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Abstract

Aims/hypothesis. Diabetes is induced by multiple low
doses of streptozotocin (MLD-STZ) in male mice of
susceptible strains. In this model beta-cell injury and
T-cell-mediated inflammatory reactions are induced.
Probably, reactive oxygen species (ROS) participate
in the destruction of beta cells. The effects of ROS
can be counterbalanced by several antioxidant sys-
tems. One of these is metallothionein (MT), cytosolic
proteins that are induced by zinc ions (Zn?**) and
scavenge hydroxyl radicals (OH). The effect of Zn**
on MLD-STZ-diabetes was studied.

Methods. We gave C57BL/6 and (C57BL/6 x SIL)F,
hybrid mice either MLD-STZ or in addition Zn**-en-
riched drinking water. We analysed metallothionein
ex vivo in pancreatic islets for protein and mRNA
concentration for the isoforms 1 and 2. Pancreatic
sections were examined by immunohistochemistry
for metallothionein and histologically for insulitis.

Results. In both strains, Zn**-enriched drinking water
significantly up-regulated metallothionein and pre-
vented MLD-STZ-diabetes and loss of beta-cell func-
tion. In the F, hybrid mice a variant of MLD-STZ-di-
abetes was observed. These mice developed hyper-
glycaemia 10 weeks after the first injection of STZ
(in contrast to 2 weeks observed in other mouse
strains) and pronounced insulitis. The mRNA of the
metallothionein isoforms 1 and 2 were constitutively
expressed and slightly up-regulated by Zn?**-enriched
drinking water. All islets cells stained for metallo-
thionein.

Conclusions/interpretations. Drinking water enriched
with Zn?* significantly up-regulated metallothionein
production in pancreatic islets of mice and prevented
diabetes induced with MLD-STZ. [Diabetologia
(2000) 43: 1020-1030]

Keywords Streptozotocin, metallothionein, zinc sul-
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T cell-mediated inflammatory autoimmune reactions
are considered to cause Type I diabetes (insulin-de-
pendent) mellitus [1, 2]. Reactive oxygen species
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(ROS) and nitrogen monoxide (NO’) contribute to in-
flammatory diseases [3] and are implicated as media-
tors of beta-cell destruction in animal models of diabe-
tes [4-11]. Reactive oxygen species are continuously
produced by respiring mitochondria [12] and reduced
nicotinamide adenine dinucleotide phosphate oxidase
[13]. Certain antioxidants specifically protect against
their damage: superoxide dismutase (SOD) against
superoxide radical (O,"), catalase against hydrogen
peroxide (H,0,), and glutathione peroxidase against
H,O, and lipid peroxides. It is, however, not known if
there is a specific defense against hydroxyl radicals
(‘OH) in vivo, the most strongly reactive of ROS [14].

Recently, very low concentrations of antioxidants
were found in isolated pancreatic islets of rats and in
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insulin-producing RINmS5F cells compared with oth-
er rat tissues [15]. The authors concluded that beta
cells are vulnerable to ROS because of their poor an-
tioxidant system. This assumption was corroborated
by the observation that up-regulation of catalase and
glutathione peroxidase in transfected RINmSF cells
conferred resistance to ROS [16]. Furthermore, over-
expression of copper/zinc (Cu/Zn) SOD in transgenic
mice [17] or targeted to beta cells [18] averted attacks
on beta cells by ROS generated by streptozotocin
(STZ) or alloxan or both.

Metallothionein (MT) are a group of low molecu-
lar weight (approximately 7000 M,), cysteine-rich
(23-33 mol% ) cytosolic proteins found in all eukary-
otic species [19]. Metallothionein are potent OH
scavengers in vitro [14, 20-22] and 38.5-fold to 50-
fold more effective in protecting DNA from ‘OH at-
tacks than glutathione [23, 24]. There are four iso-
forms of MT [25]. The isoforms MT-1 and MT-2 are
present in major organs, MT-1 being more abundant
than MT-2 [19, 26]. Metallothionein synthesis is stim-
ulated by numerous non-metallic agents and by metal
ions [14, 19]. In rats and mice, Zn salt-induced MT
were localized in the cytoplasm of pancreatic exo-
crine cells [26-31]. In rats, islets stained uniformly
for MT by immunohistochemistry [26] but in mice
the results were discrepant. By immunohistochemis-
try, an antibody reacting with both MT-1 and MT-2
isoforms failed to stain islets of normal and of trans-
genic mice overexpressing MT-1 [31]. Our laboratory
applying quantitative measurements [32] found, how-
ever, constitutive concentrations and induction of MT
with Zn sulphate (Zn**) in islets of mice in vitro [33]
and ex vivo [34].

Pretreatment with Zn?>* prevents diabetes in ani-
mals. In rats, s.c. injection of Zn?* reduced hypergly-
caemia induced with one toxic dose of STZ injected
i.p. [30]. Our laboratory reported that i.p. pretreat-
ment with Zn?* prevented diabetes induced with mul-
tiple low doses of streptozotocin (MLD-STZ) in mice
[35]. Both groups of investigators proposed that Zn?*-
induced MT scavenged ‘OH triggered by STZ. Fur-
ther support for the protective effect of Zn** on
MLD-STZ-induced diabetes in mice is presented.

Materials and methods

Animals. We obtained C57BL/6 male mice at 5-6 weeks of age
from Harlan Winkelmann (Borchen, Germany) and purchased
(C57BL/6 x SJIL)F, male hybrids (B6SJL/F,) at 5-6 weeks of
age from The Jackson Laboratories (Bar Harbor, Me., USA).
Mice were 7-8 weeks old at the beginning of the experiments.
They were kept under specific pathogen-free conditions, re-
ceived a rodent diet (Ssniff M, Ssniff, Soest, Germany) and
had free access to drinking water. The animal studies were con-
ducted in accordance with the “Principles of laboratory animal
care” (NIH publication no. 85-23, revised 1995) as well as the
current version of the German Law on the Protection of Ani-
mals.
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Reagents. Collagenase (0.42 U/mg), HEPES, bovine haemoglo-
bin and TRIS were supplied by Serva (Heidelberg, Germany)
and reagents for the Krebs-Ringer buffer, ZnSO,, haematoxylin
and Kaiser’s glycerol gelatin by Merck (Darmstadt, Germany).
Streptozotocin was obtained from Roche Diagnostics (Mann-
heim, Germany), p-glucose, BSA, and RPMI 1640 culture me-
dium without p-glucose from Sigma (Deisenhofen, Germany),
FCS, Hank’s balanced salt solution (HBSS), PBS and Penicil-
lin-Streptomycin were supplied by Gibco BRL (Eggenstein,
Germany). Lymphocyte separation medium was purchased
from Biochrom (Berlin, Germany), carrier-free '“cadmium
(Cd) was obtained from Amersham Buchler (Braunschweig,
Germany), Bio-Rad dye solution from Bio-Rad (Miinchen,
Germany), insulin RTA 100 from Pharmacia & Upjohn (Frei-
burg, Germany) and anti-GAD-RIA from BRAHMS Diagnos-
tica (Berlin, Germany). For staining by immunohistochemistry,
guinea pig antiserum to porcine insulin, rabbit anti-guinea pig
IgG, goat anti-rabbit IgG, normal serum of guinea pigs and rab-
bits, substrate 3-amino-9-ethylcarbazole (AEC) and washing
solutions were supplied by Dako (Hamburg, Germany). Poly-
clonal antiserum to rat liver MT-1 and MT-2 was generated in
rabbits and kindly provided by Dr. K. H. Summer (Institute of
Toxicology, Neuherberg, Germany).

Treatment of mice. To investigate whether Zn>**-enriched
drinking water induces MT synthesis in pancreatic islets,
groups of five mice each had free access to water enriched
with 25 mmol/l Zn?** for 1 week [25]. Mice whose water had
no additive served as controls. Islets were isolated from indi-
vidual mice [34] and prepared for measurement of MT concen-
trations [33].

To induce diabetes, mice were injected i.p. with 5 x 40 mg
STZ/kg body weight on each of 5 consecutive days according
to the MLD-STZ protocol [36]. Streptozotocin was dissolved
in 0.1 mol/l sodium citrate buffer (pH 4.0) at a concentration
of 0.4 % and injected within 5 min after preparation. The day
of the first STZ injection was designated day 0. For treatment
with Zn?*, two protocols were applied. In the first protocol
groups of C57BL/6 and B6SJL/F; mice were given free access
to drinking water enriched with 25 mmol/l Zn?*; this treatment
was started 1 week before the first STZ injection and conduct-
ed throughout the whole experimental period until the mice
were killed. In the second protocol C57BL/6 mice were given
free access to Zn>*-enriched drinking water from 1 week be-
fore the first STZ injection until 1 day after the last STZ injec-
tion. Groups of mice that had only received either Zn**-en-
riched drinking water or i.p. injections of MLD-STZ served
as controls. The Zn**-enriched drinking water was freshly pre-
pared and replaced daily.

For the OGTT, p-glucose was dissolved in 0.9 % saline at a
concentration of 20%. After a fasting period of 16 h, each
mouse received an oral load of 2.0 g b-glucose/kg body weight
through an intubation tube. Blood glucose concentrations
were measured just before (0 min) and at 15 and 30 min after
the glucose challenge. The C57BL/6 mice underwent an
OGTT at week 4 and B6SJLF, at week 6 after the onset of
treatment with MLD-STZ. Mice matched with them for age
served as controls.

Determination of plasma glucose. Blood samples were collect-
ed weekly from non-fasted animals between 0900 and
1100 hours from the retro-orbital venous plexus, using 20 pl-
capillary glass tubes. Glucose concentration was measured by
the hexokinase method using an autoanalyser (Eppendorf
APC 5040, Hamburg, Germany). Hyperglycaemia was defined
as a blood glucose concentration of 13.9 mmol/l or more per-
sisting for 3 or more consecutive weeks.
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Determination of MT. Metallothionein were measured by the
199Cd-haemoglobin saturation assay as described previously
[32, 34]. Briefly, isolated islets from individual mice were wa-
shed three times with PBS, covered with 50 ul double-distilled
water and stored at —80°C. For measurement of total protein
and MT in cytosolic preparations, the deep-frozen islets were
thawed, kept at 4°C, lyophilised and resuspended in 300 ul
TRIS/HCI (10 mmol/l, 85 mmol/l NaCl, pH 7.4). After centrif-
ugation (1000 g, 5 min, 4°C), 100 ul of the supernatant were
used for total protein measurement by Bio-Rad protein assay
and 200 pl were kept at —80 °C until measurement of MT. To
quantify concentrations of total MT, 1°Cd was added in excess
to 100 ul of the cytosolic probes. To recover 'Cd bound to
MT, excess 'Cd was complexed by addition of bovine haemo-
globin (4 %) and the Cd-haemoglobin complex was removed
by heat treatment. After centrifugation (4000 g, 5 min, 20°C)
the supernatant containing MT was analysed for 'Cd with a
Packard Auto-Gamma 5780 (Packard, Frankfurt/Main, Ger-
many). Addition of the haemolysate and heat treatment were
repeated three times. The calculation of MT content was based
on a molar ratio of 7 g-atom Cd/mol MT [37] and a molecular
weight of 6600.

Immunohistochemistry. After the mice had been killed by cer-
vical dislocation, the pancreas and liver were removed and
specimens were snap-frozen in liquid nitrogen. Cryostat sec-
tions (5 um thick) were placed on slides, air dried, acetone-
fixed for 10 min, and stained for either MT or insulin by using
an immunoperoxidase method. A polyclonal rabbit anti-rat
MT antiserum, cross-reacting with mouse MT was used for
staining of MT. Sections were overlayed with 50 ul of the pri-
mary antibody to rat MT (diluted 1:100) and incubated for
30 min at room temperature in a humid chamber. After two
washing procedures in PBS, the sections were incubated with
50 ul of peroxidase-conjugated goat anti-rabbit IgG antibody
(diluted 1:100) for 45 min at room temperature and washed
twice with PBS. The staining reaction was activated by incuba-
tion of the sections with the substrate solution AEC for 20 min
at 37°C then stopped by thorough washings in distilled water.
Finally, the sections were counterstained with Mayer’s haema-
laun and mounted in Kaiser’s glycerol gelatin. Controls for the
immunohistochemical staining were incubated with non-im-
mune serum of the animal species used to produce the primary
antibodies and omission of the primary antibody reagents from
the procedure. Microscopical examinations were done inde-
pendently by two of the authors. The degree of staining was
scored as follows: 0 = no staining; 1 + = dots of staining loosely
scattered throughout the cell cytoplasm; 2 + = 50 % staining of
the cytoplasm; 3 + = more than 75 % staining of the cytoplasm.

Histological examination. For light microscopy, groups of 5
B6SJL/F, mice each were killed on day 10 as well as 4 weeks
after the first injection of MLD-STZ. Sections from untreated
mice and mice treated with Zn?**-enriched drinking water
served as controls. Preparation of pancreas sections, staining
and examination were done as described previously with slight
modifications [38]. Briefly, the pancreata were removed and
fixed in Bouin’s solution. After routine processing, three step-
sections 5 um thick at a distance of 50 um were prepared from
each paraffin-blocked pancreas and sections were stained
with haematoxylin-eosin. After the slides were coded, exami-
nation of the sections for the presence of infiltrates with mono-
nuclear cells at both islet-pole and intra-islet sites were done
independently by two of the authors. The degree of intra-islet
infiltrates (insulitis) was scored as follows: 0 = no infiltrate;
1+ =mild infiltrate (<30% of islet cells are mononuclear
cells); 2 + = moderate infiltrate (>30 to <75% of islet cells
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Fig.1A, B. Effect of Zn**-enriched drinking water on diabetes
induced by MLD-STZ in C57BL/6 A and B6SJL/F; B mice.
Blood glucose concentrations (means + SEM) over time in
weeks are shown. Bars of very small SEM are hidden in the
curves symbols. Male mice were treated with either MLD-
STZ only (M), MLD-STZ plus Zn**-enriched (25 mmol/l)
drinking water (@), Zn**-enriched drinking water only (O)
or were not treated ([J). Each group treated with MLD-STZ
consisted of 10-15 mice and for the control groups 5 mice
each were used. Zn?*-enriched drinking water prevented hy-
perglycaemia induced with MLD-STZ. ** p < 0.01 comparing
the areas under the curves of MLD-STZ-treated vs MLD-
STZ-treated plus Zn**-treated groups; *** p < 0.001 compar-
ing the areas under the curves of MLD-STZ- plus Zn**-treated
vs control groups

are mononuclear cells); 3 + = severe infiltrate (>75% islet
cells are mononuclear cells). Perivascular or periductular sites
or both at islet poles were examined for absence or presence
of infiltrates.

Determination of GAD ss-autoantibodies. Samples of sera from
6 untreated and 20 mice treated with MLD-STZ were analysed
for GADgs-autoantibodies using a radioligand assay as de-
scribed previously [39]. The cut-off was defined at 571 cpm.

RNA preparation and RT-PCR. Total RN A was extracted from
pooled islets isolated from groups of ten mice each and from
liver tissue using the TRIzol reagent kit (Life Technologies,
Gaithersburg, Md., USA) [40]. The RNA preparation was
stored at —80 °C until use. By using Moloney murine leukemia
virus RT (Life Technologies), 1 ug of total RNA from islets
and liver were reversibly transcribed into cDNA, followed by
amplification of target genes by PCR [41]. For amplification
of mouse MT-1, MT-2 and the housekeeping gene f-actin as in-
ternal control, primer pairs were commercially synthesized by
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MWG-Biotech (Ebersberg, Germany): MT-1, 5>~ TCCTGAG-
TACCTTCTCCTC-3’, 3’-GGTGGTGCACATTTATCAT-5’;
MT-2, 5-TGCGCTGGCGCCTGCAAAT-3’, 3-TCTCCGA-
AGGCTGTTCACG-5’; proinsulin, 5-GGCTTCTTCTACA-
CACACCCA-3, 3-ATGGTCGACCTCTTGATGAC-5’; (-
actin, 5S’-GTGGGCCGCTCTAGGCACCAA-3’,3-CTCTTT-
GATGTCACGCACGATTTC-5". The RT reaction was ampli-
fied using Taqg polymerase (Roche Diagnostics, Mannheim,
Germany). The cycle numbers were chosen to be on the linear,
i.e. exponential phase of the amplification of the three genes:
35 for MT-1 and MT-2, 26 for proinsulin and 30 for S-actin.
For separation, the amplified PCR products, 7 ul of each, i.e.
the target product and f-actin, were loaded on 1.5 % agarose
gels containing ethidium bromide (0.1 pg/ml). The resulting
bands were photographed with Polaroid Instant Pack Film
665 (Polaroid, Cambridge, Mass., USA). To exclude the possi-
bility of genomic DNA contamination during RNA prepara-
tion, negative controls were set up for each PCR amplification,
using purified RNA as a template.

Data analysis. Data presented are means + SEM or SD. For
PCR, intensities of bands of PCR products on the film were de-
termined using scanning densitometry. The ratio of the intensi-
ty integral of target PCR products to that of $-actin was calcu-
lated. Comparisons between groups were done by the un-
paired Student’s ¢ test. We considered p less than 0.05 statisti-
cally significant.

Results

Prevention of MLD-STZ-induced diabetes by Zn**.
Treatment with Zn?**-enriched drinking water pre-
vented diabetes induced by MLD-STZ in both
C57BL/6 and B6SJL/F; mice (Fig.1). The C57BL/
6 mice that were treated with MLD-STZ only started
to develop hyperglycaemia 2 weeks after the first in-
jection of STZ and hyperglycaemia persisted for the
further observation period of 10 weeks. Treatment
with Zn**-enriched drinking water, however, signifi-
cantly reduced the high blood glucose concentrations
induced by MLD-STZ. Although the mean blood
glucose concentrations in this group did not exceed
the euglycaemic threshold of 13.9 mmol/l they were
significantly higher compared with the values mea-
sured in the two control groups which were treated
with either Zn?**-drinking water or tap water alone
(Fig.1). Treatment with Zn?*-enriched drinking wa-
ter until 1 day after the last injection of STZ did not
suffice to protect against MLD-STZ-induced hyper-
glycaemia (data not shown).

Notably, B6SJL/F; mice started to develop severe
hyperglycaemia just 10 weeks after the first injection
of STZ. Treatment with Zn?*-enriched drinking water
significantly reduced the high blood glucose concen-
trations induced by MLD-STZ during the observa-
tion period of 23 weeks. Yet, in this group, the mean
blood glucose concentrations slightly exceeded the
euglycaemic threshold of 13.9 mmol/l and they re-
mained significantly higher than those in the two con-
trol groups that had either not been treated or had re-
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Fig.2 A, B. Effect of continous treatment with Zn**-enriched
drinking water on oral glucose tolerance in mice treated with
MLD-STZ. Blood glucose concentrations (means + SEM) be-
fore and after a glucose load are given. Bars of very small
SEM are hidden in the curves symbols. A 4 weeks after start-
ing treatment of C57BL/6 mice. B 6 weeks after starting treat-
ment of B6SJL/F, mice. Mice were treated with MLD-STZ ei-
ther alone (M) or in addition with Zn>**-enriched (25 mmol/l)
drinking water (@) or were not treated ([]). Groups of
15 mice each were used for the treatment with MLD-STZ and
groups of 5 mice each for controls. Zn**-enriched drinking wa-
ter prevented loss of glucose tolerance induced with MLD-
STZ. ** p<0.01 and *** p <0.001 comparing MLD-STZ-
treated vs MLD-STZ- plus Zn**-treated groups; * p < 0.05
and * p < 0.001 comparing MLD-STZ- plus Zn**-treated vs un-
treated control groups
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Table 1. Effect of Zn?*-enriched drinking water on the variables indicated

Variable C57BL/6 mice B6SJL/F; mice

Zn** control Zn>* control
MT 1.34 £0.26° 0.61 £0.11 2.20+0.34° 0.35+0.05
(ng/ug islet protein)
Body weight (g) 23.5+£0.7 222+03 252+£03 258+£04
Blood glucose concentration (mmol/l) 72£03 83£0.5 75£0.3 6.7£0.2
Islets/mouse (n) 124+ 6 135+10 130+ 11 1427
Total protein concentration/Islet (ng) 88.6+4.9 78.6+5.5 153.30 £24.11 194.93 +£31.03

Mice were treated with Zn?*-enriched drinking water or tap
water (control) for 1 week. Results were obtained from groups
of four to five C57BL/6 and nine to ten B6SJL/F;, hybrid mice

ceived Zn**-enriched drinking water only (Fig.1).
The protective effect induced by Zn** was not caused
by starving because the body weight and the individu-
al daily intake of approximately 7 ml water contain-
ing 7.1 mg Zn** were similar in both control groups
(data not shown). Note that it has been proved that
Zn** is essentially non-toxic in human. It is neither
carcinogenic, mutagenic nor teratogenic [42]. Be-
cause hyperglycaemia determines the intake of water
the individual consumption was not calculated. Nev-
ertheless, the protective effect of Zn** was exerted
before diabetes developed.

Zn**-enriched drinking water prevented essential beta-
cell dysfunction in mice injected with MLD-STZ. In
vivo, beta-cell function was assessed by using the
OGTT. As expected, the groups in mice injected
with MLD-STZ had a high glucose tolerance at 15
and 30 min after the glucose load compared with the
untreated control groups (Fig.2). Treatment with
Zn**-enriched drinking water, however, significantly
countered MLD-STZ-induced loss of glucose toler-
ance. At week 4 after the first injection of STZ,
CS57BL/6 mice showed only slightly reduced glucose
tolerance similar to the results obtained at week 6 in
B6SJL/F; mice (Fig.2).

Zn**-enriched drinking water induced M T in pancreat-
ic islets. Treatment of C57BL/6 and B6SJL/F; mice
with Zn?**-enriched drinking water for 1 week result-
ed in significant induction of MT synthesis in pancre-
atic islets, as measured by the '“Cd-haemoglobin as-
say (Table 1). Metallothionein were measured in is-
lets isolated from individual mice from groups of
five C57BL/6 and ten B6SJL/F; donors. The index of
MT induction, i.e. the ratio of MT concentrations in
islets from mice treated with Zn?**-enriched drinking
water over that of untreated control mice, was
23 +0.5 in C57BL/6 mice and 7.5 + 1.6 in B6SJL/F,;
mice.

The Zn**-enriched drinking water was well toler-
ated. Mice thus treated failed to show any pathologi-
cal signs or symptoms as judged by clinical inspection

each. Data are means + SEM. 2 p < 0.05; ® p < 0.001 compared
with untreated controls

and several laboratory variables, such as body weight,
blood glucose concentrations, number of pancreatic
islets isolated and total protein concentrations/pan-
creatic islet (Table 1).

Localization of pancreatic MT by immunohistochem-
istry. Metallothionein proteins were clearly localized
in the cytoplasm of pancreatic islets. The islets in
snap-frozen pancreatic sections prepared from un-
treated C57BL/6 control mice stained uniformly for
MT (Fig.3). Pancreatic sections of 11 untreated
C57BL/6 donors were prepared and of the 76 islets
examined the intensity of staining was as follows:
1+=0%,2+=525% and 3 + =47.5%; staining of
the exocrine pancreatic cells was considerably less
and was scored as follows: 1 + =86.0%, 2+ =14%,
and 3 + = 0%. Similar results were obtained in pan-
creatic sections that were prepared on day 8 after
starting treatment with either Zn?*-enriched drinking
water alone, on day 6 after starting treatment with
MLD-STZ alone or on day 6 after starting treatment
with MLD-STZ plus Zn**-enriched drinking water
(data not shown). Thus, the statistically significant
ex vivo increment of MT protein in isolated islets of
mice treated with Zn?**-enriched drinking water (Ta-
ble 1) was not indicated by immunohistochemistry, a
method which is not unequivocally suitable for quan-
titative analysis. No staining was detected when sec-
tions were incubated with non-immune serum of rab-
bits (Fig.3) or when the primary antibody was omit-
ted from the procedure (data not shown). The pres-
ence of beta cells in the islets was confirmed by stain-
ing with guinea pig anti-porcine insulin antibody as
primary reactant (data not shown). The results ob-
tained in parallel or serial sections were indistin-
guishable.

Modest increase of mRNA expression of MT-1
and MT-2 by Zn’*-enriched drinking water. The
mRNA of the MT isoforms MT-1 and MT-2 were
constitutively expressed in pancreatic islets and liver
of both C57BL/6 and B6SJL/F; mice (Fig.4). The
density of MT-1 mRNA considerably exceeded that
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Fig.3 A, B. Immunohistochemical staining of MT in pancreat-
ic sections of untreated male C57BL/6 mice. A uniform stain-
ing for MT, scored 3 +, of islet cells and weak staining, scored
1+, of exocrine cells. B no staining of the section with non-im-
mune serum of rabbits. Original magnification x 400

of MT-2 mRNA in both tissues. Treatment of mice
with Zn?*-enriched drinking water modestly in-
creased the density of both MT-1 and MT-2 mRNA
expression in pancreatic islets as well as in liver tissue
(Fig.5). A statistically significant increment was only
observed for MT-1 mRNA in pancreatic islets of
B6SJL/F; mice.

Zn*+-enriched drinking water failed to affect the mR-
NA expression of proinsulin. We tested if the protec-
tive effect of Zn**-enriched drinking water against

hyperglycaemia induced by MLD-STZ resulted from
an increment of proinsulin. Similar density of proin-
sulin mRNA expression was found in islets prepared
from C57BL/6 mice treated with Zn?*-enriched
drinking water and in islets isolated from untreated
controls (Fig.6). Similar results were also obtained
in islets of B6SJL/F, mice (data not shown).

MLD-STZ-induced insulitis in B6SJL/F; mice. Histo-
logical examination of pancreatic sections were done
to test if treatment of B6SJL/F; mice with MLD-
STZ also stimulates immune reactions with infiltra-
tion of islets by mononuclear cells similar to other in-
bred strains such as CD-1 [36] and C57BL/6 [38]. In-
flammatory infiltrates were observed at numerous is-
let poles and intra-islet sites. As measured against a
scoring system from 0 to 3 + , Zn**-enriched drinking
water failed to essentially change the degree of insuli-
tis [38]. Insulitis was absent in untreated mice and
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Fig.4 A-D. RT-PCR determination of MT-1, MT-2 and $3-actin
mRNA in isolated pancreatic islets and liver of C57BL/6
A and B6SJL/F; C mice. Means + SEM of the ratios of MT-1
(0O) to B-actin and MT-2 (M) to -actin mRNA of C57BL/6
B and B6SJL/F; D. The values were calculated from three in-
dependent experiments. MT-1 and MT-2 mRNA are constitu-
tively expressed in pancreatic islets; MT-1 mRNA expression
is dominant over that of MT-2. A similar pattern of MT-1 and
MT-2 mRNA expression was detected in the liver tissue

rarely visible in mice treated with Zn?*-enriched
drinking water (Table 2, Fig.7).

MLD-STZ failed to induce GADgs-autoantibodies
in B6SJL/F; mice. As B6SJL/F; mice showed pro-
nounced insulitis we wanted to evaluate whether the
intense immune reactivities induce production of au-
toantibodies to diabetes-associated antigens [43].
Therefore, sera of mice were analysed for GADs-au-
toantibodies at different time points after treatment.
The concentrations of GADgs-autoantibodies
(means + SD) were 355 + 54 cpm in untreated con-
trol mice. The concentrations after 10 days, 4 weeks
and 10 weeks of treatment with MLD-STZ were
388 + 67,477 + 103 and 561 + 233, respectively. Treat-
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Fig.5A-D. RT-PCR determination of MT-1, MT-2 and f-actin
mRNA in islets isolated from pancreata and liver of mice that
had received Zn?**-enriched drinking water for 7 days or were
not treated. RT-PCR products of C57BL/6 A and B6SJL/F, C
mice. Means + SEM of the ratios of MT-1 to -actin and MT-2
to fB-actin mRNA in isolated islets and liver of C57BL/6 B
and B6SJL/F, D mice, which were treated with Zn?*"-enriched
drinking water () or were not treated ([]). The values were
calculated from three independent experiments. In general,
treatment of mice with Zn?*-enriched drinking water modestly
increased the mRNA expression of MT-1 and MT-2, a signifi-
cant (* p < 0.05 between the marked groups) induction, how-
ever, was only observed for MT-1 in pancreatic islets of
B6SJL/F, mice

ment with MLD-STZ induced a continuous incre-
ment of the mean autoantibody concentration with
time, a significant difference (p < 0.05) was, however,
observed only 4 weeks after treatment when com-
pared with the control value.

Discussion

In our study, treatment with Zn* -enriched drinking
water prevented diabetes induced with MLD-STZ in
C57BL/6 and B6SJL/F; mice. This effect was associ-
ated with a statistically significant up-regulation of
MT protein and increment of mRNA expression of
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Fig.6 A, B. RT-PCR determination of proinsulin mRNA in
isolated islets of C57BL/6 mice that had received Zn*'-en-
riched drinking water for 7 days or were not treated. Samples
used for proinsulin mRNA were the same preparation as that
used for MT-1 and MT-2 mRNA amplification. A RT-PCR
products. B means + SEM of the ratios of proinsulin to 5-actin
mRNA in isolated islets of mice, which were treated with Zn?*-
enriched drinking water () or were not treated ([J). Treat-
ment of mice with Zn?*-enriched drinking water failed to affect
mRNA expression of proinsulin

the isoforms MT-1 and MT-2 in islets. Possibly, the
slight increment of MT mRNA reflects mRNA stabi-
lization facilitating more frequent translation with
statistically significant MT protein production. Me-
tallothionein were present in all islet cells including
beta cells and prevailed in the cytoplasm whereas
the exocrine cells stained only weakly.
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These results extend previous findings from our
laboratory [34, 35], using different experimental pro-
tocols. Injections of Zn>* i.p. dose-dependently up-
regulated MT synthesis in islets [34] and protected
against MLD-STZ diabetes [35]. In vitro, incubation
of islets with Zn?* also induced MT [33] and pre-incu-
bation with Zn?* protected against STZ toxicity [35].
In our present study, diabetes was prevented by giv-
ing Zn?* orally, a route that is more suitable for long-
term treatment than i.p. injections. Note the long
prediabetic period of 10 weeks in B6SJL/F; mice
treated with MLD-STZ, which is five times that gen-
erally observed in other mouse strains [44]. These
mice developed insulitis histologically similar to oth-
er mouse strains [44] that remained unaffected by
treatment with Zn**-enriched drinking water.

Discussing the mechanism underlying protection
against MLD-STZ by Zn?**, we assumed that Zn>*-in-
duced MT provides a defense against ‘OH generated
by MLD-STZ. This assumption is based on the fol-
lowing observations: ROS are increased during in-
flammatory reactions [3] and participate in beta-cell
destruction [45]. Because T cell-dependent inflamma-
tory reactions are also involved in diabetes induced
by MLD-STZ [36, 46, 47], ROS could be generated
and destroy beta cells. Of the group of ROS, ‘OH
are generated by the Fenton reaction from H,0, in
the presence of adventitious Fe?*. As MT scavenged
‘OH in vitro [20, 22] they could also protect against it
in vivo.

There is no evidence of ‘OH liberation from STZ.
It is, however, possible that STZ triggers the chain re-
action to generate ‘OH by interacting with respiring
mitochondria or other cellular or subcellular frac-
tions or both. Therefore, the production of ‘OH in
beta cells might occur in addition to the STZ-induced
inflammatory reaction. In this context, we address
the participation of reactive nitrogen species such as

Table 2. Effect of treatment with MLD-STZ and Zn?*-drinking water on infiltrations with mononuclear cells at pancreatic islet

sites of B6SJL/F; mice

Islet sites
examined (n)

Treatment of mice Time point

of examination

Islets with mononuclear cell infiltrates, n (%)

Islet Intra-  Atislet pole At intra-islet sites
pole islet Absent Present 0 1+ 2+ 3+
- 12 weeks old 26 87 26 (100) 0(0) 87 (100) 0 (0) 0(0) 0(0)
Zn?**-enriched drinking water 18 weeks old 7 339 5(71.4)  2(28.6) 331(97.6) 5(1.5) 1(0.3) 1(0.3)
MLD-STZ 10 days after 106 284 63(59.4) 43(40.6) 258(90.8) 10(3.5) 5(1.8) 7(25)
the first injection
MLD-STZ 4 weeks after 134 462 69 (51.5) 65(48.5) 380(822) 42(9.1) 18(3.9) 17(3.7)
the first injection
Zn?*-enriched drinking 10 days after 43 349 19 (442) 24(55.8) 291(83.4) 19(54) 4(1.1) 4(1.1)
water + MLD-STZ the first injection
Zn?*-enriched drinking 4 weeks after 59 357 28 (47.5) 31(52.5) 314(88.0) 20(5.6) 4(1.1) 5(1.4)

water + MLD-STZ the first injection

Data were obtained from groups of five mice each and three step-sections of each pancreas were examined
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Fig.7A, B. Representative histology of pancreatic sections
prepared from B6SJL/F; mice and stained with haematoxylin
and eosin. A no infiltrates of mononuclear cells in islets of un-
treated control mice. B intra-islet infiltrates scored as 2 + of
MLD-STZ-treated mice 4 weeks after the first injection with
MLD-STZ. Original magnification x 200

NO' as mediators of beta-cell toxicity. Results of in-
vestigations focussing on the role of NO'" in beta-cell
destruction are contradictory. In vitro, NO" produced
by activated macrophages destroyed beta cells [48,
49]. In vivo, inhibition of NO" generation prevented
diabetes induced by MLD-STZ [5, 50]. Other investi-
gators, in contrast, neither observed NO' generation
in islets isolated from mice treated with MLD-STZ
[51] nor prevented diabetes induced by MLD-STZ
with inhibitors of NO' generation [52]. When generat-
ed, NO' probably synergizes with ROS for beta-cell

destruction. The interaction of NO" with O,~ forms
peroxynitrite, which can decompose to ‘OH [53, 54].
In cell-free systems, STZ failed to liberate NO' by
spontaneous decomposition [55]. The exact mecha-
nism underlying STZ-mediated beta-cell injury is
not known because the effect of NO" as a direct medi-
ator of STZ-induced beta-cell toxicity has not been
unequivocally proved.

We propose that the underlying mechanisms for
the results obtained with Zn?*-enriched drinking wa-
ter were that either MT up-regulated by Zn>* scav-
enged ‘OH generated by STZ in beta cells or by in-
flammatory reactions induced by MLD-STZ or both
or that MT prevented ‘'OH generation by inhibiting
the Fenton reaction through binding of Fe?* [56]. It
is unlikely that Zn?** was the protecting element. Al-
though Zn?* is required for insulin production and in-
sulin action [57], it failed to affect mRNA expression
of proinsulin in mice (present data) and mRNA ex-
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pression of insulin in rats [28] or to lower the blood
glucose concentrations due to increased insulin re-
lease (present data).

Treatment with Zn?*-enriched drinking water sta-
tistically significantly up-regulated MT synthesis in
pancreatic islets and protected mice from diabetes in-
duced by MLD-STZ. A variant of the classic MLD-
STZ diabetes model has been observed in B6SJL/F,
mice with a prolonged prediabetic period of
10 weeks. This extended prediabetic phase could in-
volve pathogenic pathways similar to those observed
in human Type I diabetes. Because the dose of Zn**
used was non-toxic, interventions with Zn salts can
also be considered for other models of Type I diabe-
tes and for humans at risk of developing this disease.
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