dominantly sodic
tourmaline (Beaudoin et al. 2013).

Chlorite occurs as a green groundmass or as radiating ag-
gregates surrounding tourmaline and interstitial to recrystal-
lized quartz (Fig. 4e). Chlorite has a strong green to light
brown bireflectance and has the composition of ripidolite
(Robert and Brown 1986b; Roussy 2003). Hydrothermal
chlorite in veins and wall rock has similar compositions
(Roussy 2003).

White mica is present in the wall rock alteration and in
veins, but its temporal relationship with other hydrothermal
minerals remains uncertain. In the Val-d’Or district, white mi-
ca ranges in composition from phengite to sericite (Robert and
Brown 1986b; Roussy 2003).

Carbonates with an average volume of 5 vol%, and locally
up to 25 vol% in veins, range in composition from calcite
(CaCO3) to ankerite (Ca(Fe,Mg,Mn)(CO3)2). The first gener-
ation of carbonate is characterized by euhedral crystals up to
one centimeter in size, forming a ribbon at the selvage of the
veins (Fig. 4b). The early carbonate contains growth zones
and inclusions of gold (Fig. 4f). A second generation of car-
bonate surrounds and fills fractures in quartz, pyrite, and tour-
maline. It is associated with gold and chalcopyrite, and locally
with pyrrhotite, sphalerite, cobaltite, galena, pyrite, or tellu-
rides (Figs. 4i, j).

Fig. 3 a Contemporaneous fault-
fill and extensional veins. S3 zone
- Level 29. b Typical fault-fill
vein with parallel quartz and
tourmaline ribbons, and
subsidiary sulfide and carbonates.
HW2 zone - Sublevel 25. c Detail
of b. d Slivers of foliated and
sericitized wall rock. Some
oxydized sulfides and tourmaline
are also present. HW zone -
Sublevel 17. e Tourmaline slip-
surface. HW zone - Level 25. f
Extensional vein with a typical
open-space filling texture. HW
zone - Level 25. Ank ankerite, Cb
carbonate, Py pyrite, Tm
tourmaline, Qtz quartz
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Fig. 4 a Proximal to distal hydrothermal alteration sequence from the
vein into the wall-rock. AM39956 - HW zone - 50 m. b Vein of the main
filling stage with carbonate along the selvage, and tourmaline needles
within quartz in the central part of the vein. AM58901 - LH zone -
N25. c Cathodoluminescence image showing growth zones in quartz
crystal of the main filling stage. AM58902 - LH zone - N25. d
Tourmaline-gold inclusions in pyrite of the main filling stage.
AM58906 - between BZ and HW zone - N29. eMain quartz filling stage
with zoned tourmaline (blue to brown from core to rim) surrounded by
chlorite and interstitial carbonate. AM58908 - between BZ and HW zone
- N29. f Gold and chalcopyrite inclusions in the first generation of car-
bonates. AM39928 - S1 zone - 380 m. g Gold-bearing pyrite with a

cataclastic texture. AM58906 - between BZ and HW zone - N29. h
Inclusions of chalcopyrite, tellurides, and gold in pyrite. AM58906 -
between BZ and HW zone - N29. i Pyrite fracture filled by
chalcopyrite-gold-telluride associated with the second generation of car-
bonates. AM39914 - HW2 zone - 50 m. j Gold, sphalerite, chalcopyrite,
pyrite, and the second generation of carbonates crosscutting quartz of the
main filling stage. AM39984 - between S3 and S1 zone - 180 m. Au gold,
Ank ankerite, Bi-Te bismuth-tellurides, Cb carbonate, Cal calcite, Chl
chlorite, Cp chalcopyrite, Py pyrite, Qtz quartz, Sl sphalerite, Td
tetradymite, Tm tourmaline. Ore minerals are abbreviated according to
Chace (1956), and gangue minerals according to Kretz (1983)
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Pyrite is the dominant sulfide in both fault-fill and ex-
tension vein types, forming euhedral to sub-euhedral crys-
tals with a grain size of millimeters up to few centimeters.
Pyrite is disseminated in altered wall rocks, or intergrown
with quartz in veins (Figs. 3b–d, f and 4g–h). Pyrite con-
tains inclusions of tourmaline, chalcopyrite, pyrrhotite,
gold, tellurides, and cubanite (Fig. 4d, g–h) and has been
variably affected by brittle deformation (Fig. 4g). Rare py-
rite associated with the second generation of carbonates,
gold, chalcopyrite, and sphalerite is interstitial to quartz
(Fig. 4j). Pyrite consists of concentric Co- and As-rich
growth zones (ESM 1: Tables S1 and S2), which are asso-
ciated with gold, chalcopyrite, and tellurides inclusions. At
the Beaufort mine, Roussy (2003) reported that Co-rich
pyrite is associated with gold, chalcopyrite, and telluride
inclusions.

Chalcopyrite forms irregular millimeter to centimeter
grains or aggregates. Early chalcopyrite forms inclusions in
pyrite, either isolated or in equilibrium with gold, pyrrhotite,
tellurides, and cubanite (Fig. 4h). It was also observed in the
first generation of carbonate associated with gold (Fig. 4g).
Late chalcopyrite fills fractures in pyrite, tourmaline, and
quartz in close association with the second generation of car-
bonate, gold, sulfides, and tellurides (Figs. 4i, j).

Pyrrhotite forms rare inclusions in pyrite in association
with chalcopyrite. It also fills fractures in pyrite associated
with the second generation of carbonate, chalcopyrite, sphal-
erite, cobaltite, and galena. Pyrrhotite contains rare flame-like
exsolutions of pentlandite.

Sphalerite and rare galena are associated with the second
generation of carbonates, chalcopyrite, pyrrhotite, cobaltite,
galena, and gold, filling fractures in pyrite, tourmaline, and
quartz (Fig. 4j).

Cobaltite forms euhedral crystals in pyrrhotite or fills frac-
tures in pyrite, carbonate, and tourmaline associated with
sphalerite and chalcopyrite. The cobaltite chemistry is report-
ed in ESM 1: Table S1.

Cubanite forms rare micrometer inclusions in pyrite and is
locally associated with chalcopyrite or telluride inclusions.

Ilmenite and rutile are observed within chlorite and also as
inclusions in pyrite.

Native gold forms isolated grains with electrum rims in
equilibrium with chalcopyrite, Bi-, Au-, Ag-, and Ni-
tellurides inclusions in pyrite, tourmaline, and the first gener-
ation of carbonate (Figs. 4d, f–h and 5a, c, e, f). Most of the
gold, however, is associated with the second generation of
carbonate, sulfides, and tellurides, filling fractures in pyrite
(Fig. 4i) and quartz (Fig. 4j). The Au/Ag ratio of native gold
ranges between 95:5 and 85:15, whereas the Au/Ag ratio of
electrum rimming gold grains ranges between 70:30 and
80:20 (ESM 1: Table S3).

Tellurides form isolated inclusions in pyrite and fill frac-
tures in pyrite and quartz (Figs. 5a–f). Among 11 recognized

Au-, Ag-, Bi-, Pb-, Ni-, and S-bearing tellurides (ESM 1:
Table S4), only three of them have never been observed asso-
ciated with gold, they are hessite, stützite, and volynskite.
There is no systematic correlation between telluride composi-
tion and the presence of gold (Fig. 6).

Parkerite, a Ni-bearing bismuth sulfide phase, is also ob-
served (Fig. 6 and ESM 1: Table S4).

Vein paragenetic sequence

The paragenetic sequence for subvertical fault-fill and
subhorizontal extensional veins (Fig. 7) is similar to that de-
scribed by Robert and Brown (1986b) at the Sigma mine and
by Roussy (2003) at the Beaufor mine. At the Lac Herbin
deposit, mineralization is divided into two events: a main
vein-filling event and a fracture-filling event.

The main vein-filling event is characterized by the deposi-
tion of a first generation of carbonate, precipitated along the
selvages of the veins, followed by abundant quartz and tour-
maline. Tourmaline forms within and surrounds disseminated
pyrite crystals indicating that deposition of both minerals is
coeval. Pyrite contains inclusions of gold, pyrrhotite, chalco-
pyrite, cubanite, and a variety of tellurides. This early miner-
alizing event underwent deformation illustrated by pyrite with
cataclastic textures. The fracture-filling event cements frac-
tures in pyrite and quartz and includes the second generation
of carbonate, in equilibrium with gold and chalcopyrite, and
local association of sphalerite, pyrrhotite, cobaltite, galena,
pyrite, or tellurides. Tellurides are never observed in equilib-
riumwith sphalerite, pyrrhotite, cobaltite, and galena. Chlorite
is considered to have precipitated late in the hydrothermal
veins, during a reopening of the second generation of carbon-
ate. Ilmenite and rutile exsolutions are only observed where
chlorite is located, and therefore, they are interpreted as coeval
or postdating chlorite.

Analytical methods

Thirty-nine doubly-polished thick sections were examined un-
der thepetrographicmicroscope to select fluid inclusionassem-
blages (FIAs; Goldstein and Reynolds 1994); of these, seven
contained FIAs adequate to carry out microthermometry. We
selectedFIAsavoidinginclusionsshowingevidencenotonlyof
Bnecking-down^orshapemodificationsbutalsoonthemodeof
occurrence, such as clusters, alignment along growth zone, or
crosscutting grain boundaries. Cathodoluminescence imaging
using a scanning electron microscope (SEM-CL) was carried
out to reveal growth zones in order to characterize the
Bprimary,^ Bpseudo- secondary,^ and Bsecondary^ character
of the fluid inclusion types. However, quartz remains predom-
inantly non-luminescent under SEM-CL, and no fluid inclu-
sions were observed along the rare quartz growth zones re-
vealed by SEM-CL (Fig. 4c). Infrared (IR) microscopy was
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used to identify fluid inclusions in pyrite, but since Lac Herbin
pyritecontainsCo,Ni, andAs, it remainedopaqueunder IR(see
Kouzmanovetal.2002).Fluid inclusions insphaleriteappeared

dark due to internal reflections, which prevented petrographic
ob s e r v a t i on s and mi c r o t h e rmome t r y. De t a i l e d
microthermometry results are given in ESM 1: Table S5.
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pyrite of the first filling stage. AM39918 - HW zone - N25. b Petzite-
calaverite-tellurobismuthite-buckhornite-chalcopyrite assemblage as
inclusion in pyrite of the first filling stage. AM39918 - HW zone - N25.
c Melonite-tellurobismuthite-gold inclusions hosted by pyrite of the first
filling stage. AM39918 - HW zone - N25. d Exsolution of hessite in
tsumoite inclusion hosted by pyrite. AM58906 - between BZ and HW
zone - N29. e Tetradymite and tsumoite-rucklidgeite-gold inclusions

hosted by pyrite. AM58906 - between BZ and HW zone - N29. f
Exsolution texture consisting of a volynskite-hessite-tsumoite-gold
assemblage hosted by quartz. AM58906 - between BZ and HW zone -
N29. Au gold, Buck buckhornite, Cp chalcopyrite, Cv calaverite, Hs
hessite,Melmelonite, Py pyrite, Pz petzite,Qtz quartz, Ruck rucklidgeite,
Tb tellurobismuthite, Td tetradymite, Tsu tsumoïte, Vol volynskite. Ore
minerals are abbreviated according to Chace (1956), and gangue minerals
according to Kretz (1983)

Minerals
Calaverite

(AuTe2)

Buckhornite

(AuTe2Pb2BiS3)

Petzite

(AgAuTe2)

Tsumoite

(BiTe)2

Tellurobismuthite

(Bi2Te3)

Rucklidgeite

(Bi3Te4)

Tetradymite

(Bi2Te2S)

Melonite

(NiTe2)

Hessite

(Ag2Te)

Stützite

(Ag5-xTe3)

Volynskite

(AgBiTe2)

Parkerite

(Ni3Bi2S2)

Calaverite (AuTe2) x x x x

Buckhornite (AuTe2Pb2BiS3) x x x x

Petzite (AgAuTe2) x x x x

Tsumoite (BiTe) x x x x x x

Tellurobismuthite (Bi2Te3) x x x x

Rucklidgeite (Bi3Te4) x

Tetradymite (Bi2Te2S) x

Melonite (NiTe2) x x x

Hessite (Ag2Te) x x

Stützite (Ag5-xTe3) x x x

Volynskite (AgBiTe2) x x x x

Parkerite (Ni3Bi2S2) x x x

Fig. 6 Telluride associations based on our microscopy observations. Minerals highlighted in yellow indicate tellurides associated with gold
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Microthermometrywas carried out using aLinkhamheating-
freezingstage (THMSG600)mountedonaDMLBLeicamicro-
scope and a Linkham heating-freezing stage (FTIR 600)
mounted on a BX51 Olympus microscope. The heating-
freezing stages were calibrated using synthetic fluid inclusions
(Sterner andBodnar 1984) at−56.6, 0.0, and374.1 °C.The stage
uncertainty is ±0.1 °C for temperatures below 0 and ± 1 °C for
homogenization temperatures. Salinities and densities were
calculated using the appropriate equations of state, included in
the computer program by Bakker (2003) available on the
University of Leoben web site at http://fluids.unileoben.ac.
at/Computer.html. The presence of CO2 was determined using
Raman microscopy measurements on single fluid inclusions
using a Renishaw inVia Reflex equipped with a 633 nm He-Ne
laser coupled with a Leica DM2500 microscope, at the Natural
History Museum of Geneva. Detection limit for CO2 using
Raman spectroscopy is 0.2 mol%CO2 (Bodnar et al. 1985).

Fluid inclusion study

Sampling approach

Representative samples were collected underground and from
drill-cores from both fault-fill and extensional quartz-
tourmaline-carbonate veins. Samples were selected based on

three criteria: (1) grayish to translucent quartz is typically
least-deformed compared to the milky quartz (Beaudoin and
Pitre 2005), (2) quartz intergrown with undeformed tourmaline
needles, and (3) translucent quartz observed in pressure shadow
of pyrite. All fluid inclusions of this study and described below
were observed in quartz from the main vein-filling stage.
Minerals from the fracture-filling stage did either not contain
fluid inclusions (e.g., in carbonates)orwerenot suitable for fluid
inclusion petrography andmicrothermometry (e.g., sphalerite).

Types of fluid inclusions

Type 1 are rare aqueous-carbonic fluid inclusions ranging
from 5 to 15 μm in size with a rounded, sub-rectangular,
and irregular shape (Fig. 8a, Tables 1 and ESM 1: Table S5).
They have variable liquid/vapor (L/V) ratios and have been
subdivided in three subtypes based on the volume of the vapor
phase after CO2 homogenization. Subtype 1a consists of in-
clusions with a vapor phase occupying between 10 and
25 vol% of the inclusion, subtype 1b between 40 and
50 vol%, and subtype 1c between 70 and 90 vol% (Fig. 8a,
Tables 1 and ESM 1: Table S5). Some inclusions included in
subtype 1c are carbonic without a visible aqueous phase, but it
is likely that a thin rim of liquid surrounds the large gas bub-
ble. The small amount of liquid did not allow measuring
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Pyrrhotite

Chalcopyrite
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Galena
Gold / Electrum
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Hessite
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Tsümoïte
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Tetradymite

Melonite

Rucklidgeite

Calaverite

Stützite

Buckhornite

Cobaltite

MAIN VEIN FILLINGMINERALS
FRACTURE 

FILLING
Fig. 7 Paragenetic sequence
recognized at the Lac Herbin
deposit. Line thickness represents
schematically the relative
abundance of the precipitated
minerals. Dotted lines indicate
uncertainties. See text for
explanations
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aqueous liquid phase transitions (Ramboz et al. 1982). Several
subtype 1b and 1c inclusions only contain a single CO2 phase
at room temperature. Type 1 inclusions are randomly distrib-
uted as intra-granular three-dimensional clusters and form ho-
mogeneous (i.e., one subtype) or heterogeneous (i.e., three
subtypes) FIAs in quartz (Fig. 8a). They were never observed
within healed fractures; therefore, they are interpreted to be
the earliest fluid inclusions at the Lac Herbin deposit.

Type 2 refers to aqueous fluid inclusions, which are more
abundant than Type 1 inclusions. Their sizes range from 5 to

25 μm in size with a rounded to subrectangular shape
(Figs. 8b, c, Tables 1 and ESM 1: Table S5). They contain a
vapor phase occupying 15 to 30 vol% of the inclusion volume.
Type 2 FIAs are distributed within healed fractures that cross-
cut quartz grains boundaries (Figs. 8b, c, Tables 1 and ESM 1:
Table S5). They are interpreted to be secondary in origin.
Despite the absence of crosscutting relationships between
Types 1 and 2 fluid inclusions, we interpret the Type 2 inclu-
sions to postdate Type 1 inclusions because they occur along
healed fractures crosscutting quartz grains boundaries.

Fig. 8 a Distribution of Types 1
and 3 fluid inclusions hosted in
quartz. The numbers indicate the
homogenization temperatures to
the liquid phase (ThTOT) and
decrepitation temperature.
Pictures show the three subtypes
of Type 1 aqueous-carbonic
inclusions associated with
homogenous and heterogeneous
fluid inclusion assemblages.
AM39928 - S1 zone - 380 m. b
Type 2 fluid inclusion
assemblages aligned along healed
fractures in quartz. AM39984 -
between S3 and S1 zone - 180 m.
c Type 2 fluid inclusion
assemblages aligned along healed
fractures in quartz. AM58901 -
LH zone - N25. e Subtypes 3a and
3b fluid inclusion assemblages
hosted by healed fractures in
quartz. AM58925 - Junction
HW2 andWE - SN25. f Subtypes
3a and 3b fluid inclusion assem-
blages hosted by healed fractures
in quartz. AM58901 - LH zone -
N25. L liquid, V vapor, S solid
daughter crystal (halite)
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Type 3 aqueous fluids include two subtypes ranging from 5 to
25 μm in size with a square to elongated irregular shape
(Figs. 8d, e, Tables 1 and S5). Subtype 3a consists of three phases
at room temperature, including a liquid, a vapor, and a daughter
mineral. Subtype 3b is composed of a liquid and a vapor phase at
room temperature. The vapor typically fills 5 vol% of the inclu-
sion. Type 3 FIAs contain coexisting subtypes 3a and 3b, and are
located within healed fractures crosscutting quartz grain boun-
daries (Figs. 8d, e, Tables 1 and ESM 1: Table S5). There is a
positive correlation between fracture density and Type 3 fluid
inclusion abundance. Type 3 fluids are considered to be secon-
dary in origin based on crosscutting quartz grain boundaries.

Fluid inclusion microthermometry

Type 1: aqueous-carbonic fluid inclusions

Melting of solid CO2 (TmCO2) in subtype 1a inclusions occurs
from −57.1 to −56.6 °C, from −57.1 to −56.8 °C for subtype
1b, and from −57.4 to −56.6 °C for subtype 1c (Fig. 9a,

Tables 1 and ESM 1: Table S5). The TmCO2 indicates small
amounts of dissolved gas species in the carbonic phase.
However, Raman spectroscopy of Type 1 inclusions did not
reveal the presence of other dissolved gases, such as N2 or
CH4; therefore, we conclude that the gas phase has a nearly
pure CO2 composition. Clathrate melting temperatures
(TmCLATH) range from +5.0 to +6.5 °C (Fig. 9b, Tables 1
and S5), yielding salinities from 6.0 to 9.1 wt%NaCl eq. using
the equation of Diamond (1992) (Fig. 9f, Tables 1 and ESM 1:
Table S5). The homogenization temperatures of CO2 to liquid
(ThCO2 (L)) range between +26.6 and +31.0 °C in subtype 1a,
+22.1 and +31.0 °C in subtype 1b, and +8.7 and +29.4 °C in
subtype 1c inclusions (Fig. 9c, Tables 1 and S5), correspond-
ing to density ranges of 0.93 to 0.95, 0.83 to 0.89, and 0.64 to
0.87, respectively (Tables 1 and S5), using the appropriate
equations of state for the aqueous-carbonic system (Bowers
and Helgeson 1983; Duan et al. 1992a; Bakker 1999) in
Bakker’s (2003) program. The liquid phase homogenized into
liquid (ThTOT) between 240 and 261 °C for subtype 1a, and
some inclusions decrepitated between 200 and 220 °C

Table 1 Summary of Types 1, 2, and 3 fluid inclusion characteristics

Aqueous-carbonic (H2O-CO2) Subtype 1a Subtype 1b Subtype 1c

System CO2-H2O-NaClCO2-H2O-NaCl CO2-H2O-NaClCO2-H2O-NaCl CO2-H2O-NaClCO2-H2O-NaCl

Abundance Rare Rare Rare

Size (mm) 3.9 to 14.0 5.0 to 10.6 4.0 to 17.3

V% CO2 10 to 25 40 to 50 70 to 95

TmCO2 (°C) −57.1 to −56.7 −57.1 to −56.8 −57.4 to −56.6
Tmclath (°C) 5.2 to 6.5 5.8 to 6.7 5.0 to 6.5

Salinity (wt% NaCl eq.) 7.5 to 8.8 6.0 to 8.6 6.3 to 9.1

ThCO2 (°C) 17.8 to 31.1 (L) 22.1 to 31 (L) 8.7 to 29.4 (L)

Bulk density (g/cc) 0.93 to 0.95 0.83 to 0.89 0.64 to 0.87

Thtot (L) (°C) 240 to 261 (L) (n = 5) 253 to 330 (L) (n = 5) –

Td (°C) 200 to 220 (n = 3) 263.3 (n = 2) 240 to 341 (n = 15)

Aqueous (H2O-rich) Type 2 Subtype 3a Subtype 3b

System H2O-NaCl-CaCl2H2O-NaCl-CaCl2 H2O-NaCl-CaCl2H2O-NaCl-CaCl2 Undetermined

Abundance Common Abundant Abundant

Size (mm) 4.7 to 25.7 4.5 to 22.3 5.4 to 14.4

V% vapor phase 15 to 30 5 5

Te (°C) <−50.0 to <−31.1 <−50 to <−40
Tmice (°C) −33.8 to −13.6 No freezing down to −180
Salinity (wt% NaCl eq.) 16.7 to 28.3 28.3 to 32.4

Bulk density (g/cc) 1.15 to 1.23 1.23 to 1.50

Th (L) (°C) 59.7 to 131.5 (n = 18)

Tmdm (°C) 130.0 to 211.2 (n = 18)

Thtot (L) (°C) 353.4 to 458.0 (n = 20) 50.2 to 127.5 (n = 8)

Td (°C) 353.1 to 523.0 (n = 13)

V% percentage of the volume occupied, TmCO2 melting temperature of the carbonic phase, Tmclath melting temperature of the clathrate, ThCO2

homogenization temperature of the carbonic phase to the liquid, Thtot total homogenization to the liquid (L) or the vapor (V) phase, Td decrepitation
temperature, Te temperature of the eutectic, Tmice melting temperature of ice, Tmdm dissolution temperature of the daughter mineral
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(Fig. 9f, Tables 1 and ESM 1: Table S5). Subtype 1b inclu-
sions homogenized to the liquid phase from 253 to 330 °C,
and two inclusions decrepitated at 263.3 °C. All subtype 1c
inclusions decrepitated between 240 and 341 °C.

To summarize, Type 1 aqueous-carbonic inclusions are
modeled in the CO2-H2O-NaCl system. Salinities are similar
for each subtype, and their respective densities are in agree-
ment with the filling proportion of the CO2 phase with respect
to the total fluid inclusion volume. However, the homogeni-
zation and decrepitation temperatures are scattered for sub-
types 1b and 1c inclusions, respectively.

Type 2: high-temperature aqueous fluid inclusions

First ice melting, approximating the eutectic temperature (Te),
was observed between −50 and −31.1 °C (Fig. 9d, Tables 1 and
ESM 1: Table S5), indicating that the fluid of Type 2 inclusions
can be interpreted within the H2O-NaCl-CaCl2, H2O-NaCl-
MgCl2 or H2O-NaCl-FeCl2 systems (Zhang and Frantz 1987).
We prefer to attribute this fluid to the H2O-NaCl-CaCl2 system,
because most first ice melting temperatures fall between −45
and −40 °C. Although we have not observed any metastable
phases, we attribute the Te value below −50 °C to the formation
of metastable phases on freezing, as metastable melting events
are typically reported at temperatures below −50 °C by Vanko
et al. (1988), Davis et al. (1990), and Oakes et al. (1990).

The TmICE range from −33.8 to −13.6 °C yielding salinities
ranging from 16.7 to 28.3 wt% NaCl eq. (Figs. 9e, f, Tables 1
and ESM 1: Table S5) using the equation of Steele-MacInnis
et al. (2011). These results are in agreement with results ob-
tained with the equation of Oakes et al. (1990) using Bakker’s
(2003) program. As it was not possible to observe melting of
hydrohalite, we calculated the salinities using a ratio
wt%NaCl/(wt%NaCl + wt%CaCl2) of 0.99 because of the
similar effect of NaCl or CaCl2 on ice melting (Shepherd
et al. 1985). Salinities using a ratio wt%NaCl/(wt%NaCl +
wt%CaCl2) of 0.5 were also calculated and show no signifi-
cant differences (ESM 1: Table S5). Density is between 1.15
and 1.23 g/cm3 using the appropriate equations of state for the
system H2O-NaCl-CaCl2 (Zhang and Frantz 1987). The
ThTOT to the liquid are between 353 and 458 °C, most of them
between 410 and 430 °C. Some inclusions decrepitated (Td)
between 353 and 523 °C. Raman spectroscopy indicates that
the vapor phase is composed of pure H2O, which is consistent
with the absence of clathrate formation during cooling of Type
2 inclusions.

Type 3: low-temperature aqueous fluid inclusions

Subtype 3a inclusions yield a first ice melting temperature
(Te) between −50 and −40 °C, whereas ThTOT to the liquid
phase are between 59.7 and 131.5 °C, lower than the dissolu-
tion temperature of daughter minerals ranging from 110.0 to
211.2 °C (Fig. 9f, Tables 1 and ESM 1: Table S5). Only the
dissolution temperature of daughter mineral was measured for
these inclusions. Salinities range between 28.3 and 32.4 wt%
NaCl eq. using the H2O-NaCl system, with a density ranging
between 1.23 and 1.50 g/cm3 (Table 1 and ESM 1: Table S5).
Salinities and densities were calculated using the appropriate
equations of state for H2O-NaCl (Knight and Bodnar 1989;
Archer 1992; Bodnar 1993; Bodnar and Vityk 1994) using
Bakker’s (2003) program. Within the same FIA, subtype 3b
inclusions have homogenization temperatures to the liquid
between 50.2 and 127.5 °C. These inclusions have a metasta-
ble behavior, they did not freeze down to −180.0 °C, and the
vapor phase did not nucleate back after total homogenization
(Tables 1 and ESM 1: Table S5).

Discussion

Timing of the mineralized veins

Belkabir et al. (1993) suggested that dikes were a major rheo-
logic control on the emplacement of the shear zone-hosted
auriferous veins cutting the Bourlamaque batholith at the
Dumont-Bras d’Or, New Formaque, and Ferderber deposits
(Fig. 2). However, at the Lac Herbin deposit, Lemarchand
et al. (2010) showed that the main mineralized structures as-
sociated with felsic and/or mafic dikes were emplaced along a
preexisting fault. By contrast, Lemarchand et al. (2010) con-
cluded that the emplacement of subsidiary mineralized struc-
tures is controlled by a preferential direction along dikes.
According to Lemarchand (2012), the overall vein geometry
and kinematic indicators suggest a cogenetic formation of all
mineralized structures throughout the deposit. The associated
extensional veins and tourmaline fibers direction are compat-
ible with formation under a N-S- to SW-NE-oriented
subhorizontal main stress (σ1), consistent with formation dur-
ing the late stage of the D2 regional deformation (Robert
1994). The maximum age for the emplacement of the gold-
bearing veins is constrained by the 40Ar/39Ar amphibole
cooling age of the mafic dikes at ca. 2666–2670 Ma
(Lemarchand 2012), which constrain the gold mineralization
to be younger than the regional metamorphism bracketed by
U-Pb zircon ages between 2697 ± 19 and 2682 ± 8 Ma
(Claoué-Long et al. 1990). The age of the Blate^ ore-forming
fracture filling event remains unconstrained and discussed
below.

�Fig. 9 Microthermometric data for fluid inclusions in gold-bearing
quartz veins at Lac Herbin. a TmCO2. b TmCLATH. c ThCO2 (L). d
Temperature of observation of the first ice melting (≈Te). e TmICE. f
Final homogenization to the liquid phase (ThTOT) and decrepitation
temperatures (Td) versus salinity. Numbers in the symbol correspond to
the FIA numbers allocated for each FIA in the ESM 1: Table S5
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Significance and relative temporal relationship of fluid
inclusion types

Type 1 aqueous-carbonic inclusions have variable CO2 total
volume ratios even within a single FIA (Fig. 8a; Tables 1 and
ESM 1: Table S5). Twomechanisms are considered to explain
this observation: (1) f luid immiscibi l i ty and (2)
post-entrapment modifications. The vein system at the Lac
Herbin deposit was likely emplaced under fluctuating fluid
pressure conditions as suggested by Sibson et al. (1988) for
the Val-d’Or district, which is certainly a favorable environ-
ment for fluid immiscibility. However, the three subtypes rec-
ognized for Type 1 inclusions and coexisting in the same FIA
have highly variable final homogenization and decrepitation
temperatures, but a narrow range of salinities (Figs. 8a and 9f,
Tables 1 and ESM 1: Table S5), which is at variance with the
immiscibility criterion suggested by Ramboz et al. (1982).
Therefore, our results support post-entrapment modifications
of the fluid inclusions, which are consistent with the intense
deformation that affected the shear zones and also with
previous experimental studies by Pêcher and Boullier (1984)
and Bakker and Jansen (1991), who interpreted scattered
ThTOT and ThCO2 in terms of reequilibration of aqueous-
carbonic inclusions. Bakker and Jansen (1991) suggested
post-entrapment modifications of aqueous-carbonic inclu-
sions by preferential water leakage resulting in enrichment
in CO2 with respect to the original composition of the inclu-
sions, which can explain scattered L/V ratios in heterogeneous
Type 1 FIAs. Indeed, despite the lack of textural evidence for
post-entrapment modifications, our microthermometric results
reveal an increase in ThTOTcoupled with scattered ThCO2 from
subtype 1a to subtype 1c inclusions (Figs. 9c, f, Tables 1 and
ESM 1: Table S5). The ThCO2 and ThTOT from homogeneous
FIAs of subtype 1a inclusions are relatively constant, whereas
heterogeneous FIAs show significant variation of ThTOT, up to
100 °C among the same FIA. Therefore, based on the lack of
evidence for fluid immiscibility and considering the compres-
sional strain affecting the mineralized shear zones and the
microthermometry results, the post-entrapment modifications
scenario of Type 1 inclusions is preferred at the Lac Herbin
deposit; however, we cannot definitely rule out fluid immisci-
bility (Pêcher and Boullier 1984; Bakker and Jansen 1991;
Bodnar 2003; Tarantola et al. 2010; Diamond et al. 2010).

High-temperature Type 2 aqueous fluid inclusions are
interpreted to postdate Type 1 inclusions based on their occur-
rences within fractures crosscutting quartz grain boundaries,
in contrast to Type 1 fluid inclusions which only occur as
intragrain clusters, and their distinctly higher homogenization
temperatures (Figs. 8b, c, 9d–f, Tables 1 and ESM 1: Table
S5). In earlier studies on other locations within the Val-d’Or
mining district, Robert and Kelly (1987), Robert et al. (1995),
and Boullier et al. (1998) interpreted similar high-temperature
aqueous fluid as the residual end-member fluid after phase

separation of an aqueous-carbonic fluid, with a similar com-
position to the one of subtype 1a at Lac Herbin. In the case of
the Lac Herbin deposit, the intermediate to high salinity Type
2 fluid inclusions (16.7 to 28.3 wt% NaCl eq.) and their high
homogenization (380 to 458 °C) and decrepitation (353.1 to
523 °C) temperatures are unlikely to be related to Type 1
inclusions by phase separation, because of distinctly lower
ThTOT and decrepitation temperatures ranging between 200
and 341 °C (Fig. 9, Tables 1 and ESM 1: Table S5). The
Type 2 inclusions have scattered ThTOT within the same FIA
(Fig. 9, Tables 1 and ESM 1: Table S5), which suggest that
post-entrapment modifications of the inclusions have occurred.
We interpret the Type 2 inclusion as a distinct hydrothermal
fluid, temporarily unrelated to the Type 1 hydrothermal fluid.
The significantly higher temperature of the hydrothermal event
recorded by Type 2 inclusions can be a cause for the post-
entrapment modification of the Type 1 fluid inclusions.

The low-temperature Type 3 aqueous inclusions are con-
sidered as secondary, postdating Types 1 and 2 inclusions
because of their low homogenization temperatures, their high
salinity, their systematic occurrence within fractures and they
form distinct assemblages (Figs. 8d, e, 9f, Tables 1 and ESM
1: Table S5). The melting temperature of daughter minerals in
subtype 3a inclusions is interpreted as a reliable minimum
trapping temperature, ranging from 135 to 211 °C (Tables 1
and ESM 1: Table S5). This low-temperature aqueous fluid is
similar to the Ca-Na-Cl-rich groundwaters described in the
Canadian Shield and sampled at several gold mines (Frape
et al. 1984; Frape and Fritz 1987; Kerrich and Kamineni
1988 ; Kyser and Kerrich 1990, Boullier et al. 1998).
Therefore, this fluid is considered to be trapped late in the
hydrothermal history of the Lac Herbin deposit, postdating
gold introduction and precipitation.

Fluid evolution of the hydrothermal system at the Lac
Herbin deposit

Isochores were calculated for each inclusion type according
to Bakker (2003). They allow us to constrain the sequence
of fluid events in terms of pressure and temperature at the
Lac Herbin deposit (Fig. 10). As discussed above, the Type
1 aqueous-carbonic fluid inclusions are interpreted to be the
earliest, followed by the Type 2 high-temperature aqueous
fluid inclusions, and finally by the Type 3 low-temperature
aqueous fluid inclusions. Considering the postentrapment
modifications concluded for subtype 1a inclusions, the ho-
mogenization temperatures of 250–300 °C represent the
minimum temperature estimate of entrapment (Fig. 10).
Assuming a depth of formation of 8 to 10 km for orogenic
gold deposits (e.g., Groves et al. 1998, 2003; McCuaig and
Kerrich 1998; Goldfarb et al. 2005; Robert et al. 2005), the
minimum pressure of entrapment must have been between
80 and 100 MPa under a hydrostatic regime, or between
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210 and 260 MPa under a lithostatic regime. Isochores for
high-temperature Type 2 fluids plot separately in P-T space
with respect to Type 1 inclusions (Fig. 10). Therefore, Type
2 fluid inclusions most likely represent a different hydro-
thermal fluid emplaced at higher temperature than the hy-
drothermal fluid at the origin of Type 1 inclusions. The
pressure corrections have not been performed; therefore,
the ThTOT is interpreted as minimum trapping temperatures
of 350 °C. The low-temperature Type 3 aqueous fluids are
interpreted to be late in the vein system evolution, with an
average minimum entrapment temperature at ∼100 °C
(Fig. 10).

Comparison with previous studies in the Val-d’Or district

Previous fluid inclusion studies in the Val-d’Or district were
carried out on gold-bearing veins at the Donalda (Chi et al.
1992), Sigma (Robert and Kelly 1987; Firdaous 1995; Olivo
et al. 2006), Dumont-Bras d’Or (Firdaous 1995), Siscoe
(Olivo and Williams-Jones 2002), Orenada #2 (Neumayr
and Hagemann 2002; Neumayr et al. 2007), and Cartier-
Malartic and Paramaque deposits (Neumayr et al. 2007).
Boullier et al. (1998) and Olivo et al. (2006) described fluids
in barren veins, respectively, at the Donalda and Sigma de-
posits. A summary of microthermometry data of studies car-
ried out at the Sigma, Siscoe, Dumont-Bras d’Or, and Donalda
deposits is given in Table 2. The three types of fluid inclusions
found in the mineralized veins of the Lac Herbin deposit have
similar physical and chemical properties than those described
in the other deposits of the Val-d’Or mining district (Tables 1
and 2).

Robert and Kelly (1987), Robert et al. (1995), Firdaous
(1995), Boullier et al. (1998), Neumayr and Hagemann
(2002), and Neumayr et al. (2007) suggested fluid immiscibil-
ity to explain the coexistence of vapor-rich aqueous-carbonic
inclusions (such as subtype 1c inclusions at Lac Herbin) and
liquid-rich aqueous inclusions (such as Type 2 at Lac Herbin).
The Bhigh^-temperature aqueous fluid at the Sigma deposit
was interpreted as the aqueous end-member of the unmixed
aqueous-carbonic parent fluid (Robert et al. 1995; Boullier
et al. 1998). At the Donalda deposit, however, Boullier et al.
(1998) attributed the high-temperature aqueous inclusions to
hot fluid infiltration within the barren Proterozoic vein.
Furthermore, no high-temperature aqueous fluid was reported
for the mineralized veins at the Dumont-Bras d’Or deposit
(Firdaous 1995) and at the Orenada #2 deposit (Neumayr
and Hagemann 2002). The distinction of low- and high-
temperature data sets is variable in the different contributions
(Robert and Kelly 1987; Robert et al. 1995; Firdaous 1995;
Boullier et al. 1998; Olivo et al. 2006). For the sake of com-
parison, we attempted to systematically compare data ranges
of previous studies in Table 2.

The heterogeneous Type 1 FIAs including three subtypes
illustrate post-entrapment modifications of subtype 1a to sub-
type 1c based on the following reasons: (1) variable CO2

volume contents, (2) scattered TmCO2 and ThTOT, and (3)
similar salinities. Our study shows that the aqueous-carbonic
subtype 1a fluid inclusions represent the earliest hydrothermal
fluid, and therefore responsible for the post-peak regional
metamorphism main vein filling auriferous event at or after
2682 ± 8 Ma (Claoué-Long et al. 1990). This is in agreement
with the previous studies carried out in the Val-d’Or district
(Robert and Kelly 1987; Robert et al. 1995; Firdaous. 1995;

Fig. 10 Isochore interpretation for postentrapment modifications of Type 1 inclusions followed by entrapment of Types 2 and 3 inclusions
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Boullier et al. 1998; Neumayr and Hagemann 2002; Neumayr
et al. 2007; Olivo et al. 2006). We do not have evidence for
fluid immiscibility or fluid mixing as a mineral deposition
mechanism; instead, we propose a cooling and/or fluid-rock
interaction deposition processes. The presence of heteroge-
neous Type 1 FIAs including subtypes 1a, 1b, and 1c is as-
cribed to post-entrapment modification processes. The high-
temperature fluid inclusions do not represent the aqueous
phase of an immiscibility process as it has been suggested
by previous studies (Robert and Kelly 1987; Robert et al.
1995; Firdaous. 1995). The Type 2 fluid inclusions display
higher ThTOT, and the isochores suggest P-Tconditions differ-
ent from those of the CO2-bearing Type 1 fluid inclusions
(Fig. 10). Mixing of the CO2-bearing and the high-
temperature aqueous fluids was suggested for the Sigma de-
posit (Olivo et al. 2006), but it is not observed in this study. At
the Lac Herbin deposit, the distinct separate distribution of
Types 1 and 2 data points corresponding to unrelated FIAs,
with a major gap between both data sets in the ThTOT vs.
salinity diagram (Fig. 9f), is interpreted as a strong argument
against fluid mixing. Boullier et al. (1998) and Olivo et al.
(2006) at the Donalda and Sigma deposits, respectively, re-
ported aqueous high-temperature with rare to no CO2-bearing
inclusions in barren veins, and Olivo et al. (2006) have shown
that the high-temperature aqueous fluid at the Sigma deposit
were metal-poor based on laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) analyses. In addi-
tion, Mulja (1995) reported a similar late barren, high-
temperature calcic fluid in the Mo-, Li-, U-, and Be-bearing
pegmatites from four peraluminous monzogranite intrusions
in the Preissac-Lacorne batholith. These fluids were attributed
to contact metamorphism associated with the emplacement of
the Preissac-Lacorne batholith (S-type granite) at ca. 2645–
2611 Ma. Consequently, we conclude that the high-
temperature aqueous Type 2 fluid described in the Lac
Herbin deposit displays similarities that are comparable to
the barren calcic fluid described by Mulja (1995), Boullier
et al. (1998), and Olivo et al. (2006). Therefore, we interpret
the high-temperature aqueous fluid inclusions as a distinct
hydrothermal fluid unrelated and postdating the Type 1 fluid
inclusions.

Remobilization of gold during late, high-temperature,
aqueous saline fluid infiltration at Lac Herbin?

Six hornblendes from the Bourlamaque batholith-hosted Lac
Herbin deposit yield two age groups, respectively, at 2692–
2681 and 2650–2613 Ma (Lemarchand 2012). The older age
group is close to the minimum U-Pb zircon age at 2699Ma of
the synvolcanic intrusion (Wong et al. 1991) and was likely
disturbed by regional greenschist metamorphism
(Lemarchand 2012). The younger amphiboles represent a sub-
sequent thermal event, which overlaps with the age of contact

metamorphism associated with S-type granites, such as the
Preissac-Lacorne batholith at ca. 2645–2611 Ma (Feng et al.
1992; Kerrich and King 1993; Chown et al. 2002). At the Lac
Herbin deposit, 40Ar/39Ar geochronology onmuscovite yields
ages between 2615 and 2500 Ma, with two main peaks at
2585–2565 and 2523–2512 Ma (Lemarchand 2012). Similar
muscovite and biotite 40Ar/39Ar ages, and rutile U-Pb ages
were obtained at the Camflo (Zweng et al. 1993) and Sigma
deposits (Hanes et al. 1992). The difference in age between
amphibole from the Bourlamaque batholith and hydrothermal
muscovite is likely a consequence of high-temperature fluid
migration, recorded by the Type 2 fluid described at the Lac
Herbin deposit (ThTOT of 350 to 460 °C). Such a high-
temperature fluid event may have affected the muscovite
geochronometer, which has a closure temperature between
410 and 490 °C (Harrison et al. 1985), but not that of amphi-
bole, which has a higher closure temperature between 500 and
550 °C (Harrison and Fitzgerald 1986; Chiaradia et al. 2013).
The younger muscovite ages likely correspond to a fluid cir-
culation event during late-peak to post-peak contact metamor-
phism associated with the emplacement of S-type granites in
the Val-d’Or mining district.

Two main mineralizing stages are documented at the Lac
Herbin deposit. The main vein filling is attributed to syn- to
post-peak regional metamorphism, whereas the late fracture
filling corresponds to a late fluid introduction coeval with or
post-dating local, younger contact metamorphism. The late
fracture-filling paragenesis must be related to Ca-rich brines,
because precipitation of carbonates is coeval with gold and
chalcopyrite ± tellurides, pyrrhotite, sphalerite, pyrite, galena,
and cobaltite. Based on our fluid inclusion data and observa-
tions, the high-temperature Type 2 fluid belongs to the H2O-
NaCl-CaCl2 system and is trapped in secondary inclusions
crosscutting quartz boundaries. Therefore, we conclude that
the high-temperature aqueous Type 2 fluid likely represents a
Ca-rich fluid, which is interpreted to act as a remobilizing
agent for previously precipitated gold, and that may have
perturbed the muscovite geochronometer at Lac Herbin.
However, further research needs to be conducted to quantify
these processes.

Two scenarios may explain the late fracture filling miner-
alizing event. The first scenario involves a separate and new
pulse of auriferous hydrothermal fluid introducing and depos-
iting large amounts of late gold in fractures associated with
carbonates. By comparison with the first mineralizing event, a
large amount of hydrothermal fluid would probably be re-
quired to introduce and precipitate the large quantity of gold
precipitated during the fracture-filling event. The lack of hy-
drothermal alteration overprint, and the absence of an over-
growing, new quartz generation (as documented by the CL
images) during the fracture-filling event, as well as the signif-
icant formation of late carbonate veins with gold, telluride,
and base metals argues against the first scenario. Our second
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and preferred scenario involves a local fluid migration event
through the Val-d’Or mining district, recorded by the high-
temperature Type 2 fluid, during or after contact metamor-
phism and linked to the S-type granite intrusions at 2645–
2610 Ma. The high-temperature aqueous fluid, with interme-
diate to high salinities, certainly had the adequate chemistry to
dissolve the previously precipitated gold of the main filling
stage, and subsequently transport and reprecipitate it within
pyrite and quartz fractures (Stefánsson and Seward 2004;
Pokrovski et al. 2014). At temperature ranging from 400 to
500 °C, a pressure of 100 MPa and a moderate salinity, the
most important ligand responsible for gold dissolution and
transportation, is AuCl2

−; however, Au(HS)2
−, AuHS°, and

AuOH° ligands are also considered (Stefánsson and Seward
2004; Williams-Jones et al. 2009; Pokrovski et al. 2014).
Those conditions can be reconciled with the P-T conditions
of the Type 2 fluid (Fig. 10); therefore, the high-temperature
aqueous fluid, with intermediate to high salinities, is a good
candidate to act as a remobilizing agent for gold that precipi-
tated previously during the main vein filling gold-bearing
stage.

Furthermore, the similar ore paragenesis and the similar
chemical composition of gold and tellurides (ESM 1: Tables
S3 and S4) suggest that gold, sulfide, and tellurides from the
earlier, main vein filling stage, were dissolved, transported,
and reprecipitated by the late, high-temperature hydrothermal
fluid within late fractures at the deposit scale. We conclude
that the remobilization process was intimately linked to the
intrusion of the late S-type granites and was likely a local
process restricted to the Val d’Or gold deposits. In order to
test this interpretation, a comparison of orogenic gold deposits
from different districts with and without neighboring late S-
type granite intrusions could help to clarify such temporal
fluid relationships and remobilization processes.

Conclusions

The Lac Herbin orogenic gold deposit is similar in terms of
structural setting, vein textures, mineralogy, and fluids with
respect to other deposits hosted in the Val-d’Or mining
district, Abitibi greenstone belt. The paragenetic sequence
includes a classic example of the main vein filling with
abundant quartz, tourmaline, pyrite, and minor gold-
tellurides, sulfides, and carbonates, followed by a fracture
event, filled by chalcopyrite, gold, and Fe-Mn-carbonates
associated with minor base metals or tellurides.

The fluid inclusion study at the Lac Herbin deposit allows
us to offer an alternative model to fluid immiscibility and fluid
mixing scenarios to explain ore forming processes in the Val-
d’Or mining district. Three unrelated hydrothermal fluids
were recognized in this study. An early aqueous-carbonic fluid
(subtype 1a) is interpreted as the auriferous fluid present

during the early, main vein filling stage. Fluid inclusions that
had trapped the early aqueous-carbonic fluid were partly
reequilibrated during later temperature (and pressure) evolu-
tion of the Lac Herbin geological environment, as document-
ed by subtypes 1b and 1c aqueous-carbonic inclusions.
Together with the regional shear strain, the migration of a late,
aqueous high-temperature Type 2 Ca-rich fluid with interme-
diate to high salinities is likely responsible for the post-
entrapment modifications of the earlier Type 1 fluid inclusions
and also acted as a remobilization agent for gold from the early
vein stage into late fractures. The introduction of the high-
temperature fluid in the Lac Herbin environment is attributed
to syn- to post-contact metamorphism associated with the em-
placement of S-type granites in the Val-d’Or mining district.
Finally, a late, low-temperature saline aqueous fluid unrelated
to precipitation and remobilization of gold, similar to those
described elsewhere in the Canadian Shield, migrated through
the granodioritic Bourlamaque batholith-hosted gold veins
and is unrelated to gold deposition.
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