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In a recent thought-provoking article, Oyarzun et al. (2001) argue
that Late Eocene-Early Oligocene fast, oblique convergence be-
tween the South America and Nazca-Farallon plates led to flat
subduction and direct melting of the subducting plate. The result of
this process was the formation of adakite magmas which generated
giant porphyry copper deposits related to the Late Eocene-Early
Oligocene structural belt of northern Chile, known as the West
Fissure fault system.

Unfortunately, no additional information was presented by
Oyarzun and co-workers to distinguish whether this adakitic sig-
nature, or TTG-type magmatism as described by Cornejo and
Matthews (2000) at the El Salvador deposit, reflects melting of the
base of an overthickened crust, high-pressure crystallization of
mantle-derived hydrous magmas, or slab melting followed by
crustal contamination during ascent through the Andean crust.
Furthermore, current contrasting views on flat-slab subduction
settings introduce additional uncertainties to the model proposed
by Oyarzun and co-workers.

Recently published, high-precision 40Ar/39Ar dating (Ballard
et al. 2001; Richards et al. 1999, 2001), in conjunction with previous
age information (Maksaev et al. 1988; Cornejo et al. 1997; Dilles
et al. 1997; Marsh et al. 1997; Clark et al. 1998) on giant porphyry
copper deposits from the Paleogene of northern Chile, allows to
constrain the age of formation of copper ores and associated
magmas between �42 and 33 Ma. This fact poses a strict timing
constraint to the petrotectonic processes responsible for their
genesis.

Causes of the Late Eocene-Oligocene flat-slab
subduction in the central Andes

It has long been clear that the subducting Nazca-Farallon plate is
close to neutral buoyancy beneath the Andes and probably has
been so for the past 50 million years (James and Sacks 1999, and

references therein). Under the convergence rates and buoyancy
conditions of the Nazca-Farallon plate, subduction of an aseismic
ridge (overthickened oceanic crust) is sufficient to produce flat-slab
subduction (James and Sacks 1999; Gutscher et al. 2000b; Yañez
et al. 2001). Modern examples of this tectonic process include the
subduction of the Nazca and Juan Fernández ridges beneath Peru
and central Chile, respectively (Gutscher et al. 2000b). Based on
this view and in order to explain the volcanic null in southern Peru
(Late Eocene) and northern Chile (Oligocene), James and Sacks
(1999) proposed that a period of flat subduction for the northern
Chilean region (limited to at least 24�S) extends from 35 to
�27 Ma, following a relatively rapid transition from normal sub-
duction between �38 to 35 Ma.

Oyarzun et al. (2001) consider the flat-slab subduction as a
result of the coupled effect of oblique and fast convergence.
Nevertheless, according to plate-motion reconstruction models of
the Nazca-Farallon plate (e.g., Pardo-Casas and Molnar 1987;
Somoza 1998), a relatively slow subduction rate (5–6 cm/year) and
only a moderately oblique convergence (�60� mean azimuth) pre-
dominated during most of the critical period of magmatism and
copper mineralization (�42 to 33 Ma). High subduction rates in
the range of 8–10 cm/year were achieved only after �27–28 Ma
(Pardo-Casas and Molnar 1987; Somoza 1998), 6 to 7 million years
later than the formation of the youngest giant porphyries. This
widely known, strong acceleration of convergence during the Late
Oligocene has been recognized as the beginning of the formation of
the modern central Andes (Somoza 1998; James and Sacks 1999,
and references therein).

Therefore, no indications of unusual kinematic conditions
(convergence velocities or directions) which could have led to flat
subduction are obvious in the subducting Nazca-Farallon plate
during the main period of formation of giant copper deposits in
northern Chile. The change to flat-slab subduction in this region
during the Oligocene seems to be more related to plate structure
and composition (overthickening by younger aseismic ridges), as
proposed by James and Sacks (1999), rather than to kinematic
factors (oblique and fast subduction) as proposed by Oyarzun
et al. (2001). This further implies that only the last 2 million years
of the porphyry copper mineralizing event (42–33 Ma) of north-
ern Chile were in fact under a regime of flat-slab subduction
(35–27 Ma).

Flat subduction, slab melting and mineralization

Recently, several studies have emphasized the important implica-
tions which episodic flat subduction has on mineralization and
associated magmatism in the Andes (James and Sacks 1999; Kay
et al. 1999, and references therein). The hypothesis by Oyarzun et al.
(2001), however, goes one step further, suggesting that slab
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flattening led to slab melting and subsequently to adakitic mag-
matism and mineralization.

Adakitic magmas are uncommon and their genesis is generally
linked to unusual conditions in the subducting plate, including not
only slab age (young/hot) but also its kinematics and geometry
(Defant and Kepezhinskas 2001; Yogodzinski et al. 2001). Current
geophysical, tectonic and petrologic evidence from the Aleutian-
Kamchatka area supports the idea that relatively old (�50 Ma)
oceanic crust can melt in arc systems. Here, however, an unusual
tectonic environment involving a combination of highly oblique
(e.g., near-parallel to the arc), fast (e.g., 8–10 cm/year) subduction
and slab tearing are the causes of melting of the old slab (Yo-
godzinski et al. 1995; Defant and Kepezhinskas 2001; Yogodzinski
et al. 2001). Flat-slab subduction settings (e.g., Ecuador) have also
been linked to adakitic magmatism (Defant and Kepezhinskas
2001) but, once again, the geodynamic context in which these
adakites occur is rather special. Beneath the Ecuadorian Andes, a
complex combination of ridge collision and subduction of a major
tear zone separating two distinct segments of oceanic crust is taking
place (Monzier et al. 1999), implying that more than only a flat-
subduction geometry is necessary to account for this adakitic
magmatism. In addition, melting along the edge of a torn plate is
possible in all cases of ridge subduction and slab-window forma-
tion (Yogodzinski et al. 2001). None of these complex tectonic
conditions have yet been recognized in northern Chile for the cri-
tical 42- to 33-Ma time span.

In the model of Oyarzun et al. (2001), the slab melts are
accounted for based on a recent thermal model of buoyant,
overthickened oceanic crust subduction (Gutscher et al. 2000a).
Essentially, this thermal model suggests that, in a flat-slab sub-
duction setting, the slab is prone to be heated enough to melt
during horizontal motion, and predicts melting of oceanic crust up
to �50 Ma old. However, this view of Andean arc magmatism is a
significant departure from previous geophysical models (e.g., James
and Sacks 1999).

As noted in James and Sacks (1999), many seismic studies of
Cenozoic flat-slab subduction in the central Andes have confirmed
the absence of a low-Q (velocity) wedge of asthenospheric material
between the oceanic crust and overlying continental lithosphere.
Moreover, abnormally low heat flow in these environments con-
stitutes one of the most remarkable and anomalous characteristics
of flat subduction zones. James and Sacks (1999) also suggest that
this thermal anomaly can be achieved only through fluid flux in-
volving the whole of the continental lithosphere. In their model,
this advective cooling is driven by fluids generated by dewatering of
the slab during flat subduction. In turn, this lithospheric-scale hy-
dration has a profound implication for Andean tectonism (see
James and Sacks 1999). In addition to the expected cooling by
retraction of the hot asthenospheric wedge during slab flattening,
the above geophysical view clearly suggests an additional cooling of
the whole mantle wedge via fluid flux (advection) from slab dehy-
dration. In this ‘‘cooling’’ model there is not much leeway for a hot
asthenospheric ‘‘tongue’’ leading to slab melting, as proposed by
Gutscher’s thermal model.

The discrepancies between the two models underscore the need
of improving our understanding of flat-subduction dynamics and
the physical conditions of the slab and mantle wedge beneath arcs
in order to successfully model magmatism and metallogenesis in
these particular tectonic settings.

The application of Gutscher’s thermal model to explain the
formation of giant porphyry copper deposits in northern Chile has
additional limitations. Due to the transient character of the melting
event (Gutscher et al. 2000a), this event may not last more than
�2 millon years below a specific area (for a 6 cm/year subduction
rate and >25-Ma-old oceanic crust). Consequently, the model can
not account for the genesis of magmas associated with deposits
located in the same area having age differences greater than
�2 Ma, for example, El Salvador (�41–42 Ma) and Potrerillos
(�36 Ma; Marsh et al. 1997). Furthermore, porphyries older than
�35 Ma formed during the transition from normal to flat-slab
subduction (�38–35 Ma; James and Sacks 1999), may not be sa-
tisfactorily explained by the slab-melting model. According to the

flat-slab melting model, during the early magmatic stage a broad
adakitic arc approximately 100 km wide is formed (Gutscher et al.
2000a). This is in sharp contrast with the narrow Late Eocene-
Early Oligocene belt of northern Chile.

Finally, scarce yet important Os isotopic data of some giant
porphyry copper deposits of northern Chile yield no support for a
slab-melting origin for the magmas associated with these deposits.
Osmium isotopic studies provide a useful avenue to monitor the
process of oceanic crustal recycling, because Re/Os ratios in the
oceanic lithosphere are up to several orders of magnitude higher
than those in mantle peridotite, and both Re and Os display
chalcophile and siderophile behavior (Brandon et al. 1996, and
references therein). Mathur et al. (2000) found no evidence of
radiogenic Os involved in the earliest mineralizing event at the giant
Chuquicamata deposit (�35 Ma; Ballard et al. 2001). In addition,
these authors suggest that the low initial 187Os/188Os ratios (�0.15)
in the Chuquicamata deposit are nevertheless more radiogenic than
those expected for the mantle beneath continental arcs, indicating
that the crust – probably the lower crust – contributes Os to the
magmatic processes which generate these giant porphyry copper
deposits. Furthermore, these authors noticed that, in Chilean
porphyry copper deposits, the lower the initial 187Os/188Os ratio in
sulfides, the higher the total metal content of the deposits.

Alternatives to slab melting

The adakitic signature in the giant porphyry copper deposits of
northern Chile merits additional considerations. As argued by Kay
and Mpodozis (2002), the chemical definition of adakite by
Drummond and Defant (1990) allows essentially any andesitic to
dacitic magma equilibrated with an eclogitic mineral residue (e.g.,
garnet-bearing, plagioclase-poor) to be classified as an adakite,
whether garnet is (1) in the downgoing slab (e.g., Kay et al. 1987),
(2) in a magmatically or tectonically thickened continental crust,
either as a cumulate or as a restite (Hildreth and Moorbath 1988;
Atherton and Petford 1993; Ducea 2001), or (3) in a crust
mechanically removed from beneath the arc or fore-arc (Stern and
Skewes 1995). For instance, all of the Neogene Chilean lavas with
adakitic character associated with flat-slab subduction are inter-
preted as having source components from a thickened lower crust
or from fore-arc crust recycled into the mantle as a result of fore-
arc tectonic erosion (Kay and Mpodozis 2002). Similarly, the
adakitic components in active Ecuadorian volcanoes associated
with flat-slab subduction are also alternatively interpreted as being
derived by partial melting of garnet-bearing basement rocks (Ar-
culus et al. 1999). The adakitic signature of the syntectonic plutons
associated with the El Salvador deposit is likewise explained by
invoking crustal processes (e.g., eclogitization of Andean lower
crust; Cornejo and Matthews 2000).

Using published chemical data from igneous complexes asso-
ciated with porphyry copper deposits (e.g., Sierrita, Bagdad, Copper
Basin, Safford, Ray, and Christmas) and barren intrusives formed in
the back-arc interior zone of the Laramide orogen in the south-
western USA, it is also possible to recognize an adakitic signature in
the mineralized porphyries (see Sr/Y vs. Y diagram; Fig. 1). How-
ever, it must be emphasized in this case that chemical and isotopic
results clearly preclude any petrogenetic model of slab melting. These
porphyries are better explained by having their principal, but not
necessarily exclusive, source in the lower crust in which anatexis and
assimilation of amphibolitic rocks took place (Anthony and Titley
1988; Lang and Titley 1992, 1998).

Concluding statement

The adakitic fingerprint of numerous magmatic complexes asso-
ciated with porphyry copper deposits, including those from
northern Chile, appears to be the result of the involvement of high-
pressure, mafic crustal reworking processes. For many of them, the
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question remains as to whether the mafic crustal component is
either lower continental crust, as in some porphyries from the
southwestern USA (Anthony and Titley 1988; Lang and Titley
1992, 1998), or oceanic crust, as may be the case for some
Philippine copper deposits (Thiéblemont et al. 1997; Sajona and
Maury 1998; see also Castillo et al. 1999). Regardless of the type of
mafic crust involved, its reworking under high-pressure conditions
seems to be an important and widespread process linked to copper
metallogenesis in island arcs and continental regions (Rabbia and
Hernández 2000).

In conclusion, given the current level of understanding of flat-
slab tectonics as well as the lack of systematic chemical and (Nd–
Sr–Pb–Os) isotopic studies in many of the Paleogene deposits of
the northern Chilean porphyry copper belt, it is premature to
assign any particular source (e.g., slab or lower continental crust)
as unique to all the magmas related to the copper deposits in this
belt.
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