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Abstract The Main Sulfide Zone (MSZ) of the Great Dyke of
Zimbabwe hosts the world’s second largest resource of
platinum-group elements (PGE) after the Bushveld Complex
in South Africa. The sulfide assemblage of the MSZ com-
prises pyrrhotite, pentlandite, chalcopyrite, and minor pyrite.
Recently, several studies have observed in a number of Ni-Cu-
PGE ore deposits that pyrite may host significant amounts of
PGE, particularly Pt and Rh. In this study, we have determined
PGE and other trace element contents in pyrite from the
Hartley, Ngezi, Unki, and Mimosa mines of the Great Dyke
by laser ablation inductively coupled plasma mass spectrom-
etry (LA-ICP-MS). Based on the textures and PGE contents,
two types of pyrite can be differentiated. Pyl occurs as indi-
vidual euhedral or subhedral grains or clusters of crystals
mostly within chalcopyrite and pentlandite, in some cases in
the form of symplectitic intergrowths, and is PGE rich (up to
99 ppm Ptand 61 ppm Rh; 1.7 to 47.1 ppm Ru, 0.1 to 7.8 ppm
Os, and 1.2 to 20.2 ppm Ir). Py2 occurs as small individual
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euhedral or subhedral crystals within pyrrhotite, pentlandite,
and less frequently within chalcopyrite and silicates and has
low PGE contents (<0.11 ppm Pt, <0.34 ppm Rh, <2.5 ppm
Ru, <0.37 ppm Ir, and <0.40 ppm Os). Pyl contains higher
Os, Ir, Ru, Rh, and Pt contents than the associated pyrrhotite,
pentlandite, and chalcopyrite, whereas Py2 has similar PGE
contents as coexisting pyrrhotite and pentlandite. Based on the
textural relationships, two different origins are attributed for
each pyrite type. Pyl intergrowth with pentlandite and chal-
copyrite is inferred to have formed by late, low temperature
(<300 °C) decomposition of residual Ni-rich monosulfide sol-
id solution, whereas Py?2 is suggested to have formed by re-
placement of pyrrhotite and pentlandite caused by late
magmatic/hydrothermal fluids.

Keywords Pyrite - Base metal sulfides - PGE - LA-ICP-MS -
Main sulfide zone - Great Dyke - Zimbabwe

Introduction

Pyrite [FeS,] is a common minor sulfide in Ni-Cu-platinum-
group element (PGE: Os, Ir, Ru, Rh, Pt, and Pd) magmatic
sulfide deposits where the ore mineralogy usually consists of
variable amounts of pyrrhotite [(Fe;)S], pentlandite [(Fe,
Ni)oSg], and chalcopyrite [CuFeS,]. This base metal sulfide
assemblage forms by exsolution of pyrrhotite and pentlandite
from monosulfide solid solution (MSS) and exsolution of
chalcopyrite and pentlandite from intermediate solid solution
(ISS) (e.g., Naldrett 2004; Barnes and Ligthfoot 2005). The
MSS and ISS crystallized from magmatic sulfide liquid which
segregated by liquid immiscibility from ultramafic-mafic sili-
cate magmas at magmatic temperatures after reaching sulfide
saturation. However, the origin of pyrite in the sulfide assem-
blage is not well constrained. Experimental studies show that
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pyrite may form by exsolution from MSS at temperatures
below 700 °C if the ore composition falls on the S-rich side
of MSS in the ternary system Fe-Ni-S (Naldrett et al. 1967,
Kullerud et al. 1969; Craig 1973). However, this process does
not seem to be very common because most natural sulfide
melts do not contain the required amount of sulfur (around
40 wt% S at 600 °C, Kullerud et al. 1969; Craig 1973).
Alternatively, it has been proposed that pyrite forms as a result
of partial to total replacement of pre-existing sulfides (mainly
pyrrhotite) due to the activity of late magmatic, hydrothermal,
and/or metamorphic fluids (e.g., Djon and Barnes 2012; Pifia
et al. 2013; Smith et al. 2011; Holwell et al. 2014;
Vukmanovic et al. 2014). The renewed interest in understand-
ing the origin of pyrite follows the discovery that pyrite can
contain significant amounts of PGE, particularly Rh, Ru, Os,
Ir, and Pt, most probably in solid solution (e.g., Oberthiir et al.
1997; Dare et al. 2011; Djon and Barnes 2012; Pina et al.
2013; Smith et al. 2014; Duran et al. 2015). The concentration
levels of PGE in pyrite appear to be linked to its origin. In
general, pyrite replacing pre-existing sulfides (mainly pyrrho-
tite, less commonly pentlandite) inherits the concentrations of
Os, Ir, Ru, and Rh of the replaced mineral (Dare et al. 2011,
Djon and Barnes 2012; Pifia et al. 2013; Smith et al. 2014;
Duran et al. 2015). In contrast, pyrite directly precipitated
from hydrothermal or metamorphic fluids is poor in [IPGE
(Os+1Ir+Ru) relative to pyrrhotite and pentlandite (Pifa
et al. 2013). Furthermore, the detection of trace amounts of
Pt in pyrite is significant, as Pt concentrations in pyrrhotite,
pentlandite, and chalcopyrite are very low and Pt is typically
present in the form of discrete platinum-group minerals
(PGM) in most Ni-Cu-PGE deposits (e.g., Ballhaus and
Sylvester 2000; Barnes et al. 2006; Godel and Barnes 2008).
It is, thus, important to understand the formation mechanisms
of pyrite in Ni-Cu-PGE ores to determine its impact on the
distribution of PGE in the deposits.

In the Great Dyke of Zimbabwe, the world’s second largest
resource of PGE after the Bushveld Complex in South Africa
(Naldrett 2011; Zientek 2012), pyrite forms part of the base
metal sulfide assemblage consisting of pyrrhotite (~40—
50 vol% total sulfides) and approximately equal amounts
(~25-30 vol%) of pentlandite and chalcopyrite (Oberthiir
2011). Whereas pyrite in most Ni-Cu sulfide mineralization
occurs exclusively associated with pyrrhotite (e.g., Dare et al.
2011; Pifia et al. 2013; Duran et al. 2015), in the Great Dyke
pyrite, in addition to being related to pyrrhotite, also exhibits
unusual textures consisting of small individual grains inti-
mately intergrowth in a symplectitic manner with pentlandite
and chalcopyrite. In this contribution, we have determined the
concentrations of PGE, Au, Ag, Co, Se, As, Te, Bi, and Sb of
pyrite from the Hartley, Ngezi, Unki, and Mimosa mines
(Fig. 1) which exploit the Main Sulfide Zone (MSZ) of the
Great Dyke of Zimbabwe, using laser ablation inductively
coupled plasma mass spectrometry (LA-ICP-MS). In addition
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to assessing the role of pyrite as host of PGE, we use the trace
element concentrations and the textures exhibited by pyrite to
discuss the possible mechanisms involved in its formation.

The Great Dyke of Zimbabwe

The Great Dyke of Zimbabwe (Fig. 1) is a 550-km long and 4-
to 11-km wide linear, mafic, and ultramafic layered intrusion
that was emplaced into Archean granites and greenstone belts
of the Zimbabwe craton at 2575+0.7 Ma (Oberthiir et al.
2002). On the basis of structure and style and continuity of
layering, the Great Dyke is subdivided into several contiguous
magmatic chambers and subchambers (Prendergast 1987;
Wilson and Prendergast 1989; Wilson 1998): the Musengezi,
Darwendale, and Sebakwe subchambers of the North
Chamber, and the Selukwe and Wedza subchambers of the
South Chamber (Fig. 1). The Great Dyke shows a well-
defined igneous stratigraphy and is divided into a lower
Ultramafic Sequence (dunite, harzburgite and pyroxenite)
and an upper Mafic Sequence (gabbro and norite) (Wilson
1982; Wilson and Prendergast 1989). In the North chamber,
the Ultramafic Sequence is characterized by relatively few,
thick (avg 100 m) cyclic units, whereas in the South chamber,
it has a greater number of thinner (10-30-m thick) cyclic units.
The economic PGE mineralization (3—5 ppm of Pt+Pd+
Rh+ Au, Oberthiir 2011) is restricted to disseminations of
intercumulus sulfides (up to 10 modal %) in the several
meters-thick MSZ situated in pyroxenites some meters below
the transition from the Ultramafic to the Mafic Sequence
(Prendergast and Wilson 1989; Oberthiir et al. 1997; Wilson
and Prendergast 2001; Oberthiir 2011). The MSZ is a laterally
continuous layer, and its stratigraphic position is remarkably
persistent in all subchambers. From the base upward, the MSZ
displays a well-defined metal zonation characterized by a
number of consecutive peaks of PGE, base metals and sulfide
(Fig. 2) (e.g., Prendergast and Wilson 1989; Oberthiir 2002,
2011). The MSZ is divided into a basal PGE subzone which
overlaps slightly with an overlying base metal sulfide (BMS)
subzone. The PGE subzone is further divided into a lower part
(Pd>Pt) and an upper part (Pd <Pt) (Fig. 2). Upward within
the MSZ, Pd/Pt and IPGE/PPGE ratios decrease IPGE=0s +
Ir+ Ru; PPGE=Rh+ Pd+Pt). The peak of Pt marks the tran-
sition from the PGE to BMS subzones (Fig. 2). The upward
zoning sequence Pd — Pt— base metal sulfides is interpreted
to be a primary magmatic feature consisting in decoupling of
Pd from Pt and the PGE group of'a whole from the base metals
by a combined equilibrium-Rayleigh fractionation (Wilson
and Tredoux 1990; Wilson 2001). The most strongly
chalcophile elements were preferentially concentrated in the
first sulfide liquid and became rapidly depleted in the residual
liquid and subsequently formed sulfide. Alternatively,
Boudreau and Meurer (1999) suggest that the zoning trends
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Fig. 1 Generalized geology and
subdivision into chambers and
subchambers of the Great Dyke
(after Wilson and Prendergast
1989; Wilson 1998). Also shown
are the localities of platinum
mines studied

- Mafic Sequence
D Ultramafic Sequence

Darwendale

Hartley mine

i M B A ¢ :
N

North Chamber

Ngezi mine

s Q
Unki mine
o RS :
L J
Bulawayo

of the MSZ result from a chromatographic control during
upward migration of aqueous fluids. According to this model,
the metal fractionation could have developed in a vapor-
refining zone as fluids evolved during solidification of a cu-
mulus pile, leached sulfide and deposited it higher up in the
crystal pile. The metal patterns are proposed to result from
different chemical velocities of the various PGE in an upward
migrating zone.

In the MSZ, sulfides mainly comprise, in decreasing order
of abundance, pyrrhotite, pentlandite, chalcopyrite, and sub-
ordinate pyrite. Mackinawite, violarite, galena, sphalerite,
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Fig. 2 Schematic showing the metal zonation of the Main Sulfide Zone
(after Oberthiir 2011)

rutile, molybdenite, cobaltite, argento-pentlandite, and various
PGM (moncheite, maslovite, merenskyite, michenerite,
sperrylite, and cooperite-braggite) are rare constituents
(Oberthiir et al. 2003). Detailed reviews of the geology, pe-
trography, and mineralization of the Great Dyke were provid-
ed by Wilson (2001), Prendergast (1998), Wilson and
Prendergast (2001), and Oberthiir (2002, 2011).

Sampling and analytical methods

A total of eight representative samples of the MSZ (two from
the Hartley mine, two from Ngezi mine, three from Unki
mine, and one from Mimosa mine) were selected on the basis
of their relatively high modal abundances of pyrite. Pyrite is
common in the BMS subzone of the MSZ but it is particularly
abundant at and around the Pt-peak situated at the top of the
PGE subzone. Accordingly, the studied samples were selected
from the Pt-peak section of the MSZ in the four mines. In
order to compare the trace element concentrations between
pyrite and coexisting base metal sulfides, we also analysed
pyrrhotite, pentlandite, and chalcopyrite where these sulfides
are also present in a same aggregate. Pyrrhotite, pentlandite,
chalcopyrite, and pyrite grains were studied using reflected-
light optical microscopy and selected for laser ablation analy-
ses in 2.5-cm diameter polished blocks. Sulfides were first
analysed for major elements (S, Fe, Ni, and Cu) at the
Electron Microscope Centre of the University Complutense
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of Madrid, using a JEOL JXA-9800 M electron microprobe.
The accelerating voltage was 20 kv, the beam current 50 nA,
and the beam diameter 1 to 5 um. Galena (PbS) for S and pure
metals for Ni, Fe, and Cu were used as standards.

The trace elements were determined by LA-ICP-MS at
LabMaTer, Université du Quebec a Chicoutimi (UQAC),
Canada, using a Resolution 193-nm Excimer laser with a
M-50ablation cell and an Agilent 7700x quadrupole mass spec-
trometer. An argon-helium gas mix was used as carrier gas.
Samples and reference materials were placed in the chamber
together, and the reference materials were run before and after
each sample. The spectra were collected for 30 s with the laser
switched off to determine the base line. Then, line scans across
the grains were carried out using a beam size of 33 pm, a laser
frequency of 15 Hz, a power of 0.5 mJ/cm®, and a speed of
lateral laser displacement of 5 um/s. The material was then
analysed using the mass spectrometer in time resolution mode
using mass jumping and a dwell time of 10 ms/peak. The fol-
lowing isotopes were monitored: 29Si, 33S, 34S, 57Fe, 59Co,
S0Nii, SINi, S3Cu, ©5Cu, %Zn, "As. ¥Se. Ru, '*'Ru, '©Rh,
105p, 100pg 10746 108pg 1icg 121gp 125T 187Re 1890,
191y 1931 195pg 197 Ay, 296pp, 298Ph, and >*°Bi. Data reduction
was carried out using Iolite software (Paton et al. 2011), and
internal standardization was based on >'Fe using the mean iron
contents in the minerals as determined by electron microprobe.
For the calibration of PGE and Au, the certified reference ma-
terial P0727, a synthetic FeS doped with approximately 40 ppm
of each PGE and Au, provided by the Memorial University of
Newfoundland was employed. For the remaining elements, we
used the certified reference material MASS-1, a ZnCuFeS
pressed power pellet provided by the United States Geological
Survey (USGS) and doped with 5070 ppm Ag, As, Co, Bi, Sb,
Se and Te (Wilson et al. 2002). Two in-house reference mate-
rials, JB-MSS5 and UQAC-MSS-1, were used to monitor the
accuracy of the calibration. Analyses of the in-house reference
materials agreed with the certified and working values
(Table 1). '°'Ru was corrected for *'Ni**Ar interference using
UQAC-MSSI: the correction is equivalent to 0.8 ppm in pent-
landite and less than the lower limit of detection in pyrrhotite,
pyrite and chalcopyrite. The amount of Cu interference on
193Rh and '°°Pd from **Cu*®Ar and **Cu*Ar, respectively,
was determined by running a (CuFe)S, blank at the beginning
and end of each session. In all phases except chalcopyrite, the
Cu corrections on Rh and Pd are below the lower limit of detec-
tion. The interference of Cu arguide on '“Rh in chalcopyrite
exceeds 50 % of the Rh signal and thus Rh is not reported in
chalcopyrite. Lower limit of detection for LA-ICP-MS analyses
was calculated as three sigma background counts for the gas
blank and each sulfide analyses. Tables with the individual
analyses for pyrrhotite, pentlandite, chalcopyrite, and pyrite
are provided in Tables 2, 3, 4, and 5, respectively.

Maps of the element distribution were made on sulfide
aggregates composed of pyrrhotite, pentlandite, chalcopyrite,
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and pyrite using a beam size of 15 um and a stage movement
speed of 12 pm/s. A laser frequency of 15 Hz and a power of
4-6 J/em® were used to map the aggregates in their entirety.
The maps were then generated using the lolite software pack-
age on the basis of the time-resolved composition of each
element.

Pyrite textures

In all studied samples of the four mines, base metal sulfides
occur as disseminations of polymineralic aggregates, up to
several millimetres across, interstitial to the silicate framework
(Fig. 3a). Generally, the igneous host rocks are
orthopyroxenites composed of >80 wt% sub- to idiomorphic
cumulus orthopyroxene with minor plagioclase,
clinopyroxene, quartz, K-feldespar, and phlogopite as intersti-
tial phases. Secondary phases are very minor (<5 wt%) and
include actinolite, talc, chlorite, epidote, and carbonates. In the
disseminated sulfides, pentlandite forms coarse grains or mi-
nor flame-shaped exsolution lamellae within pyrrhotite.
Chalcopyrite typically occurs along the peripheries of sulfide
aggregates and as isolated monomineralic grains.

Previous studies found that pyrite in the MSZ of the Great
Dyke predominantly occurs associated with or within pyrrho-
tite (Oberthiir 2011), as typically observed in other magmatic
sulfide ore deposits worldwide such as Aguablanca (Pifia et al.
2013) and Sudbury (Dare et al. 2011). In this study, we differ-
entiate two textural types of pyrite: Pyl present in Ngezi and
Hartley mines and Py2 from Unki and Mimosa mines.

Pyl forms fine symplectitic intergrowths with pentlandite
and chalcopyrite occurring rarely within pyrrhotite (Fig. 3b—
d). Locally, the Pyl crystals seem to have coalesced during
their growth resulting in poikiloblastic aggregates that enclose
chalcopyrite and pentlandite (Fig. 3b). These symplectitic tex-
tures between pyrite, pentlandite, and chalcopyrite resemble
those described by Gervilla and Kojonen (2002) from the
Keivitsansarvi Ni-Cu-PGE sulfide deposit in Finland, by
Lorand and Alard (2011) in orogenic peridotites of the
French Pyrenees, and by Naldrett et al. (2009) in the UG-2
reef of the Bushveld Complex, South Africa.

Py2 forms small individual euhedral or subhedral blocky
crystals within pyrrhotite, pentlandite and, to a lesser extent,
within chalcopyrite and silicates (Fig. 3e—f). In these samples,
actinolite alteration occurs at the boundaries between silicates
and sulfides. Silicate—sulfide contacts are less sharp than in the
case of unaltered aggregates and sulfide grains, particularly
chalcopyrite, occur along cleavage planes of actinolite
(Fig. 3g). Epidote also occurs replacing plagioclase. In one
sample from Unki (sample AS-5221), magnetite occurs in
microfractures in pentlandite that also hosts heterogeneous
pyrite crystals (Fig. 3h).
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Concentrations of PGE and other elements in BMS
Pyrrhotite, pentlandite, and chalcopyrite

The highest PGE contents were measured in pyrrhotite and
pentlandite from the Hartley mine with pyrrhotite containing
1.1 to 3.0 ppm Ir and 1.6 to 3.7 ppm Ru and pentlandite
containing up to 14.7 ppm Ru, 127.9 ppm Rh, 9.0 ppm Pt,
and from 44.5 to 227.9 ppm Pd (Tables 2 and 3). In most
cases, the laser ablation signal is quite stable (Fig. 4a) suggest-
ing that PGE are in solid solution within sulfide grains. In a
few cases, the ICP-MS signal shows well-developed narrow
Os-Ir-Ru-(Pt) peaks (Fig. 4b) probably corresponding to
microinclusions of discrete [PGE-bearing phases. In these
cases, the microinclusions were excluded from the spectrum
when determining the concentrations of the elements, so the
PGE contents reported here are considered to be in solid so-
lution within sulfides. These high PGE values in pyrrhotite
and pentlandite from Hartley contrast with the low contents
registered in pyrrhotite and pentlandite from Ngezi, Unki, and
Mimosa mines. At these localities, pyrrhotite hosts less than
0.3 and 2 ppm Ir and Ru, respectively, and Rh, Os, and Pt are
below their respective detection limits (<0.04 ppm Rh,
<0.1 ppm Os, and <0.05 ppm Pt). Pentlandite contains up to
5.1 ppm Ru (typically <3 ppm), less than 1 ppm Rh, and Os
and Ir are typically below the detection limit. Palladium in
pentlandite from Ngezi, Unki, and Mimosa ranges from 4.7
to 271 ppm (generally <40 ppm). At Ngezi, pentlandite hosts
appreciable though variable amounts of Pt (up to 6.2 ppm).
The low PGE abundances in pentlandite observed in the pres-
ent study in comparison to the Pd contents reported by
Oberthiir et al. (1997) (up to 2236 ppm Pd and 259 ppm Rh
from the lower PGE subzone at Hartley, Unki, and Mimosa),
Oberthiir et al. (2003) (up to 2506 ppm Pd and 562 ppm Rh in
pentlandite from the lower part of the PGE subzone at
Hartley), and Locmelis et al. (2010) (up to 6500 ppm Pd in
pentlandite at Hartley) are consistent with the provenance of
samples from the Pt-peak of the MSZ, near to the transition
between the PGE and BMS subzones (Fig. 2), since Pd con-
tents in pentlandite oscillate between 500 and 1500 ppm Pd
through most of the PGE subzone and drop to values around
40 ppm Pd when reaching the Pt peak. In all studied samples,
chalcopyrite is poor in PGE with only trace amounts of Ru
(0.2-0.4 ppm) and Pd (0.5-4.1 ppm) (Table 4). Regarding the
other trace elements, Se contents are similar in sulfides from
the four mines and range from 150.7 to 211.4 ppm Se in
pyrrhotite, from 109.0 to 201.4 ppm Se in pentlandite, and
from 93.6 to 133.7 ppm Se in chalcopyrite. Pentlandite hosts
from 2485 to 9010 ppm Co and pyrrhotite contain between
2864 and 10690 ppm Ni and higher Co contents at Unki and
Mimosa (73.2 to 260.4 ppm) compared to Hartley and Ngezi
(32.8 t0 90.0 ppm). In all sulfides, Au is below the detection
limit (<0.08 ppm).
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Pyrite

There are notable differences between the PGE abundances of
Pyl from the Hartley and Ngezi mines and Py2 from the
Mimosa and Unki mines (Table 5). Pyl is relatively rich in
PGE: from 1.1 to 99.0 ppm Pt, 1.4 to 61.1 ppm Rh (Pt and Rh
contents are typically>10 ppm), 1.7 to 47.1 ppm Ru, 0.1 to
7.8 ppm Os, and 1.2 to 20.2 ppm Ir. In contrast, PGE concen-
trations in Py2 are consistently low (<0.11 ppm Pt, <0.34 ppm
Rh, <2.5 ppm Ru, <0.37 ppm Ir, and <0.40 ppm Os). Figure 4¢
shows a typical time resolved analyses (TRA) spectra of Pyl
characterized by smooth, parallel patterns of Os, Ir, Ru, Rh,
and Pt that suggests these PGE are really present in solid solu-
tion. Occasionally, the TRA spectra shows peaks of Os-Ir-
Ru-(Rh) microinclusions (Fig. 4d) that were not considered dur-
ing the data reduction. In the Hartley and Ngezi samples, the
primitive mantle-normalized PGE patterns show that the PGE
abundances in Pyl are generally higher than those in co-existing
pyrrhotite and pentlandite with the exception of Rh in pentlandite
from Hartley where Rh contents are notably higher (Fig. Sa-b).
HAN-106 sample from Hartley is another exception where Pyl
hosts similar amounts of Os, Ir, and Ru to pyrrhotite and pent-
landite from a polymineralic grain (Fig. 5a). The PGE abun-
dances in Pyl from Hartley analysed here are in agreement with
previous data reported by Oberthiir et al. (1997) from the Hartley
mine using micro-pixe (40 ppm Ru, 10 ppm Rh, 9 ppm Pd, and
233 ppm Pt on average). In the Mimosa and Unki pyrites (Py2),
the primitive mantle-normalized PGE patterns are very similar to
those of pyrrhotite and pentlandite (Fig. 5c—d). Palladium in
pyrite is commonly below 2 ppm in all studied samples except
for some grains from Ngezi that contained up to 60.4 ppm Pd.
Using all individual pyrite analyses from the four studied mines,
Os, Ir, Ru, Rh, and Pt positively correlate with each other
(Fig. 6a—c). In contrast, Pd poorly correlates with all other
PGE. Gold, Te, Ag, Sb, and Bi contents are higher in Py2 from
Mimosa and Unki compared to Pyl from Hartley and Ngezi
(Fig. 5). Gold is positively correlated with Te and Bi (Fig. 6d),
and Pt correlates positively with Au in Pyl from Hartley and
Ngezi. Nickel contents in Pyl and Py2 are variable but they are
typically below 2.5 wt% in both cases.

Compositional maps of two sulfide aggregates composed of
pyrrhotite, pentlandite, chalcopyrite, and Pyl from the Hartley
and Ngezi mines illustrate the trace element distribution among
sulfide phases (Figs. 7 and 8). The maps indicate the relative
concentration of the elements and are semi-quantitative. The Cu
and Ni distribution mirrors the presence of chalcopyrite and pent-
landite, respectively, whereas the Py1 is defined by elevated sul-
fur values. In both aggregates, Pt, Os, Ir, Ru, Co, Se, and Bi are
preferentially concentrated in pyrite. Osmium, Ir, and Ru delin-
eate almost perfectly the outlines of pyrite crystals. In Fig. 7,
pyrite is also the main carrier of Rh and As, but in Fig. 8, Rh
occurs preferentially in pentlandite and As is absent in all sulfide
phases. Palladium concentrations are highest in pentlandite.
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Fig. 3 Representative
photomicrographs in reflected
light showing the sulfide
assemblage with different pyrite
textures of the Main Sulfide Zone
in the Great Dyke of Zimbabwe. a
Disseminated sulfides located
interstitially to orthopyroxene
(Opx) composed by pyrrhotite
(Po), pentlandite (Pn), and
chalcopyrite (Cpy), sample
6041b, Unki mine. b—c Irregular
pyrite (Py1) grains intergrowth in
chalcopyrite and minor
pentlandite, sample 5863b, Ngezi
mine. d Symplectitic-type
textures between pyrite (Py1) and
pentlandite and chalcopyrite,
sample 5863b, Ngezi mine. e
Porous pyrite (Py2) grain situated
within pentlandite, sample 5535,
Mimosa mine. f Blocky euhedral
to subhedral pyrite (Py2) grains
within pentlandite, sample 604 1b,
Unki mine. g Chalcopyrite along
cleavage planes of actinolite,
sample 5535, Mimosa mine. h
Pyrite (Py2) and magnetite (Mgt)
anhedral crystals within
pentlandite, sample AS-5221,
Unki mine

Discussion

Mechanisms of pyrite formation

The formation of pyrite in Ni-Cu-(PGE) magmatic sulfide de-
posits is commonly attributed to the activity of late magmatic or
hydrothermal fluids that trigger the replacement of pre-existing

sulfides (mostly pyrrhotite) by pyrite due to increase of sulfur
activity (i.e., increasing fS,) or removal of Fe (Oberthiir 2002,
2011; Djon and Barnes 2012; Pifia et al. 2013; Smith et al. 2014;
Holwell et al. 2014; Duran et al. 2015). For example, hydration
of igneous silicates (pyroxene and plagioclase) leads to the for-
mation of secondary hydrous silicates such as chlorite, actinolite,
and epidote decreasing the H,O content of the fluids. This leads
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Fig. 4 Selected time resolved analysis (TRA) spectra for LA-ICP-MS
lines ablated across a pentlandite (analyses no. HAN-106-6.2, Hartley
mine), b pentlandite (analyses no. 5860-3.1, Ngezi mine), ¢ pyrite
(Py1, analyses no. 5860-3.2, Ngezi mine), and d pyrite (Pyl, analyses
no. HAN-106-2.3, Hartley mine). Note that TRA spectra labeled (a) and

to an increase in S and fS, of the fluids driving the stabilization
of pyrite over pyrrhotite (Kanitpanyacharoen and Boudreau
2013). Pyrite can also form by loss of Fe from pyrrhotite to
surrounding chlorite, actinolite, or chromite. Previous studies
in the Great Dyke of Zimbabwe noted that pyrite predominately
replaces pyrrhotite, and its abundance increases upward through
the BMS subzone of the MSZ sequence (Oberthiir 2002; Li et al.
2008). This observation led Oberthiir (2002) to suggest a general
trend of upward increasing fS, within the MSZ. According to Li
et al. (2008), the increase in fS, that triggered the replacement of
pyrrhotite by pyrite in the MSZ took place as a consequence of
the release of S from the underlying zone upward due to exten-
sive actinolite alteration. Based on sulfur isotope values of py-
rite, which range from 0.4 to 1 %o 84S, Li et al. (2008) sug-
gested that the fluids involved in the formation of pyrite were of
a reduced nature (H,S-bearing). In our Unki and Mimosa sam-
ples, Py2 occurs as blocky grains inside pentlandite, pyrrhotite
(Fig. 3e—f), and to a lesser extent, among silicate grains, and the
primary silicate assemblage is relatively altered as shown by the
presence of actinolite and epidote at the contacts between
orthopyroxene or plagioclase and sulfides, respectively. This
observation suggests that Py2 in these samples is likely second-
ary and formed during episodes of late magmatic and/or hydro-
thermal alteration as described above.
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(¢) do not show any PGE-bearing microinclusion, whereas spectra (b) and
(d) exhibit PGE-bearing nuggets. In these cases, the microinclusions were
excluded from the spectrum when determining the concentrations of the
elements

In the Hartley and Ngezi samples, Pyl is intimately associ-
ated with pentlandite and chalcopyrite, in some cases in form of
symplectitic intergrowths, and is texturally not related to pyrrho-
tite (Fig. 3b—d), although pyrrhotite is present in the aggregates.
Furthermore, these pyrite-bearing sulfide aggregates do not
show any evidence of alteration by hydrothermal fluids such
as the presence of hydrous silicates as epidote or actinolite be-
tween silicates and sulfides. These features are regarded relevant
for the origin of pyrite and raise uncertainty as to whether these
Pyl are the result of replacement as has been interpreted at
Mimosa and Unki or form part of the original assemblage de-
veloped during crystallization and cooling of a high temperature
sulfide melt. If hydrothermal fluids had played some role in the
formation of pyrite, then the alteration mechanism must explain
the replacement of pentlandite and chalcopyrite (but not pyrrho-
tite) by pyrite. Similar pyrite, pentlandite, and chalcopyrite in-
tergrowth textures have been early described in other deposits
by Gervilla and Kojonen (2002), Lorand and Alard (2011), and
Naldrett et al. (2009). In all these cases, pyrite occurs associated
with pentlandite and/or chalcopyrite locally forming fine
symplectitic intergrowths. At Keivitsansarvi, Gervilla and
Kojonen (2002) propose that with the drop of temperature below
230 °C Ni-rich MSS decomposed forming pyrite and
pentlandite. Lorand and Alard (2011) suggest that the formation
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(Cpy, orange), and pyrite (Py, black) in different samples for Hartley the PGE

(a), Ngezi (b), Mimosa (¢), and Unki (d) mines. Normalizing values are

100 7 a @ Ngezi @ Hartley 1001 b

ja}
X Unki 4 Mimosa » a h. o
10 # ) o ~
£ ° E 10 o
L] ] Q
% 1 1 ° Q fe) o °
x - .
= S g ']
0,1 A1 < xXx X
0,01 3 0.1 7 = = ‘xx
‘ x5 AT
0,001 v 1 ) 0,01 . . \
0,01 0,1 1 10 0,1 1 10 100
Os, ppm Ru, ppm
1007 € 1000 7 d
‘. ..
. 2.
£ 10 7 = -‘~ " ;s(* A
s ..
o ] ° ° 100 x
" ] o £ %
£ 1 & ® u a o
[ XX % a -
A =10 1 &P
0,1 1 * A o °
’ XX a ]
X A (]
0,01 T T T T Y 1 T T \
0,001 0,01 0,1 1 10 100 0,01 0,1 1 10
Pt, ppm Au, ppm

Fig. 6 Binary plots showing positive correlations between individual limit. Note that Pyl from Hartley and Ngezi has distinctly higher
abundances in pyrite grains: a Os vs. Ir, b Ru vs. Rh, ¢ Rh vs. Pt, and d contents of Os, Ir, Ru, Rh, and Pt than Py2 from Unki and Mimosa.
Au vs. Bi. When the obtained value was below the detection limit, this Notably, Py2 from Unki and Mimosa is richer in Bi and Au than Pyl
value was represented. Grey shades mean values below the detection from Hartley and Ngezi
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Fig. 7 Element distribution maps between coexisting pyrrhotite, The maps show semi-quantitative values. Cobalt, Os, Ir, Ru, Rh, Pt, Se,
pentlandite, chalcopyrite, and Pyl (sample 5863, Ngezi mine). Mapping Bi, and As are preferentially concentrated in Pyl whereas Pd
was carried out by 15 um-sized line scans ablating the whole aggregate. preferentially concentrates in pentlandite
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of pyrite intergrowths with pentlandite and chalcopyrite in
orogenic peridotites from the French Pyrenees was due to
subsolidus sulfurization processes that increased the fS, of the
system as a consequence of addition of external S. Lorand and
Alard (2011) propose that pentlandite was first transformed into
Ni-rich MSS at temperatures above 300 °C which then exsolved
to pentlandite + pyrite symplectites during cooling below
300 °C. According to Lorand and Alard (2011), symplectite
intergrowths between chalcopyrite, pyrite, and pentlandite prob-
ably formed from Cu-rich MSS. In the case of the UG-2 reef,
Naldrett et al. (2009) suggest that on cooling, removal of Fe
from sulfides to chromite generated a significant rise in fS, of
the system. The sulfur-enriched sulfide liquid crystallized first at
900 °C as a Ni-rich MSS in equilibrium with a Cu-rich liquid.
On further cooling, the Ni-rich MSS gave rise to the pentlandite
and pyrite assemblage whereas the liquid solidified very rapidly
crystallizing in the form of ISS-pyrite symplectites.

It is suggested here that the pyrite-pentlandite intergrowths
observed in the Hartley and Ngezi samples probably formed
during low-temperature equilibration of a Ni-rich MSS. The
pentlandite composition is closely related to the sulfide minerals
with which the pentlandite is associated. Experimental studies in
the system Fe-Ni-S at 230 °C (Misra and Fleet 1973) and the
tentative <135 °C Fe-Ni-S phase diagram indicate that pentland-
ite coexisting with pyrite is relatively rich in Ni (Naldrett et al.
2009). Indeed, pentlandite in the pentlandite-pyrite assemblages
from the Great Dyke is relatively rich in Ni with [Fe:(Fe+Ni)]
ratios (in wt. %) ranging from 0.46 to 0.49. These ratios are
further similar to those observed in pentlandite equilibrated with
pyrite and pyrrhotite in the Marbridge deposit, Quebec (Graterol
and Naldrett 1971), where it was empirically demonstrated the
existence of a stable tie-line between pentlandite and pyrite in
the Fe-Ni-S system at low temperatures. In any event, the pyrite-
pentlandite symplectitic intergrowth points to an equilibration
temperature below the maximum stability of pentlandite with
pyrite, which is reported to be below 280 °C (Misra and Fleet
1973) and 213412 °C (Craig 1973).

Pyrite as host of PGE

According to the PGE concentrations measured in the present
study, two types of pyrite are differentiated in the Great Dyke
of Zimbabwe: (i) PGE-rich Pyl present in the Hartley and
Ngezi samples and (ii)) PGE-poor Py2 present in the Unki
and Mimosa samples. All samples were taken approximately
from the Pt-peak of the MSZ, so this difference cannot be
attributed to the general vertical PGE geochemical zonation
present in the MSZ profiles (e.g., Prendergast and Wilson
1989; Oberthiir 2002, 2011). The primitive mantle-
normalized PGE patterns shown in Fig. 5 seem to indicate a
close relationship between the PGE concentrations of Pyl and
Py2 and the concentrations of coexisting pyrrhotite and pent-
landite. The Ngezi samples represent an exception. Despite

the low PGE contents in pyrrhotite and pentlandite (akin to
Unki and Mimosa), pyrite is enriched in PGE with values even
exceeding those of Hartley. As argued above, Py2 in the Unki
and Mimosa samples is interpreted as having formed by par-
tial replacement of pre-existing sulfides (mainly, pyrrhotite
and pentlandite) due to the activity of late magmatic or hydro-
thermal fluids. During this process, pyrite likely inherited the
low PGE contents of the replaced pyrrhotite and pentlandite as
suggested for other Ni-Cu-PGE sulfide deposits (e.g., Dare
et al. 2011; Djon and Barnes 2012; Pifia et al. 2013; Smith
etal. 2014).

According to partition coefficients between MSS and sul-
fide melt (Mungall et al. 2005) and empirical observations in
several Ni-Cu and PGE ore deposits (e.g., Barnes and Ripley
2015), the IPGE (Os, Ir, and Ru) and Rh are expected to be
present in solid solution within the products of MSS crystal-
lization, namely, pyrrhotite and pentlandite. The lower con-
centrations of the IPGE in pyrrhotite and pentlandite of the
Unki and Mimosa samples in comparison with pyrrhotite and
pentlandite in the Hartley samples may indicate that in Unki
and Mimosa sulfides formed from particularly PGE-depleted
sulfide liquids. The role of the fractionation of sulfide liquid in
the PGE distribution within the MSZ was noted by Oberthiir
(2002) who indicated that the low content of PGE inside sul-
fides of the BMS subzone of the MSZ in comparison with the
sulfides of the PGE subzone (particularly, the drop of Pd in
pentlandite from values of 500—1500 ppm through most of the
PGE subzone to values below 40 ppm in the BMS subzone) is
a consequence of the progressive depletion in PGE of the
sulfide melt undergoing fractionation up-sequence.
However, this interpretation must be taken with caution be-
cause the availability in the system of semimetals such as Bi,
Te, Sb, or As exerts a notable influence on the redistribution
and final mineralogical siting of the PGE (Helmy et al. 2007,
2013). Arsenic, Sb, Bi, and Te are poorly soluble in MSS and
tend to concentrate in residual melts that coexist with the high
temperature sulfides (Helmy et al. 2010; Liu and Brenan
2015). These semimetals are potent complexing agents for
Pt and Pd so, when present, the As, Bi, and Te-rich melts
scavenge PGE originally contained in the sulfide melt and
avoid they enter the lattices of high-temperature sulfides.
Finally, the decrease of temperature will result in the crystal-
lization of PGE arsenides, tellurides, and bismuthotellurides
often along grain-boundary triple junctions of base metal sul-
fides (Helmy et al. 2007; Holwell and McDonald 2007). As a
consequence, the PGE content in sulfides will depend on the
combination of different factors including the fractionation of
the sulfide melt, the ability of each sulfide to incorporate PGE
in their lattice and, importantly, the presence or not of PGE-
ligand semimetals.

The results obtained from the Hartley and Ngezi samples
highlight a feature previously documented in other Ni-Cu-
PGE sulfide deposits that include pyrite in their sulfide
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4 Fig. 8 Element distribution maps between coexisting pyrrhotite,
pentlandite, chalcopyrite, and Pyl (sample HAN-106, Hartley mine).
Mapping was carried out by 15 um-sized line scans ablating the whole
aggregate. The maps show semi-quantitative values. Cobalt, Os, Ir, Ru,
Pt, Se, and Bi are preferentially concentrated in Pyl. Palladium and Rh
preferentially concentrate in pentlandite

assemblage: among all sulfides, pyrite is the most important
host of Pt. At Aguablanca, individual zoned grains of pyrite
are the only base metal sulfides to host this metal with contents
up to 9 ppm Pt (Pifia et al. 2013). Compared to co-existing
pyrrhotite and pentlandite, accessory pyrite from the
McCreedy East deposit in Sudbury is enriched in Pt with
values ~0.1 ppm (Dare et al. 2011). At Lac des Iles, Ontario
(Canada), Pt in all base metal sulfides, except pyrite, is below
0.1 ppm, but reaches values as high as 11 ppm in pyrite (Djon
and Barnes 2012; Duran et al. 2015). The interpretation attrib-
uted to the presence of Pt in pyrite is quite analogous in all
these cases. Because pyrite typically replaces pyrrhotite and
pyrrhotite does not contain any Pt, it is interpreted that the
hydrothermal fluids responsible of the replacement of pyrrho-
tite by pyrite may have dissolved some Pt-bearing PGM (e.g.,

w—— NQezi = .« Harthey

Aguablanca (Pina et al. 2013)

moncheite and sperrylite) making Pt available for its incorpo-
ration into pyrite. In the Hartley and Ngezi samples, Py1 has
elevated Pt contents (commonly > 10 ppm) compared to most
other deposits. Platinum in these Pyl must have a different
origin because this pyrite has been interpreted as primary,
formed during low-temperature equilibration of sulfides, and
in addition pentlandite in these samples, whose formation is
not related to hydrothermal fluids, also hosts appreciable
though variable amounts of Pt (up to 9 ppm, Table 3).
Nevertheless, despite the high Pt contents of the Py1, most
of the Pt in the ores is not located in pyrite. For example, bulk
concentrations of Pt in the studied samples HAN-106 and
HAS-203 are 9496 and 9593 ppb, respectively. In these sam-
ples, visually-estimated modal abundances of pyrite do not
exceed 2 modal % of the total minerals. Using an average
content of Pt in pyrite of 9.2 ppm for the sample HAN-106
and 26.1 ppm for the sample HAS-203 (Table 5), the maxi-
mum contents of the total Pt budget accounted for pyrite
would be 1.9 and 5.4 %, respectively. These numbers are
consistent with previous studies indicating that Pt dominantly
occurs in the form of discrete PGM (e.g., Oberthiir et al.
2003). Indeed, there is a clear predominance of Pt-

McCraady, Sudbury (Dare et al, 2011
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Fig. 9 Primitive mantle-normalized trace element profiles of average
contents in pyrite from Hartley, Ngezi, Mimosa, and Unki and those for
different textural types of pyrite from Aguablanca (a), McCreedy deposit
(b), Grasvally (c), and Lac des Iles (d). Normalizing values of
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McDonough and Sun (1995). Data source for deposits: Aguablanca,
Pifa et al. (2013); McCreedy, Dare et al. (2011); Grasvally, Smith et al.
(2014); and Lac des Iles, Duran et al. (2015). Elements were ordered in
decreasing order of compatibility into MSS
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dominated PGM (generally Pt bismuthotellurides, cooperite,
and sperrylite) on Pd-dominated PGM in the MSZ of the
Great Dyke (Barnes et al. 2008; Oberthiir 2011) and, in fact,
some discrete Pt-bearing PGM (typically moncheite) were
identified during this study. Similarly, Dare et al. (2011)
showed that the role of pyrite as carrier of Pt in the
McCreedy East deposit is negligible (<0.5 %) and Djon and
Barnes (2012) calculated that the most Pt-rich pyrites only
account for about 5 % of total Pt in the Lac des Iles deposit.
Therefore, we observe that the proportion of total Pt accounted
by pyrite is probably relatively low because (1) pyrite is an
accessory phase present in modal abundances typically below
10 % total sulfides; (2) although the amount of Pt is significant
relative to pyrrhotite, pentlandite and chalcopyrite, the abso-
lute contents are generally in the range of a few ppm only; and
(3) various Pt-bearing PGM are generally present that account
for the bulk of the whole rock Pt in these deposits.

Rhodium also occurs at high concentrations in pyrite of
some Ni-Cu-PGE ore deposits (Djon and Barnes 2012;
Dare et al. 2011; Pifa et al. 2013; Smith et al. 2014,
Duran et al. 2015). In contrast to Pt, Rh is not exclusively
present in pyrite but also occurs in pentlandite. In fact,
pentlandite is considered to be a major carrier of Rh in
some Ni-Cu-PGE ore deposits (Barnes et al. 2008;
Holwell and McDonald 2010; Junge et al. 2014, 2015).
Several studies indicate that pyrite has a relevant role as
carrier of Rh. For example, Dare et al. (2011) determined
that in samples with accessory (<2 modal %) pyrite from
the McCreedy East deposit, pyrite carries ~60 % of total
Rh. Djon and Barnes (2012) noted that more than 60 % of
the Rh budget resides in pyrite from disseminated sulfides
from the Lac des Iles deposit. In the northern Bushveld
(Grasvally), Smith et al. (2014) reported high Rh in pyrite
(>54 ppm) probably accounting for a high proportion of the
total. In the Great Dyke, the generally higher contents of Rh
in pentlandite compared to pyrite and the predominance of
pentlandite over pyrite suggest that pentlandite probably
contains higher amounts of total Rh than pyrite.
Hollingworthite (RhAsS) is the only Rh-bearing PGM iden-
tified in the Great Dyke and occurs in low proportions
(<2 %) in the North chamber but is common of the South
chamber where elevated proportions of PGE arsenides and
sulfarsenides like sperrylite, hollingworthite, platarsite, and
irarsite are present (Oberthiir 2002, 2011). The Rh concen-
trations of pentlandite and Pyl in the North chamber are
considerably higher (up to 127 ppm in pentlandite and
61 ppm in pyrite) than those in the South chamber (typical-
ly below 1 ppm in pentlandite and 0.4 ppm in pyrite), so it
is probable that the proportion of total Rh residing in BMS
are notably higher in the North chamber compared to the
South chamber.

The mantle-normalized trace element profiles of pyrite
from the Great Dyke and other Ni-Cu-PGE deposits (Fig. 9)

@ Springer

show that Co is notably enriched in pyrite compared to Ni and
most pyrites exhibit pronounced positive anomalies of Rh. It
is important to note that pyrite from the McCreedy deposit,
interpreted as having formed by exsolution from MSS, is sig-
nificantly enriched in IPGE and Rh compared to secondary
pyrite formed by alteration of the MSS cumulates by late
magmatic/hydrothermal fluids. This compositional difference
in PGE abundances between primary and secondary pyrite
resembles that observed in the Great Dyke samples. On the
other hand, pyrite from Lac des Iles, Aguablanca and
Grasvally, interpreted as alteration product of pre-existing sul-
fides (mostly pyrrhotite), in general, has PGE and other trace
element contents similar to Py2 from Unki and Mimosa.
These results suggest that primary Py1, formed during equil-
ibration upon cooling of sulfide minerals, potentially hosts
more PGE than secondary Py2, formed by alteration of pre-
existing sulfides.

Conclusions

1. On the basis of textural features, PGE concentrations, and
mode of formation, two types of pyrite (Pyl and Py2) can
be differentiated in the MSZ from the Great Dyke of
Zimbabwe.

2. Pyl contains high Os, Ir, Ru, Rh, and Pt concentrations
(Ptand Rh>10 ppm; 1.7 to 47.1 ppm Ru, 0.1 to 7.8 ppm
Os, and 1.2 to 20.2 ppm Ir) and occurs forming cluster of
small individual grains intimately intergrowth with pent-
landite and chalcopyrite. This type of pyrite is interpreted
as having formed by low temperature (<300 °C) decom-
position of residual Ni-rich MSS. Pyl was found in our
samples from the Hartley and Ngezi mines.

3. Py2 has low PGE concentrations (<0.11 ppm Pt, <0.34 ppm
Rh, <2.5 ppm Ru, <0.37 ppm Ir, and <0.40 ppm Os), occurs
as individual blocky grains within mainly pyrrhotite and
pentlandite and is interpreted as having formed by replace-
ment of pyrrhotite and pentlandite due to the activity of late
magmatic/hydrothermal fluids. Py2 was identified in our
samples from the Unki and Mimosa mines

4. Although the laser ablation ICP-MS analyses reveal that
individual grains of pyrite can host relatively high contents
of PGE, particularly up to 61 ppm Rh and 99 ppm Pt, even
higher than coexisting pyrrhotite, pentlandite, and chalco-
pyrite in a same sulfide aggregate, the amount of total Rh
and Pt that reside within pyrite is likely low (<5 %) and the
bulk of the Pt budget (>95 %) resides in discrete PGM

grains.
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