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Abstract The Jiaojia Fault (JJF) in the Jiaodong area of east-
ern China is an important NNE-trending structure that is sub-
sidiary to the regional Tancheng–Lujiang (Tan-Lu) Fault Zone,
and hosts >1200 t of gold reserves contained in disseminated
and stockwork ore, dominantly in the footwall of the fault. We
present new zircon U–Pb, apatite fission track, and illite K–Ar
data along the JJF and have delineated its tectonic history
focusing on its formation and reactivation. Zircon U–Pb dating
shows that the Shangzhuang granite is a composite body with
ages between 132±1 and 127±1 Ma. Illite K–Ar ages for the
fault’s gouge range from 83±2 to 68±2 Ma, and the measured
apatite fission track ages for ores are between 55 and 21 Ma.
Previous zircon U–Pb geochronology and structural studies
suggest that the JJF was originally activated in the Jurassic
during 160–150 Ma as a sinistral fault. The JJF was a normal
fault in the Early Cretaceous due to NW–SE orientated tension
and NE–SW compression, which lasted from 135 to 120 Ma.
This was followed by sinistral strike–slip faulting due to NW–

SE compression and NE–SW tension during 120–110Ma, and
it changed to normal displacement at ca. 110 Ma. Our apatite
fission track data analysis and thermal modeling of represen-
tative samples suggest that there was a subsequent dextral re-
activation of the fault at ca. 55 Ma. Previous age data of ca.
130–110 Ma for gold mineralization along the JJF coincides
with the Early Cretaceous magmatism and is coeval with the
transition from normal faulting to sinistral strike–slip faulting
of the JJF in Early Cretaceous, which is interpreted to be due to
changing direction of the subducting Pacific Plate.
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Illite K–Ar age . Tectonic implications . Jiaojia Fault .
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Introduction

The Jiaodong Peninsula is in the southeastern margin of the
North China Craton and to the east of the NNE-trending Tan-
Lu Fault (Fig. 1). The dominant structures in the Jiaodong area
are NNE-trending faults, which are subsidiary to the regional
Tan-Lu Fault (Fig. 2; Goldfarb et al. 2001; Zhou et al. 2002;
Qiu et al. 2002; Fan et al. 2003).

The Tan-Lu Fault is considered to be of key significance to
the tectonic evolution of eastern China (Leech and Webb
2013). In addition, gold deposits are developed along its sub-
sidiary NNE-trending faults (Fig. 2; Deng et al. 2003, 2006,
2015). Examples include the Sanshandao and Cangshang de-
posits along the Sanshandao Fault; the Jiaojia, Xincheng, and
Wang’ershan deposits along the Jiaojia Fault; the Zhaoyuan
and Dayingezhuang deposits along the Zhaoping Fault; and
the Jinniushan and Denggezhuang deposits along the
Jinniushan Fault. The NNE-trending auriferous faults have a

Editorial handling: T. Bissig and G. Beaudoin

* Jun Deng
djun@cugb.edu.cn

Changming Wang
wangcm@cugb.edu.cn

1 State Key Laboratory of Geological Processes and Mineral
Resources, China University of Geosciences, No. 29, Xueyuan Road,
Haidian District, 100083 Beijing, China

2 Centre for Exploration Targeting and Australian Research Council
Centre of Excellence for Core to Crust Fluid Systems (CCFS),
School of Earth and Environment, University of Western Australia,
Perth, WA 6009, Australia

3 School of Earth and Environmental Sciences, James Cook
University, Townsville, Queensland, Australia

Miner Deposita (2015) 50:987–1006
DOI 10.1007/s00126-015-0584-1



total gold reserve of >3000 t (Goldfarb et al. 2014), of which
the Jiaojia Fault (JJF) hosts a gold reserve of ∼1200 t at grades
of 1.01 to 26.44 g/t Au (Song et al. 2014).

Gold deposits of the Jiaodong Peninsula are divided into
quartz vein-style BLinglong-type^ and disseminated- and
stockwork-style BJiaojia-type^ gold mineralization (Qiu
et al. 2002; Deng et al. 2003; Yang et al. 2014; Wang et al.
2015). Gold deposits along the JJF are representatives of the
disseminated- and stockwork-style BJiaojia-type^ of mineral-
ization (Wang 2010). These deposits have been interpreted as
orogenic deposits (Groves et al. 1998; Goldfarb et al. 2001,
2005, 2007; Kerrich et al. 2000; Qiu et al. 2002; Zhou and Lu
2000; Goldfarb et al. 2014; De Boorder 2015), magmatic–
hydrothermal gold deposits (Zhai et al. 2011), or a unique
class of BJiaodong-type^ gold deposits associated with intra-
plate tectonics (Zhai et al. 2004; Zhai and Santosh 2013; Song
et al. 2014; Li et al. 2015).

Despite of the significant gold reserves hosted by the JJF,
the dynamic mechanism and tectonic evolution that ultimately
led to gold deposition is poorly understood, partly due to the
limited data from the structure. Previous research in this area
has focused on granites and gold deposits (Deng et al. 2003,

2006). However, no detailed studies have focused on the tec-
tonic evolution of the fault and its relationship with the gold
mineralization of the JJF. In this work, we present new zircon
U–Pb , i l l i t e K–Ar, a n d a p a t i t e f i s s i o n t r a c k
thermochronological data along the JJF, in order to enhance
our understanding of the tectonic evolution of this region and
the relationship between the timing of tectonic movements of
the fault and the gold mineralizations within the Jiaodong
Peninsula.

Geological setting and structural characteristics

The Jiaodong Peninsula is divided by the Wulian–Qingdao–
Yantai Sulu Suture into the Jiaobei Terrane in the north and the
Sulu Terrane in the south (Fig. 2). The Precambrian sequences
of the Jiaobei Terrane consist of the Archaean Jiaodong
Group, the Paleoproterozoic Fenzishan and Jingshan
Groups, and the Neoproterozoic Penglai Group (Zhou and
Lu 2000). The Jiaodong Group consists of granulite, amphib-
olite, gneiss, and schist. The Jingshan Group consists of mar-
ble, biotite–plagioclase gneiss, and amphibolite, and the
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Fig. 1 Simplified geological map showing the tectonic subdivision of the North China Craton (modified from Zhao et al. 2005). Rectangle shows
location of the study area in Fig. 2
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Fenzishan Group consists of marble, schist, gneiss, and am-
phibolite. The Penglai Group, which unconformably overlies
both the Jingshan and Fenzishan Groups, consists of lime-
stone, shale, and marble.

Mesozoic granitic bodies comprise >40 % of the exposed
rocks in the Jiaodong Peninsula (Qiu et al. 2002) and are
subdivided into (i) the Jiazishan and Chashan Triassic plutons,
(ii) the Linglong and Kunyushan Jurassic plutons, and (iii) the
Guojialing and the Shangzhuang Cretaceous plutons (Fig. 2).
Similar Cretaceous felsic and mafic igneous rocks are present
in the area of the North China Craton (NCC) with an
interpreted crustal and mantle source and a transition from

enriched mantle to depleted mantle (Guo et al. 2005; Liu
et al. 2014). This transition has been associated with litho-
sphere thinning in this part of the NCC during the Mesozoic
(Guo et al. 2005; Liu et al. 2014).

Regional faults within the Jiaodong Peninsula predomi-
nantly trend NNE and, to a lesser extent, to the NW. The
Huangxian–Yexian arc fault zone (Huangye Fault) is one of
the most important faults zones in the peninsula, and it can be
divided into (1) a northern segment located in Huang County,
which is characterized by ENE-trending faults dipping 30–45°
to the north; and (2) a southern segment located in Ye County,
which is characterized by NNE-trending faults dipping 29–
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43° to the NW. The JJF is part of the southern segment of the
Huangye Fault and is about 30 km long and 100–400 m
wide. The JJF is characterized by a single main fault
plane, marked by a gray-colored fault gouge zone that
is 50–200 mm wide, which is present throughout the
area. Two types of deformations with the same attitudes
have affected the fault. One is ductile shear deforma-
tion, in which porphyroclasts, schistosity, augen, rotat-
ing morphology, and domino structures are well devel-
oped (Fig. 3). The other is a large-scale deformation
resulting in the formation of cataclastic rocks (Wang
2010).

Jiaojia Fault and its structural controls on gold
deposits

The most prominent fault in the Jiaojia mineral field is the JJF
that controls the spatial distribution of gold mineralization
(Fig. 3), which includes the Sizhang, Matang, Jiaojia,
Wangershan, Dongji, Longbu, Hedong, Hexi, Fujia,
Xincheng, and Shangzhuang deposits (Fig. 3). These deposits
occur in the footwall of the JJF and the Linglong Granite as
the hanging wall. Underlying the JJF include the Linglong
Granite, Guojialing Granodiorite, and the Jiaodong Group.

The gold deposits along the JJF consist of disseminated-
and stockwork-style mineralization. The disseminated type of
mineralization extends for ∼50 m below and parallel with the
fault, whereas the stockwork-type mineralization extends
from tens up to hundreds of meters from the fault (Fig. 4).
The disseminated-type mineralization is hosted by pyritized,
sericitized, and silicified granite (Fig. 5c). Alteration is char-
acterized by sericite, quartz, and K-feldspar. The stockwork-
type mineralization is hosted by potassic-altered and silicified
granite (Fig. 5b, d, e).

Major minerals in the gold deposits along the JJF include
native gold, electrum, native silver, iron-bearing native silver,
acanthite, pyrite, sphalerite, and galena (Fig. 5f). Gangue min-
erals include quartz, sericite, feldspar, calcite, barite, and chlo-
rite. The gold-bearing sulfides are pyrite, chalcopyrite, sphal-
erite, and galena, all of which are hosted by quartz veins.

Four mineral associations have been identified in the de-
posits, which are as follows: (1) quartz–K-feldspar–pyrite
marking the earliest stage of mineralization; (2) quartz–py-
rite–gold being the most important auriferous stage during
which large amounts of pyrite, quartz, and native gold were
precipitated; (3) quartz–base metal sulfides(–gold) marks a
minor gold mineralization period with the precipitation of
large amounts of sulfide minerals such as pyrite, galena, sphal-
erite, chalcopyrite, and arsenopyrite; and (4) quartz–calcite–
pyrite hosted by quartz, calcite, and siderite forming veins in
late fractures.

Methods and analytical procedures

Laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS) U–Pb dating

Granodiorite samples SZ-02 and XC480-03 are from the por-
phyritic Shangzhuang granite (Figs. 3 and 5a). The samples
consist of K-feldspar (∼30 vol%), plagioclase (∼40 vol%),
quartz (∼25 vol%), biotite and amphibole (∼5 vol%), and ac-
cessory titanite, apatite, zircon, and magnetite.

Zircon LA-ICP-MS U–Pb analysis was conducted at the
Institute of Mineral Resources, Chinese Academy of
Geological Sciences, Beijing, China. The analysis involves
ablation of zircon with a NUP 213 Excimer laser using a spot
diameter of 25 μm, with constant 2.5 J/cm2 energy density,
and a repetition rate of 10 Hz. Detailed operating conditions
for the laser ablation system and the LA-ICP-MS instrument
and the data reduction are described by Hou et al. (2009).
Preferred U–Th–Pb isotopic ratios used for GJ1 are from
Jackson et al. (2004). Uncertainty of preferred values for the
external standard GJ1 was propagated to the ultimate results
of the samples. In all analyzed zircon grains, the common Pb
correction was not necessary due to the low signal of common
204Pb and high 206Pb/204Pb. Concentrations of U, Th, and Pb
were calibrated using zircon M127 (Nasdala et al. 2008).
Concordia diagrams and weighted mean calculations were
made using Isoplot/Ex_ver3. The zircon Plesovice is dated
as unknown samples and yielded weighted mean 206Pb/238U
age of 337±2 Ma (2σ, n=12), which is in good agreement
with the recommended 206Pb/238U age of 337.13±0.37 Ma
(2σ) (Slama et al. 2008) (Table 1).

Apatite fission track method

In order to reconstruct the thermal history of the JJF, four
disseminated-style samples (SC-01, XC175-02, XC205-04,
and XC480-03) and four stockwork-style samples (XC480-
07, XC580-18, XC600-07, and XC600-08) of ore from the
Xincheng deposit were analyzed for apatite fission track
thermochronology (Table 2).

Apatite was separated by standard magnetic and heavy
liquid techniques. A uranium free muscovite sheet was at-
tached, as an external detector, to each grain mount, and neu-
tron influence was determined using the SRM 962 uranium
dosimeter glass. The apatite was etched in 6.6 % HNO3 for
30 s at 25 °C. Etched spontaneous tracks in apatites were
counted using Nikon Eclipse® E600 microscope with ×100
dry objectives and ×10 eyepieces. Fission track ages and
length data were modeled following the method of Ketcham
et al. (1999). Apatite composition was monitored by a combi-
nation of etch pit dimensions and absolute measurement by
electron microprobe analysis using a JEOL electron micro-
probe, with an accelerating voltage of 15 kV, a beam current
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of 29 nA, and a 20-mA defocused electron beam. Apatite
fission track dates were calibrated by the zeta-age calibration
approach of Hurford and Green (1983) and are reported as
central ages with ±2σ errors (95 % confidence interval). We
used the χ2 test to quantify age homogeneity; when P (χ2)>
5 %, fission track samples contain a single age population
(Galbraith 1981). For samples with P (χ2)<5 %, we used

binomial peak fitting to decompose the observed age distribu-
tion into best-fitting grain age components.

K–Ar dating

Fault gouge samples (XC480-01 and XC600-03) from the JJF
at the Xincheng deposit (Fig. 6b, d) were analyzed for illite K–
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Ar dating in order to constrain the timing of movements along
the fault (Table 3). These samples consist of quartz, illite,
illite/smectite, kaolinite, calcite, and pyrite. Results of X-ray
diffraction analyses confirm that the clay mineral component
along the JJF is dominantly illite/smectite (∼73 %) with small
amounts of saponite (∼24 %) and minor amounts of kaolinite
(∼3 %) in the <0.15-μm fraction. The clay mineral component
in the 0.15–0.3-μm fraction is, again, dominantly illite/
smectite (∼75 %) with small amounts of saponite (∼20 %)
and minor amounts of kaolinite (5 %). Similarly, major
amounts of illite/smectite were found in the <0.3-μm fraction
and minor amounts in the <2-μm fractions.

Illite separation was carried out using high-speed and super
high-speed centrifugal separation techniques (Hamilton et al.
1989). The K–Ar dating technique follows the methods de-
scribed in detail by Faure (1986). The argon isotopic compo-
sition of the JJF gouge samples was measured with an
MM5400 Mass Spectrometer at the Center of Experiment
and Research, China Research Institute of Petroleum
Exploration and Development, Beijing. Illite samples were

melted at 1500 °C and a quantitative diluent for 38Ar was
added. Subsequently, (40Ar/38Ar)m, (

38Ar/36Ar)m, radioactive
40Ar, and potassium contents were determined. The analytical
error for the K/Ar age calculations is given at a 95 % confi-
dence level (2σ).

Results

U–Pb dating

Zircons from the Shangzhuang granite are colorless or buff to
transparent, euhedral to subhedral, and elongate to stubby
grains. They display oscillatory zoning typical of magmatic
grains in cathodoluminescence (CL) images (Fig. 7). The an-
alytical results of the U–Pb dating are listed in Table 1. Data of
Th/U ratios from the granodiorite samples vary between 0.24
and 0.83 also suggesting a magmatic origin (Table 1). Thus,
the U–Pb ages of the zircons are interpreted as the crystalliza-
tion ages of the rocks. The U–Pb concordia diagrams for the
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zircon analyses are shown in Fig. 7. Eighteen of 20 zircon
analyses from sample SZ-02 form a tight cluster, with a
weighted mean 206Pb/238U age of 132±1 Ma (2σ, mean
square of weighted deviation (MSWD)=0.9; Fig. 7a).
Nineteen of 20 analyses of zircons from sample XC480-03
also form a tight cluster, close to concordia, with a weighted
mean 206Pb/238U age of 127±1 Ma (2σ, MSWD=0.6;
Fig. 7b).

Fission track dating

The data for ore samples with P (χ2)>5% are characteristic of
normal single grain age distribution (Fig. 8), yielding central
ages between 55 and 21 Ma. The track length distribution is
unimodal positively skewed and relatively narrow (Fig. 9).
The mean track length is short (12.3 μm), which is typical
of rocks with repetitive stay within or slow cooling through
the apatite partial annealing zone (∼60–120 °C; Tagami and
Shimada 1996).

Illite K–Ar dating

Sample XC480-01 yielded illite K–Ar ages of 83±2 and 68±
2 Ma. Sample XC600-03 yielded illite K–Ar ages of 85±1
and 82±2 Ma. The radiogenic 40Ar content of these samples
ranges from 68.0 to 90.4%, which indicates that the results are
reliable. The potassium contents range from 5.15 %
(<0.15 μm) to 5.72 % (0.3–0.15 μm). The related nearly iden-
tical K–Ar data for these size fractions suggest similar illite
formation ages, because other K-rich mineral contaminants
could not be detected by XRD investigations. Another K-
feldspar has been identified in the 2–6-μm fractions in some
samples, but none has been found in the <0.15-μm fraction
(Table 3). Illite is of authigenic origin and, therefore, repre-
sents a negligible source of error for the age interpretations.

Discussion

Tectonic evolution of the Jiaojia Fault

Jurassic initiation and sinistral movement

The Jurassic (ca. 160–150 Ma) Linglong Granite bordering
the JJF (Figs. 2 and 3) has been interpreted as having been
derived by partial melting of a tectonically thickened crust
(Wang et al. 1998; Qiu et al. 2002; Hu et al. 2004; Guo et al.
2005). Their ages have been determined by SHRIMP/LA–
ICP–MS U–Pb zircon method to be at 160±3 to 153±4 Ma
(Miao et al. 1997; Wang et al. 1998), 157±2 Ma (Zhang et al.
2010), 159±1Ma (Yang et al. 2012), and 160±3 to 157±3Ma
(Ma et al. 2013).T

ab
le
1

(c
on
tin

ue
d)

Sp
ot

no
.

C
on
te
nt

(p
pm

)
T
h/
U

Is
ot
op
ic
ra
tio

s
A
pp
ar
en
ta
ge
s
(M

a)

P
b

T
h

U
2
0
7
P
b/

2
0
6
P
b

(±
1σ

)
2
0
7
Pb

/2
3
5
U

(±
1σ

)
2
0
6
Pb

/2
3
8
U

(±
1σ

)
2
0
8
Pb

/2
3
2
T
h

(±
1σ

)
2
0
6
Pb

/2
3
8
U

(±
1σ

)

X
C
48
0-
03
-1
8

39
93

26
8

0.
34

0.
05
06
8

0.
00
05
7

0.
13
98
1

0.
00
16
8

0.
02
00
2

0.
00
01
3

0.
00
36
9

0.
00
02
8

12
7.
8

0.
9

X
C
48
0-
03
-1
9

11
1

20
8

52
5

0.
40

0.
05
11
6

0.
00
04
9

0.
14
24
3

0.
00
17
6

0.
02
01
7

0.
00
01
4

0.
00
37
4

0.
00
02
2

12
8.
7

0.
9

X
C
48
0-
03
-2
0

68
95

33
7

0.
28

0.
04
99
0

0.
00
10
8

0.
13
63
1

0.
00
26
7

0.
01
98
1

0.
00
01
1

0.
00
50
7

0.
00
12
1

12
6.
5

0.
7

Miner Deposita (2015) 50:987–1006 995



Various researchers have attempted to explain the tectonic
setting for the Jurassic magmatism in the Jiaodong Peninsula,
but a consensus has not been reached (Zhou and Lu 2000;
Wang et al. 2013). However, most researchers consider that
the collision between the North China and Yangtze cratons
commenced in the latest Paleozoic to Early Mesozoic and
ended by the Early Jurassic (ca. 213–188 Ma) (Okay and
Sengor 1992; Yin and Nie 1993; Li 1994). Since the Middle
Jurassic, the Paleo-Pacific Plate subducted beneath the NCC
resulting in adakite-like magmatism in an active compressive
continental margin (Wu et al. 2005; Wang et al. 2014c), such
as the Linglong Granite in the Shandong Peninsula (Wu et al.
2005). Therefore, we interpret the U–Pb results in the context
of the convergence between the Paleo-Pacific oceanic plate
and the Asian continent.

Previous researchers have suggested that a sinistral shear on
the NE striking faults under a NNW–SSE compression, while
WSW–ENE tension may have taken place during the Early–
Middle Jurassic (Xu et al. 1987; Gilder et al. 1999; Schmid
et al. 1999; Mercier et al. 2007). This resulted in sinistral trans-
form faults in the Jiaodong Peninsula (Fig. 10a). Zhu et al.
(2004) have reported that 40Ar/39Ar plateau ages of muscovite
samples of mylonite from a sinistral ductile shear zone are ca.
193–189 Ma, suggesting that a sinistral strike–slip movement
has taken place in the Early Jurassic along the Tan-Lu Fault. In
addition, we observed domino-type structures along the JJF
(Fig. 6b), which are indicative of sinistral shearing during the
Jurassic. As mentioned earlier, during the Early–Middle
Jurassic and possibly the Late Jurassic, the NE-trending faults
have acted as sinistral transform faults (Fig. 10a).

Early Cretaceous switch between normal and sinistral
strike–slip faulting

The Cretaceous magmatism is represented by the emplacement
age of the Shangzhuang granite bordering the JJF (Fig. 3), with

U–Pb zircon ages of 130±3 to 126±2 and 129±1Ma (Hu et al.
1987; Xu et al. 1989; Li and Yang 1993; Miao et al. 1997;
Wang et al. 1998, 2014d; Yang and Zhou 2001; Yang et al.
2012). Our zircon LA-ICP-MS U–Pb dating of the granodio-
rite from the JJF yield interpreted emplacement ages of ca. 132
and 127 Ma, consistent with previous dating (Fig. 7). The
granodiorite is interpreted to be related to the subduction of
the Paleo-Pacific Plate beneath the NCC, which was possibly
associated with slab break-off and roll back or lithospheric
delamination of the NCC (Xu et al. 2009; Yang et al. 2012;
Zhang et al. 2014; Wilde et al. 2003; Zhai and Santosh 2013).
This magma emplacement was aided by the development of
the NE-trending faults (Guo et al. 2014).

The ages of the igneous rocks constrain on the age of the
NNE-trending normal faults in the Jiaodong Peninsula that re-
sulted from a NW–SE tension and a NE–SW compression
lasting from 135 to 120 Ma (Fig. 10b; Xu and Zhu 1994;
Zhang et al. 2003a, b; Zhu et al. 2004; Ren et al. 2007; Sun
et al. 2007; Deng et al. 2009a). Charles et al. (2011) and Yang
et al. (2014) report that the NNE-trending Zhaoping Fault,
which hosts the Zhaoyuan and Dayingezhuang gold deposits,
is a detachment fault related tomajor extensional tectonics. This
was followed by sinistral strike–slip faulting associated com-
pression orientated NW–SE and NE–SW orientated tension at
ca. 120–110Ma (Fig. 10c; Sun et al. 2007; Mercier et al. 2007).
This was followed at ca. 110 Ma with a change in the strain
field with normal faulting related to ENE–SWW compression
and a NNW–SSE tension (Zhu et al. 2004; Sun et al. 2007;
Mercier et al. 2007). The volcanic rocks in the Laiyang Basin to
the north of the Sulu Belt were erupted at ca. 110–105 Ma
during that period (Fig. 10d; Qiu et al. 2001b; Guo et al. 2005).

Late Cretaceous–Paleocene normal faulting

Previous authors have attempted to explain the formation, age,
and dynamic characteristics of the normal Tan-Lu Fault and its

Table 2 Apatite fission track analytical data of the Xincheng gold deposit samples

Sample No. of
grains

Rock type ρs (10
5/cm2) (Ns) ρi (10

5/cm2) (Ni) ρd (10
5/cm2) (N) P (χ2) L (μm) (N) Central age

(Ma) (±1σ)
Pooled age
(Ma) (±1σ)

SC-01 35 Ore 0.846 (190) 4.837 (1086) 16.37 (10,405) 7.0 12.1±2.0 (39) 55±6 56±5

XC175-02 31 Ore 1.336 (474) 9.762 (3464) 16.768 (10,405) 8.2 12.7±2.1 (73) 44±3 45±3

XC205-04 28 Ore 0.373 (94) 5.813 (1464) 16.968 (10,405) 68.3 11.1±1.5 (4) 21±3 21±3

XC480-03 28 Ore 0.587 (264) 4.911 (2208) 17.167 (10,405) 6.0 12.8±2.0 (93) 40±4 40±3

XC480-07 20 Ore 0.415 (81) 5.005 (977) 17.366 (10,405) 8.4 13.0±2.1 (88) 28±4 28±4

XC580-18 28 Ore 0.654 (209) 5.54 (1770) 18.362 (10,405) 77.1 12.0±2.2 (70) 42±4 42±4

XC600-07 28 Ore 0.761 (177) 5.846 (1359) 18.96 (10,405) 95.2 12.3±2.0 (37) 48±5 48±5

XC600-08 32 Ore 0.546 (155) 5.787 (1644) 19.159 (10,405) 9.8 12.7±2.0 (83) 35±4 35±3

ρs spontaneous track density of a sample, Ns number of tracks counted to determine ρs, ρi induced track density of a sample measured in a muscovite
external detector, Ni number of tracks counted to determine ρi, ρd induced track density of glass dosimeter measured in a muscovite external detector, Nd

number of tracks counted to determine ρd, T fission track age with its 1σ error, n number of crystals counted; P(χ2 ) probability of obtaining the observed
value of χ2 parameter, for N degree of freedom, where N=(number of counted crystals)−1
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subsidiary NNE-trending structures during the Late
Cretaceous–Paleocene in the Jiaodong Peninsula (Wan and
Zhu 1996; Faure et al. 1999; Grimmer et al. 2002; Zhu et al.
2004; Mercier et al. 2007; Deng et al. 2009a, b). Wan and Zhu
(1996) andWang et al. (2009) suggest that the fault was active
during the Late Cretaceous which was a normal fault with
minor sinistral strike–slip movement. As the fault is bordered
by a half graben filled with Late Cretaceous to Paleocene
sediments, the extensional tectonics related to the normal
faulting is regarded as being Late Cretaceous–Paleocene in
age (Xu 1993; Zhu et al. 2000). Our illite K–Ar ages of 86±
1 and 68±2 Ma along the JJF correspond to this period of
extensional faulting along the NNE-trending structures in the
peninsula. The subduction direction of the Paleo-Pacific Plate
changed again by ∼75° from NEE–SWW to NW–SE, which
resulted in the change from ENE–WSW compression and
NNW–SSE tension during the late Early Cretaceous to
NNE–SSW compression and WNW–ESE tension during the
Late Cretaceous to Paleocene (Sun et al. 2007). This change
happened after 94±5Ma, based on the K/Ar illite isotopic data
of fault gouge in a northern segment of the Tan-Lu Fault Zone
(Koppers et al. 2001; Wang et al. 2009). This interpretation is
supported by the change from a late Early Cretaceous NW–SE
compression in the Yi–Shu Rift to a Late Cretaceous∼N–S
tension in the Jiaolai Graben during 100–90 Ma (Fig. 10e;
Zhang et al. 2003a, b; Wang et al. 2009).

Eocene–Oligocene dextral movement and normal faulting

The variable apatite fission track age, the track length distri-
bution, and thermal models suggest that the JJF experienced
two major cooling stages caused by exhumation (Fig. 11).
These stages relate to (1) a slow exhumation/cooling and up-
lift in response to a small magnitude of initial extensional
deformation during ca. 55 Ma or earlier and (2) a rapid
exhumation/cooling and uplift in response to a large magni-
tude of accelerated extensional deformation initiated at ca.
25 Ma.

Our apatite fission track data analysis and thermal model-
ing of representative samples dated at ca. 55 Ma corresponds
to this period of dextral movement and normal faulting along
the NNE-trending structures in the Jiaodong Peninsula. Along
the JJF, we observed quartz veins cut by dextral shear in
quartz–sericite–pyrite-altered rocks (Fig. 6c). Formation of
Eocene rift basins in the Jiaodong Peninsula has been docu-
mented at ca. 55 Ma during NW–SE dextral transtension
(Fig. 10f; Yan and Ma 1992; Allen et al. 1997; Ren et al.
2007; Huang et al. 2013). It is commonly thought that the
Eocene strike–slip and normal faults in the Jiaodong
Peninsula are the result of extrusion tectonics driven by the
subduction of the Pacific Plate underneath the NCC (Chen and
Dickinson 1986; Northrup et al. 1995). Others suggest that the
intracontinental deformation in the Jiaodong Peninsula can beT
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Fig. 6 Macroscopic features of
the Jiaojia Fault: a augen structure
of quartz, b domino structure, c
quartz cut by dextral shear, and d
schistosity zone
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linked to the far-field effects of the interaction of the Indian
subcontinent with the Eurasian continent during 65–55 Ma
(Grimmer et al. 2002; Ratschbacher et al. 2003; Deng et al.
2014a, b; Wang et al. 2014a, b). However, the Indo-Asian
collision has little effect on lithospheric evolution of the
North China Craton (Zheng et al. 2006; Huang et al. 2011).
We propose that the Eocene dextral movement along the
NNE-trending structures is a consequence of a change in the
movement direction of the Paleo-Pacific Plate from NNE–
SSW to its present direction of NW–SE (Beck et al. 1995;
Sharp and Clague 2006; Sun et al. 2007).

A regional Late Oligocene inversion associated with a re-
gional ca. 25Ma unconformity at the base of Neogene strata is
documented from the East China Sea and the Jianghan,
Hehuai, Jiangsu, Bohai, and Songliao basins (Chen et al.

1989; Hu et al. 1987; Allen et al. 1997). Neogene thermal
subsidence in the basins was accompanied by minor normal
faulting lasting until the present day (Allen et al. 1997; Gilder
et al. 1991; Grimmer et al. 2002).

Tectonic transition and large-scale gold mineralization

The determination of the mineralization age for gold deposits
along the JJF is critical for the understanding of its relationship
to the tectonic evolution of the NNE-trending structures in the
Jiaodong Peninsula. K-feldspar separates from the Dongji de-
posit have an Ar/Ar plateau age of ca. 116 Ma (Li et al.
2003b). Sericite and muscovite separates from the Jiaojia,
Xincheng, andWang’ershan deposits have Ar/Ar plateau ages
of ca. 120 to 119 Ma, ca. 121 to 120 Ma, and ca. 121 to
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119 Ma, respectively (Li et al. 2003a). Two Rb–Sr ages of ca.
126±6 and 122±7 Ma were obtained by Wang et al. (2015)

from pyrite sampled from the Xincheng gold deposit.
Previous dating using the Rb–Sr and Ar–Ar techniques on
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alteration minerals and fluid inclusions in quartz indicate that
the timing of the gold mineralization along the NNE-trending
structures in the peninsula is between 130 and 110 Ma (Yang
et al. 2003; Li et al. 2013; Zhai and Santosh 2013). The Rb–Sr
isochron ages of sericite and pyrite from the Linglong gold
deposit along the Zhaoyuan Fault are 112±2 and 120±1 to
123±4 Ma (Luo and Wu 1987; Li et al. 2008) and 120±4 to
123±4 Ma (Yang 2000; Yang and Zhou 2001), respectively.
The Ar/Ar plateau age for muscovite from the Sanshandao
Fault at the Cangshang deposit is ca. 121 Ma (Zhang et al.
2003a, b. These dates show that the age of gold mineralization
in this area is between ca. 130 and 110 Ma, which coincides
with the Early Cretaceous magmatism and the transition from
early Early Cretaceous (145–120 Ma) normal faulting to late
Early Cretaceous (120–110 Ma) sinistral strike–slip faulting
(Figs. 10b, c and 12a, b).

In addition, based on these dates, the gold mineralization is
correlated with extensive lithospheric thinning that took place
at ca. 120 Ma in the Jiaodong Peninsula (Deng et al. 2015).

This took place in a period when the stress field in eastern
China changed from extension to transpression, resulting from
the near orthogonal change in the subduction direction of the
Paleo-Pacific Plate from NE–SW to NW–SE (Fig. 10b, c;
Koppers et al. 2001; Sun et al. 2007). The transitions of the
subduction direction synchronized the lithosphere thinning
and the change from normal to sinistral movement along
NNE-trending faults that host gold deposits (Fig. 10b, c).
Thus, the tectonic setting of the gold deposits in JJF is mark-
edly different from those defined for typical orogenic gold
deposits at convergent plate margins (Groves et al. 1998).
The geodynamic engine of the Jiaodong gold deposits is the
lithospheric thinning and structure adjustment induced by
Pacific slab subduction, and the gold mineralization in the
Jiaodong Peninsula belongs to intraplate metallogeny.
Instead, we propose that these deposits constitute a unique
class of BJiaodong-type^ gold deposits, as proposed by earlier
researchers (Zhai et al. 2004; Zhai and Santosh 2013; Song
et al. 2014; Deng et al. 2015; Li et al. 2015).
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Conclusions

1. LA-ICP-MS U–Pb zircon ages of ca. 132±1 and 127±
1 Ma from granites constrain that the JJF was a normal
fault during the Early Cretaceous, corresponding to a pe-
riod of large-scale lode gold mineralization, extension-
related magmatism, and Cretaceous giant igneous events
in the Jiaodong area.

2. This sinistral strike–slip faulting of the JJF lasted during
ca. 120–110 Ma, which was related to NW–SE compres-
sion and NE–SW tension.

3. Illite K–Ar dates of ca. 83±2 to 68±2 Ma constrain the
timing of a second normal faulting event along the JJF
(with the first being ca. 110 Ma and the last being ca.
55 Ma).

4. Measured apatite fission track ages of between 55 and
21 Ma correspond to a dextral movement along the JJF.

5. Large-scale gold mineralization is related to a transition of
NNE-trending structures from early Early Cretaceous nor-
mal faulting to late Early Cretaceous sinistral strike–slip
faulting, providing important evidence for the tectonic
setting of the Jiaodong gold deposits.
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