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Abstract

The damaging effects of glucose on the cells which
contribute to the development of diabetic complica-
tions are ill-understood. There are three major hy-
potheses — the sorbitol pathway, non-enzymatic gly-
cation of proteins and increased oxidative stress —
and many examples illustrate inter-connections be-
tween the three. It is suggested that these pathways,
together with other biochemical anomalies arising
from hyperglycaemia, can synergise by sharing the
capacity to activate mitogen-activated protein kinas-
es (MAP kinases) and that these enzymes in actual
fact form glucose transducers. The more recent hy-
pothesis, namely that activation of a specific isoform
of protein kinase C (PKC) underpin damaging chan-
ges in retinopathy and neuropathy, can also be relat-

ed because protein kinase C is an effective activator
of mitogen-activated protein kinases. These latter
kinases phosphorylate transcription factors, which in
turn alter the balance of gene expression. In this way
they can alter cellular phenotype, promote division
or increase production of extracellular material. In
short, mitogen-activated protein kinases have the ca-
pacity to trigger all the cellular events necessary for
the development of diabetic nephropathy, retinopa-
thy and neuropathy and it is suggested that their
pharmacological modulation might provide thera-
peutic control of these conditions. [Diabetologia
(1999) 42: 1271-1281]

Keywords Nephropathy, neuropathy, retinopathy, hy-
perglycaemia, MAP kinase, ERK, JNK, p38, protein
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The results of the Diabetes Control and Complica-
tions Trial [1] emphatically confirmed the heroic stud-
ies of Jean Pirart [2—4], showing that poor control of
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glycaemia in Type I (insulin-dependent) diabetes mel-
litus predisposes patients to chronic complications.
This has led to the tacit assumption that glucose, at su-
pranormal concentrations, is the agent of damage.
Participation of hypoinsulinaemia or other manifesta-
tions of poor control cannot be discounted but glucose
itself certainly has the capacity to disturb biosystems.
It can do this in a variety of ways, so that hypotheses
to explain specific complications — retinopathy, nephr-
opathy and neuropathy — starting from high glucose
are tenable, testable and, therefore, useful.

Figure 1 presents a simple generic plan by which
complications develop. It usefully discriminates be-
tween metabolic effects of glucose on the target cells
showing the complication and the exacerbating effect
of independent accelerators, such as arterial hyper-
tension in diabetic nephropathy. Not all independent
accelerators have, however, as clearly defined a rela-
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Fig.1. General schematic to indicate pathways for the devel-
opment of diabetic complications (after Giancarlo Viberti,
personal communication). Cellular transducers register the ef-
fects of hyperglycaemia and related extracellular biochemical
anomalies and convert them to cumulative long-term effects.
As short-term biochemical changes translate into long-term ef-
fects, with structural anomalies, reversibility is progressively
lessened. Independent accelerators (such as arterial hyperten-
sion in nephropathy) and genetic predisposition amplify these
biochemical effects.

tion with the primary cause of a complication and the
nature of this subtlety is important in the design of
new drugs aimed at preventing or treating the compli-
cation. This will be considered in more detail later.
Explaining the effects of glucose requires identifi-
cation of the mechanisms by which it disrupts cellular
metabolism. A few hypotheses have emerged to ex-
plain the initial steps in the effects of glucose. The
most clearly defined are the sorbitol hypothesis [5-7]
and non-enzymatic glycation of proteins [8-10].
These detailed sources indicate that both metabolic
anomalies can contribute to the development of dia-
betic complications and that they overlap with each
other and with other diabetic anomalies. For exam-
ple, oxidative stress clearly interacts with both the
sorbitol pathway [11-13] and non-enzymatic glyca-
tion [14-16]. Indeed, it is clear that oxidation of glu-
cose opens up alternative pathways for protein glyca-
tion and could, therefore, increase its range and ex-
tent, with an amplification of the consequences [14,
17-19]. It is, therefore, important to establish which
components of superficially separate metabolic
anomalies interact and synergise and by what mecha-
nisms. The literature on the various phenomena
which stem from hyperglycaemia, osmotic stress, oxi-
dative stress, glycation and so forth, reveals a recur-
ring topic, namely mitogen-activated protein kinases.

Mitogen-activated protein (MAP) kinases
Having introduced the potential involvement of

MAP kinases in responses to diabetes-derived cellu-
lar changes, it is necessary to consider their biochem-
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istry, classification and nomenclature. Mitogen-acti-
vated protein kinases form a group of serine/threo-
nine specific kinases which are activated in response
to extracellular stimuli through dual phosphorylation
at conserved threonine and tyrosine residues. There
are three main groups of MAP kinases; the extracel-
lular signal regulated kinases (ERK), the c-Jun N-ter-
minal kinases (JNK) and the p38 kinases. Although
ERK, JNK and p38 are frequently referred to as sin-
gle entities, the terms refer to homologous groups of
kinases with similar activation profiles and sub-
strates. Thus, ERK and JNK have three sub-forms
(coded 1, 2 and 3), each set of sub-forms derived
from three genes. For JNK, each sub-form has multi-
ple isoforms; four for JNK1, four for JINK2 and two
for JINK3 [20]. Thus far, four sub-types have been
cloned for p38; a, 3, v, 0 [21].

The mechanics of MAP kinase signalling are cov-
ered by several recent reviews with details of trigger-
ing stimuli and substrates [20, 22-24]. Their perceived
roles in cell physiology are evolving, but in general
p38 is viewed as an osmotic response element [25],
JNKSs respond to several forms of cellular stress and
have become the archetypal stress-activated protein
kinases (SAP kinase) [20] and ERKs are primarily re-
garded as growth factor signalling kinases [22]. It sub-
sequently became clear, however, that both the ERK
and p38 kinase groups also respond to cellular stres-
sors (for examples, see [26-29]), so all three MAP ki-
nase groups could turn out to be SAP kinases under
certain conditions. The p38 osmotic stress response
discussed below is typical of one type of MAP kinase
stress response, in that the external stimulus causes
adjustments of gene transcription which alter the cel-
lular phenotype. As is described below, the p38 ki-
nase signalling pathway is not responsible for all of
the cellular responses to osmotic stress and possibly
it could be discovered that the other MAP kinases
act in concert to produce the full range of cellular ad-
aptation [30]. Other MAP kinase-initiated responses
involve a shift in cell cycle to favour proliferation.
Such responses have been extensively studied in on-
cology [31-33].

Sorbitol pathway

In diabetes glucose is the principal sorbitol pathway
substrate and it is converted to sorbitol by the en-
zyme aldose reductase, with oxidation of NADPH,
followed by oxidation of the sorbitol to fructose by
sorbitol dehydrogenase, with reduction of NAD™.
Under physiological conditions the pathway also
uses glucose and it functions to produce uncharged
intracellular osmolytes, as follows.

Renal tubular cells at the medullary extremity of
the loop of Henlé are bathed in hypertonic interstitial
fluid and the tubular cell compensates for this osmot-
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ic stress by producing sorbitol from glucose by aldose
reductase [34]. Exposure of kidney cells in culture to
increments in tonicity of their culture medium stimu-
lates transcription of the mRNA for aldose reductase;
with increased enzyme activity and sorbitol accumu-
lation this increased transcription is arrested, attain-
ing a new steady state appropriate to the extracellular
osmolality [35]. Other molecules also contribute, in
particular myo-inositol, betaine and glycerophospho-
rylcholine and the amino acids taurine and aspartate
could also be increased intracellularly on exposure
to hypertonic extracellular fluid [36-38]. This phe-
nomenon is not restricted to kidney cells, similar
changes in vitro are seen in lens epithelium [39] and
the retinal pigment epithelium [37]. It is, therefore,
probable that the capacity to increase aldose reduc-
tase expression and produce graded amounts of sor-
bitol in response to hypertonicity is a conserved and
a fundamental property of nucleated cells. The iden-
tity of the “osmosensor” which initiates this cellular
reflex is a mystery, but is considered later.

The involvement of the sorbitol pathway in diabe-
tes is not as simple as the above account might imply.
Under certain conditions the pathway could be driv-
en by both osmotic stress and exaggerated concentra-
tions of substrate; raised intracellular glucose result-
ing from exposure to hyperglycaemia of cells whose
glucose uptake is independent of insulin. There is co-
incidence between insulin-independent glucose up-
take and susceptibility to complications [7]. Thus,
the situation that pertains in the lens probably exem-
plifies its most extreme manifestation in diabetes. In
diabetes the lens can contain extremely high concen-
trations of glucose, to which the lenticular epithelium
(the site of aldose reductase) is permeable. This is as-
sociated with accumulation of sorbitol, which leaks
out into the aqueous and vitreous, contributing to an
osmotic stress of the lenticular epithelium and in-
creasing expression of aldose reductase [40, 41].
Thus, these combined influences induce aldose re-
ductase and drive a large flux of substrate through
its pathway. The extent of osmotically driven aldose
reductase expression will vary in other tissues but
this will be augmented by raised intracellular glucose,
where present. Under these conditions, the cell is
forced to produce sorbitol in excess of that required
to buffer extracellular tonicity, producing an intracel-
lular osmotic stress. That this occurs is shown by such
tissues reducing their content of myo-inositol, by re-
ducing expression of its carrier protein [42, 43]. This
must compensate for the intracellular stress imposed
by the accumulated sorbitol but it is not possible to
judge the efficacy of this compensation. The signal-
ling mechanisms for these processes are being ex-
plained by analogy with yeast and by studies on renal
mechanisms.

Yeast (Saccharomyces cerevisiae) responds to os-
motic stress by autophosphorylation of at least two
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cell-surface osmosensors. These then activate a signal
cascade upstream of a MAP kinase called HOG1
(high osmolarity glycerol) which, as the name im-
plies, results in reduction of glycerol-3-phosphate
to produce glycerol as an intracellular osmolyte
[44-46]. This sequence of events is analogous to acti-
vation of a mammalian MAP kinase, known as p38,
though the mammalian osmosensors have not been
characterised. Osmotic challenge of kidney cells in-
duces p38 with follow-on activation of immediate ear-
ly genes. These almost certainly include some of the
transcription-dependent osmoprotective events trig-
gered by hypertonicity [47] but this pathway does
not appear to induce aldose reductase [48]. It is likely,
therefore, that osmotic stress can activate more than
one MAP kinase in susceptible tissues. The extent to
which osmotic stress participates in the pathophysiol-
ogy of diabetes will vary with control of glycaemia. It
is, however, equally possible that intracellular osmot-
ic stress, as defined above, is also capable of activat-
ing MAP kinases and such an event is likely to occur
wherever depletion of myo-inositol is associated
with sorbitol accumulation in nerve [49, 50], kidney
[51, 52] and retina [53-55]. Differential examination
of the influences of dehydration and glucose in the
kidney shows different pathways signalling the two
stimuli [56, 57]; this could imply differential activa-
tion of multiple MAP kinases.

Non-enzymatic glycosylation of proteins and receptors
for advanced glycosylation end-products (RAGE)

It is clear that there are two generic mechanisms by
which non-enzymatic glycation of proteins can cause
dysfunction. Firstly, the process changes the protein
so that its function within its own domain is altered.
Examples are altered physical properties of long-
lived extracellular proteins forming connective tis-
sues [58] and basal lamina [59, 60], alteration of intra-
cellular structural proteins [61, 62] and compromise
of intercellular communication [63]. These can also
be modified by short-term Amadori reactions or by
long-term advanced glycation products with cross-
linking. The second generic outcome involves non-
enzymatic glycation of circulating proteins, which
then interact with cell surface receptors, RAGE:s.
These receptors probably exist to facilitate the up-
take and clearance of these glycosylated proteins but
when stimulated to excess, they can mediate adverse
cellular events. Recently it has been shown that li-
gand binding to RAGE activates MAP kinases [15,
64, 65]. The responses downstream of MAP kinase
activation by RAGE have yet to be identified but ear-
lier considerations suggest a phenotypic shift or pro-
liferation.
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Oxidative stress

The notion that oxidative stress participates in the de-
velopment of diabetic complications dates back over
20 years [66]. Detailed chemistry of interactions be-
tween oxidatively derived radicals and tissue compo-
nents is reviewed elsewhere [67-70]. Plasma lipid per-
oxides signal oxidative stress [71-73] and this could
represent a forerunner of atherosclerosis but it is in-
tracellular oxidative stress that contributes to chan-
ges in the cells participating in neuropathy, nephropa-
thy and retinopathy. Furthermore, the oxidation of
glucose and the production of reactive intermediates,
which interact with intracellular proteins, could well
provide a powerful input to the early development
of these complications [18, 74].

Pragmatically, there are many studies in diabetic
rats showing that treatment with antioxidants attenu-
ates or prevents the development of abnormalities of
biochemistry or function that are relevant to compli-

Fig.2 A-D. Activation (phosphorylation) of ERK and JNK in
dorsal root ganglia of diabetic rats, plus effects of treatment
with a diester of y-linolenic and a-lipoic acids (GLA-LA,;
200 mg - kg™ - day™' p. 0.). Streptozotocin-diabetic rats were ei-
ther untreated or treated as described above for 8 weeks. Dor-
sal root ganglia were removed bilaterally at L, and Ls, pooled
and processed for western blotting exactly as described else-
where [102]. Each lane contains protein from the four ganglia
from a single rat. Blots (A, ERK and B, JNK) were exposed
to antibodies generated against non-phosphorylated epitopes
of ERK (“full-length”) and JNK (not shown), which revealed
no differences between treatments. Exposure to antibodies
against phosphorylated epitopes showed considerable activa-
tion in untreated diabetic rats (lanes 5 to 8 and bar charts, (C,
ERK and D, JNK) in which phospho-reactivity is normalised
to non-phospho-reactivity to correct for any variation in total
protein content). Treatment with GLA-LA attenuated ERK
activation (A and C), but enhanced activation of JNK (B and
D)by diabetes. For all methods and sources see [102];
* p <0.05, ** p < 0.01 vs untreated controls
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cations (for early examples, see [75-80]). In patients,
there are fewer studies with traditional antioxidants
[78, 81, 82] but it is probable that the beneficial ef-
fects of a-lipoic acid [83-85] derive from its antioxi-
dant properties.

There is a large and accumulating literature link-
ing cellular oxidative stress with activation of MAP
kinases [27, 86-92]. Although none of this work has
been done in diabetes, the markers of oxidative stress
are similar in diabetes to those associated with the
forms of pro-oxidant treatment used in the studies re-
ferred to above.

In general, this work is descriptive and cumula-
tive, in that each new study seems to increase com-
plexity, rather than reveal patterns. Some clarity is,
however, evident. Those oxidative stresses that de-
crease intracellular reduced glutathione (GSH) acti-
vate ERK, rather than JNK or p38, at least in fibro-
blasts [88]. Decreased concentrations of GSH are a
consequence of increased flux through the polyol
pathway in diabetes [12, 93, 94], probably because
aldose reductase competes with glutathione reduc-
tase for NADPH. Thus, there is a possible link be-
tween the sorbitol pathway, oxidative stress and
ERK activation, which could explain the activation
of ERK seen in nervous tissue in diabetic rats
(Fig.2). Other apparent patterns conflict, though it
is likely that different cell types have different re-
sponses. Thus, hydrogen peroxide activated all three
MAP kinases (ERK, JNK, p38) in neonatal ventric-
ular myocytes [90] and in several other cell types
[27]. Tt also activated p38 (the other MAP kinases
were not studied) in endothelial cells [87], but in
mouse fibroblasts JNK was completely refractory to
hydrogen peroxide [95]. As the high concentrations
of hydrogen peroxide used in these studies are pri-
marily of value for proof of principle, we now need
a systematic examination of the effects of realistic
oxidative stress to explain its influence on MAP kin-
ases in diabetes.
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An alternative approach, perhaps with even more
value, will come from examination of the influence
of various antioxidants on MAP kinase activation
both in the presence of specific pro-oxidants and in
diabetes. This approach also brings another dimen-
sion to this analysis. Activation of MAP kinases in
cellular stress possibly forms part of the chain of dam-
age inflicted on the cell by this stress or they could
form part of the protective response of the cell. Clear-
ly, the examples considered earlier in the context of
osmotic stress illustrate MAP kinase responses in
the latter category but when activated by oxidative
stress, their identity as criminal or policeman is
much less clear. One study shows the complexity of
this issue. HeLa or Hep G2 cells treated with butylat-
ed hydroxyanisole (BHA), which generates intracel-
lular hydrogen peroxide, show brisk activation of
ERK?2, followed by a slower activation of JNK1. Pre-
treatment with antioxidants (N-acetyl-L-cysteine,
glutathione or vitamin E) attenuated the ERK2 re-
sponse but not JNK1 activation [89]. This suggests
that ERK activation forms an early component of
the damaging effect of oxidative stress, whereas INK
activation could form part of a protective cellular re-
sponse. These possibilities receive support from ex-
periments on diabetic rats in the author’s laboratory
(Fig.2). Dorsal root ganglia from rats with streptozo-
tocin-induced diabetes show strong steady-sate acti-
vation of both ERK and JNK ([96] and Fig.2). In
rats treated throughout their diabetes with a diester
of a-lipoic acid and y-linolenic acid (GLA-LA),
which has antioxidant properties, the ERK response
was considerably attenuated but the JNK response
was greatly enhanced. As GLA-LA is protective
against a number of functional and biochemical de-
fects in diabetic rats [97], these observations support
the hypothesis that JNK activation is protective,
with the exaggerated activation indicating increased
antioxidant protection. The role of ERK remains am-
biguous, in that reduction of its activation by an anti-
oxidant could imply that phospho-ERK is damaging
but it could also imply that it is a sensitive protective
element and that its reduced activation shows the at-
tenuated oxidative stress associated with the antioxi-
dant treatment.

Protein kinase C

It was reported 10 years ago that exposure of renal
glomeruli [98] or endothelial cells [99] to high glucose
activates protein kinase C (PKC). These observations
were refined to show activation of multiple sub-types
of PKC in retina of diabetic rats, together with raised
concentrations of diacylglycerol; these changes were
restored to normal by insulin treatment [100]. The
mechanism linking raised glucose to PKC activation
could involve oxidative stress because treatment
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with either vitamin E or probucol prevents activation
[101] and associated retinal hyperaemia [102]. The
important link between these phenomena in retinal
vasculature and the proliferative phase of retinopa-
thy came with the finding that the activated PKC is
involved in the generation of vascular endothelial
growth factor (VEGF) [103].

The next important step in the development of un-
derstanding of these processes in the kidney came
with the observation that calphostin C, a PKC inhibi-
tor, prevented activation of MAP kinase and phos-
pholipase A, in mesangial cells cultured in high glu-
cose [104]. The polyol pathway was also tied into
these phenomena with the observation that an aldose
reductase inhibitor prevented the activation of phos-
pholipase A, in glomeruli from diabetic rats [105].
More directly still, an aldose reductase inhibitor was
shown to inhibit the activation of PKC and the in-
crease in transforming growth factor 8 (TGFp) pro-
duction in human mesangial cells cultured in high
glucose [106].

The co-activation of PKC and MAP kinases in vas-
cular cells maintained in high glucose [107] reinforces
the notion that the two are linked. There is a growing
literature outside of diabetes research showing that
PKC can activate MAP kinases and that PKC inhibi-
tors can prevent their activation by a range of stimuli
(see, for example, [108]) [33, 90]. Thus, the observa-
tions cited above suggest that, in vascular tissue, acti-
vation of PKC (possibly amplified by increases in its
expression) occurs in diabetes by oxidative stress
and exaggerated flux through the polyol pathway.
Protein kinase C and diacylglycerol provide haemo-
dynamic abnormalities by impairment of prostanoid
and nitric oxide production. The production of
VEGF is stimulated synergistically by activated PKC
and hypoxia derived from the haemodynamic distur-
bance. Increased TGFp provokes increased synthesis
of extracellular matrix materials. The activation of
MAP kinases by PKC - as well as through the other
pathways described earlier — is implicated in the tran-
scription-dependent changes and phenotypic switch-
es underlying these and probably other undisclosed
phenomena. These considerations support the explo-
ration of the potential benefits of a selective inhibitor
of PKC sub-forms as agents targeted at diabetic re-
tinopathy [109].

Diabetic neuropathy

It should be emphasised that the changes referred to
above are vascular in origin and could well be central
to the abnormalities associated with nephropathy and
retinopathy. It is in these tissues where altered pro-
duction and glycosylation of extracellular matrix
have a profound effect and where microvascular pa-
thology is instrumental in the development of dys-
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function. In peripheral nervous tissue of diabetic rats
there is no evidence of steady-state activation of any
of the sub-forms of PKC [110-113]. This indicates
that there are fundamental differences in the trans-
duction of glucose effects in nervous tissue from
those in retina and kidney. There are those who have
argued for vascular causation of neuropathy through
endoneurial ischaemia of peripheral nerve trunks
[114-116]. It is, however, difficult to reconcile such a
simple hypothesis with a condition in which sensory
defects can be present without symptomatic prob-
lems in motor fibres of the same trunk [117]. Of
course, overwhelming evidence implicates vascular
dysfunction in the development, or maturation of
neuropathy in diabetes, but nerve ischaemia might
more accurately be viewed as an accelerator (Fig.1),
than as a primary cause. Earlier metabolic changes
in diabetes make nerves more susceptible to ischae-
mic damage [118]. Thus, we must identify the glucose
transducer in peripheral nerve and find phenomena
which bias the damaging effect of glucose towards
sensory fibres.

Neurones are terminally differentiated, so that the
MAP kinases do not subserve transcriptional changes
associated with proliferation; instead they communi-
cate signals which adjust neuronal phenotype [119,
120]. Nevertheless, a large amount of work in this
area has used PC12 cells. These are a rat pheochro-
mocytoma cell line and do proliferate, so that not all
findings extrapolate to adult neurones in vivo, and it
is this phenotype that enters the pathway to damage
in diabetes. Mitogen-activated protein kinases are in-
volved in the signalling cascade activated by neu-
rotrophic factors [121, 122] and, because neurotro-
phins have effects on developing nerves which differ
considerably from those on adult neurones, there is
need for further caution in extrapolation. Some facts,
however, are clear.

Mitogen-activated protein kinases are activated
downstream of a cascade initiated by phosphoryla-
tion of the tyrosine kinase domains of the neurotro-
phin tyrosine kinase receptors, which proceeds
through adaptor proteins and small GTP-binding
proteins of the Ras family, phosphorylating Raf and
activating the MAP kinase module [108, 123]. Extra-
cellular signal regulated kinase is the end-stage
MAP kinase in this cascade and it phosphorylates
both nuclear and cytoplasmic substrates.

In neurones JNK is activated by a variety of stimu-
li, including growth factors, trophic factors, cytokines,
ultraviolet light and HIV-1 [124-126]. There is little
evidence of activation of p38 in neurones and certain-
ly no indication of stress-induced phosphorylation of
this kinase. Activation of JNK and ERK by growth/
trophic factors appears to be differential, both with
respect to the activating stimuli and the involvement
of the Ras GTP binding proteins [124]. Nerve growth
factor (NGF) is capable of activating both ERK and
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JNK under different conditions and with different re-
sults. Nerve growth factor interacts with two different
receptors in neurones as part of its physiological ac-
tion; these are the high-affinity tyrosine kinase recep-
tor, trkA, and the low-affinity receptor, p75N'R,
Where these receptors act in concert, the signalling
pathway described above through ERK predomi-
nates and the NGF-supported phenotype is main-
tained, for example in non-myelinated nociceptors
[127-129]. A different picture emerges when the p75
neurotrophin receptor is present without trkA, be-
cause under these conditions NGF activates JNK
and cell death can be a consequence [130, 131]. Intro-
duction of trkA removes the link to cell death [132].

Not surprisingly, these considerations have led to
the view that, whereas ERK appears to exert a role
in the normal physiological signalling of healthy neu-
rones, JNK has some sinister role. In sensory nerves
of diabetic rats both are activated (Fig.2 and [96])
but the extent to which this happens in human ner-
vous tissue in diabetes is still to be shown. The conse-
quences of persistent activation of MAP kinases in di-
abetes are also unknown as yet, though some specula-
tions are possible. Firstly, the consequences possibly
differentiate between different classes of neurone,
because ERK is strikingly absent from the cell bodies
of motor neurones [96]. Accordingly an involvement
in dysfunction could explain the predisposition of di-
abetic neuropathy for sensory fibres. Secondly, per-
sistent high-level activation of ERK could make the
transcription factors that are its normal substrate,
when activated by neurotrophin trk receptors, refrac-
tory to neurotrophin stimulation. This is speculative,
but some conflict is certainly possible and part of the
signalling process for NGF requires its capture, inter-
nalisation and retrograde axonal transport to the neu-
ronal cell body, processes which are impaired in dia-
betes [133, 134]. It is impossible to reconcile the re-
duced concentrations of NGF available to peripheral
neurones in diabetic rats [135] and the impaired re-
ceptor function [136, 137] with any assumption that
ERK is activated only as part of the NGF signalling
cascade. Clearly, in diabetic rats, ERK activation in
neurones is driven by something other than neurotro-
phins; but it is not driven by insulin, which, along with
NGEF, was the first physiological ERK activator to be
identified [138].

We do not know what transcription signals are al-
tered by the persistently activated ERK in diabetes;
indeed it could be that persistent activation of a signal
that might normally be pulsatile could render down-
stream processes refractory. There is good evidence
that the persistent activation of JNK causes phospho-
rylation of inappropriate substrates, in particular
non-nuclear substrates such as neurofilaments, where
it could be the direct cause of hyperphosphorylation
[96]. Hyperphosphorylation of neurofilaments is as-
sociated with filamentous tangles, axodendritic swell-
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Fig.3. Synopsis of the hypotheses advanced in this review. Hy-
perglycaemia exerts several influences on cells, which can syn-
ergise by activation of mitogen-activated protein kinases
(MAPKSs). By adjustment of activation of transcription factors,
these can alter the balance of gene expression, leading to a
spectrum of changes from cellular proliferation, altered pro-
duction of extracellular materials or a dysfunctional change in
phenotype. NFxB, nuclear factor kappa B

ing and neurodegeneration associated and is present
in a range of diseases, including human diabetic neur-
opathy [139, 140]. It is, therefore, possible that JNK
activation could be pathogenic through neurofila-
ment phosphorylation in several disease states. Obvi-
ously, it is difficult to reconcile these speculations
with the finding that a drug with many beneficial ef-
fects in diabetic rats [97] appears to amplify activa-
tion of a MAP kinase that could be damaging. Our
understanding of these phenomena is in its infancy.
What little we do understand, as covered by this re-
view, is summarised in Figure 3.

Drug targets?

The final consideration is the possibility that these
MAP kinases could serve as useful targets for novel
drugs targeted at diabetic complications. The first re-
action is that they are too ubiquitous in both distribu-
tion and function so that modulation would have too
many side effects. The notion that an antagonist of
PKC could have therapeutic value might, however,
have been ridiculed 10 years ago, whereas the devel-
opment of understanding of different sub-forms of
PKC has produced a selective antagonist that is now
in clinical trial for retinopathy. Figure 4 illustrates
the problems of developing new drugs against com-
plications, a venture that has not been strikingly suc-
cessful. The extreme refinement of drug action, as ex-
emplified by nerve growth factor, gives an agent
whose targets are restricted to a sub-population of af-
fected neurones in diabetic neuropathy. Such an

1277

Vaseular Neurotrophic

Stage 3 All receptor protestants factors (NGFj.

antagonists

Fig.4. Schematic illustrating pharmacological defence against
glucose and the causation of diabetic complications. This can
be considered in three stages, with Stage 1 represented by pro-
tection of all tissues against hyperglycaemia; inevitably this
will fail at times. Stage 2 indicates protection by removal of
a relatively specific biochemical abnormality and the shaded
edges of these compartments indicates the overlap referred to
in the text. It is implicit that Stage 2 will protect more than
one tissue/organ. In Stage 3, targeting is more specific for indi-
vidual complications or even, as exemplified by nerve growth
factor (NGF), a sub-division of the peripheral nervous system.
A breach of the protection offered by insulin requires a second
line of defence against a range of insults and, so far, no single
drug gives such comprehensive cover. A clinical trial of any
single agent in Stage 2 (antioxidants, aldose reductase inhibi-
tors, anti-glycation agents) will leave large gaps in the Stage 2
defences, which could prejudice trial outcomes

'PKE inhibitors

agent might have been useful as part of a battery of
drugs, though in isolation it was not possible to show
any efficacy and clinical development has ceased. In
contrast, angiotensin converting enzyme inhibitors
have been successful in slowing the progression of
nephropathy because they control a major indepen-
dent accelerator of the complication. Nevertheless,
Figure 4 makes it clear that an ideal agent will have
a broad spectrum of action. The potential involve-
ment of MAP kinases in the full range of actions of
glucose against all of the tissues responsible for the
late complications of diabetes suggests that they
should be given serious consideration as drug targets.
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