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Abstract
Aims/hypothesis  Genome-wide association studies (GWAS) have identified hundreds of type 2 diabetes loci, with the vast 
majority of signals located in non-coding regions; as a consequence, it remains largely unclear which ‘effector’ genes these 
variants influence. Determining these effector genes has been hampered by the relatively challenging cellular settings in 
which they are hypothesised to confer their effects.
Methods  To implicate such effector genes, we elected to generate and integrate high-resolution promoter-focused Capture-C, 
assay for transposase-accessible chromatin with sequencing (ATAC-seq) and RNA-seq datasets to characterise chromatin and 
expression profiles in multiple cell lines relevant to type 2 diabetes for subsequent functional follow-up analyses: EndoC-BH1 
(pancreatic beta cell), HepG2 (hepatocyte) and Simpson–Golabi–Behmel syndrome (SGBS; adipocyte).
Results  The subsequent variant-to-gene analysis implicated 810 candidate effector genes at 370 type 2 diabetes risk loci. 
Using partitioned linkage disequilibrium score regression, we observed enrichment for type 2 diabetes and fasting glucose 
GWAS loci in promoter-connected putative cis-regulatory elements in EndoC-BH1 cells as well as fasting insulin GWAS 
loci in SGBS cells. Moreover, as a proof of principle, when we knocked down expression of the SMCO4 gene in EndoC-BH1 
cells, we observed a statistically significant increase in insulin secretion.
Conclusions/interpretation  These results provide a resource for comparing tissue-specific data in tractable cellular models 
as opposed to relatively challenging primary cell settings.
Data availability  Raw and processed next-generation sequencing data for EndoC-BH1, HepG2, SGBS_undiff and SGBS_diff 
cells are deposited in GEO under the Superseries accession GSE262484. Promoter-focused Capture-C data are deposited 
under accession GSE262496. Hi-C data are deposited under accession GSE262481. Bulk ATAC-seq data are deposited under 
accession GSE262479. Bulk RNA-seq data are deposited under accession GSE262480.
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SMCO4	� Single-pass membrane and coiled-coil 
domain-containing protein 4

TF	� Transcription factor
TPM	� Transcripts per million mapped reads
TSS	� Transcription start site
V2G	� Variant-to-gene

Introduction

Genome-wide association studies (GWAS) have identified 
hundreds of common genetic variants robustly associated 
with increased susceptibility to type 2 diabetes. The over-
whelming majority of these GWAS signals are located in 
non-coding regions and are thought to act by altering the 
activity of cis-regulatory elements (cREs) and subsequently 
affecting gene expression either locally or through distant 
chromatin contacts [1, 2].

There are several key challenges in elucidating the 
mechanism by which disease-associated variants contrib-
ute to type 2 diabetes risk. The GWAS approach does not 
unambiguously identify causal variants, i.e. the SNP(s) 
at a given locus molecularly responsible for the disease-
associated risk. This is due to the fact that GWAS signals 
are typically in linkage disequilibrium (LD) with multiple 

proxy SNPs, any of which could be the causal variant(s). 
Additionally, GWAS does not identify the cellular con-
text in which the variant confers its effect. While many 
type 2 diabetes variants are thought to act principally via 
pancreatic islets, other metabolic tissues such as liver and 
adipose are also considered critical in the disease aetiol-
ogy. Finally, GWAS results in themselves do not connect 
putatively causal non-coding variants to their correspond-
ing effector genes.

Given that GWAS-implicated SNPs do not always act via 
the nearest gene, mapping the epigenomic landscape in rel-
evant cell types and cellular models presents an opportunity 
to improve causal variant nominations and gene selection for 
downstream functional studies [3, 4]. To this end, methods 
such as expression quantitative trait locus (eQTL) analysis, 
chromatin conformation/state profiling and RNA interfer-
ence (RNAi)/CRISPR screening approaches have yielded 
a degree of success in identifying putative effector genes at 
type 2 diabetes GWAS loci [3, 5–9].

EndoC-BH1 cells have been shown to be a particularly 
powerful model for pancreatic beta cells, by recapitulat-
ing insulin secretion in response to glucose and sharing 
similar regulatory elements to human islets [6, 10]. Simp-
son–Golabi–Behmel syndrome (SGBS) cells provide an 
equally useful model that recapitulates adipocyte biology 
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[11], while HepG2 cells are a well-characterised and widely 
leveraged carcinoma-derived tractable liver cell line. While 
in vitro cell lines represent a simplification of the in vivo sit-
uation, they provide a highly consistent and modifiable set-
ting for the initial validation of type 2 diabetes variant–gene 
pairs in a human genetic context.

Prior work has examined the epigenomic similarities and 
potential causal role of type 2 diabetes-associated SNPs 
in EndoC-BH1 and pancreatic islets using Hi-C-based 
approaches [3, 6]. Complementary work with eQTLs has 
nominated target genes for type 2 diabetes via colocalisation 
and the impact of non-coding variants on transcription factor 
(TF) binding [5]. Moreover, EndoC-BH1 cells have been 
used as an in vitro platform for high-throughput perturba-
tions of beta cell physiology, through measures of insulin 
secretion and content [12], providing a powerful approach 
for experimental validation of genome-wide predictions [8].

Building on previous reports, we describe the integration 
of GWAS signals for type 2 diabetes and related metabolic 
traits with high-resolution DpnII-based promoter-focused 
Capture-C in the EndoC-BH1 setting along with several 
other cellular models relevant to type 2 diabetes.

Methods

Cell culture  We used a modified protocol from the Human 
Cell Design (France) direct protocol for culturing EndoC-
BH1 cells. Cells were expanded in DMEM low glucose (1 
g/ml) (Gibco, USA) with Glutamax, 2% BSA, 50 μmol/l 
2(β)-mercaptoethanol, 10 mmol/l nicotinamide, 5.5 μmol/l 
transferrin, 6.7 ng/ml sodium selenite, 100 U penicillin/100 
μg/ml streptomycin/0.25 μg/ml amphotericin B (1×, Gibco). 
Plates were coated with either Matrigel or MaxGel ECM 
(Sigma, USA) and 2 μg/ml fibronectin according to the man-
ufacturer’s instructions: Cells were passaged when conflu-
ence was observed or otherwise passaged by two-thirds every 
2 weeks. Cells were negative for mycoplasma and validated 
by expression of insulin. The other cell lines were maintained 
under standard conditions. See the electronic supplementary 
material (ESM) Methods ‘Cell culture’ for details for each 
cell type and for the SGBS cell differentiation.

Sequencing library preparation, sequencing and analy‑
sis  The generation of promoter-focused Capture-C, assay 
for transposase-accessible chromatin (ATAC-seq) and 
RNA-seq libraries for EndoC-BH1 was in line with meth-
ods described previously [13]. The libraries for HepG2 and a 
preadipocyte cell line (SGBS_undiff) that was differentiated 
in vitro (SGBS_diff) were generated in line with our previous 
reports [14]. For full details see ESM Methods ‘ATAC-seq’. 
We considered the set of open chromatin regions (OCRs) 
as the ATAC-seq peaks identified in at least two replicates 

in each cell line (ESM Fig. 1). We used standard methods 
for generation of 3C libraries [14–20]. See ESM Methods 
‘Promoter-focused Capture-C’ and ‘Hi-C library preparation 
and analysis’ for details. The capture library was re-annotated 
under Gencode V30 (https://​www.​genco​degen​es.​org/) at both 
1-fragment and 4-fragment resolution. We defined promoter 
OCRs as the set of OCRs overlapping the region within 
−1500/+500 bp of the gene transcription start site (TSS). 
This range may include both proximal and distal promoter 
elements but is generally not in the range where a chromatin 
contact at our resolution is able to distinguish these [15].

RNA‑seq library generation and analysis  RNA was isolated 
from ~1 million cells of each cell type using TRIzol reagent 
(Invitrogen, USA), purified using the Directzol RNA Miniprep 
Kit (Zymo Research, USA) and depleted of contaminating 
genomic DNA using DNAse I. Purified RNA was checked for 
quality on a Bioanalyzer 2100 (Agilent, USA) using the Nano 
RNA Chip (catalogue no. 5067-1511, Agilent) and samples 
with RNA integrity number (RIN) >7 were used for RNA-seq 
library preparation. RNA samples were depleted of ribosomal 
RNA using the QIAseq Fastselect RNA removal kit (Qiagen, 
Germany). Samples were then processed for the preparation 
of libraries using the SMARTer Stranded Total RNA Sample 
Prep Kit (Takara Bio, USA) according to the manufacturer’s 
instructions. See ESM Methods ‘RNA-seq’ for details.

Bioinformatic methods  See ESM Methods ‘Partitioned 
LD score regression’, ‘Epigenome roadmap enrichment’, 
‘GWAS data integration’ and ‘Transcription factor analy-
sis’ for details. The resulting graphs were generated using R 
[21] (v4.0.2, https://​www.r-​proje​ct.​org/) and ggplot2 (v3.3.0, 
Bioconductor; https://​www.​bioco​nduct​or.​org/). Tracks were 
visualised using pyGenomeTracks [22] (v3.5, https://​github.​
com/​deept​ools/​pyGen​omeTr​acks). Network diagrams were 
constructed using Cytoscape (v3.8.2, https://​cytos​cape.​org/).

EndoC‑BH1 knockdown experiments  EndoC-βH1 cells and 
reagents, including the maintenance medium (OPTIβ1), star-
vation medium (OPTIβ2) and coating matrix (βCoat), were 
purchased from Human Cell Design (France). First, culture 
dishes were prepared following the manufacturer’s instruc-
tions and coated with βCoat. EndoC-BH1 cells were thawed 
in a 37°C water-bath for 1–2 min, resuspended and plated. 
For resuspension, 1 ml of OPTIβ1 medium was slowly added 
to the cells before transferring the cell suspension to a sepa-
rate tube of 8 ml of OPTIβ1 medium. Following this, the 
cell suspension was then centrifuged for 5 min at 500 g at 
room temperature. The supernatant was discarded, and the 
cell pellet was resuspended with 1 ml of OPTIβ1 medium by 
carefully detaching the cell pellet from the bottom of the tube 
by gently pipetting up and down. Then, 1 ml of OPTIβ1 was 
added to the cell suspension and gently homogenised. Next, 

https://www.gencodegenes.org/
https://www.r-project.org/
https://www.bioconductor.org/
https://github.com/deeptools/pyGenomeTracks
https://github.com/deeptools/pyGenomeTracks
https://cytoscape.org/
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live cells were counted using Countess 3 (Thermo Fisher 
Scientific, USA). Then, 1.6 × 106 cells or 4.2 × 106 cells 
were plated in 6 cm dishes or 10 cm dishes, respectively. 
EndoC-βH1 cells were routinely split every 7 days to a den-
sity of 70,000 cells per cm2. The growth rate of EndoC-βH1 
cells stabilised after the second passage of cells; therefore, 
all experiments were at a minimum of the third passage. The 
replicates were each within ±2 passages of each other.

Glucose‑stimulated insulin secretion  Prior to cell seeding, 
four 12-well plates were coated with 500 µl of βCoat coating 
matrix (Human Cell Design), following the manufacturer’s 
instructions. These plates were then prepared in a 37°C, 5% 
CO2 incubator for 3 h prior to cell seeding. Approximately 
125,000 cells were uniformly added to each well and allowed 
to grow at 37°C, 5% CO2 for 4 days. On the fifth day the 
appropriate siRNA treatments (non-targeting 50 nmol/l, 
fragile X syndrome-related protein 2 (FXR2; 50 nmol/l) or 
single-pass membrane and coiled-coil domain-containing 
protein 4 (SMCO4; 37.5 nmol/l) were performed. For details 
see ESM Methods ‘EndoC-BH1 siRNA transfection’. Then, 
48 h later, the cells were transferred from the siRNA/OPTIβ1 
medium to OPTIβ2 starvation medium (Human Cell Design) 
and placed in the incubator for 24 h. Following this, the cells 
were preincubated for the glucose stimulation by removing 
the OPTIβ2 and adding 1 ml/well of βKrebs (Human Cell 
Design)/BSA for 60 min. Next, the stimulation step began 
by removing the βKrebs/BSA and adding the corresponding 
treatment (0 mmol/l glucose, 20 mmol/l glucose, 0 mmol/l 
glucose + 45 µmol/l 3-isobutyl-1-methylxanthine [IBMX] 
or 20 mmol/l glucose + 45 µmol/l IBMX) following manu-
facturer’s instructions for 40 min. For collecting the secreted 
insulin, 800 µl of supernatant was collected from each well 
and these samples were stored at 4°C until the centrifuga-
tion step. For cell insulin content, the remaining medium was 
removed and 1 ml of cold lysis buffer (5 mol/l NaCl, 0.2 mol/l 
EGTA, 1 mol/l Tris pH 8.0, glycerol, Triton X-100 and H2O) 
was added to each well for 5 min, then cells were manually 
sheared by pipetting up and down to complete the lysis. Next, 
these samples were kept at 4°C until centrifugation at 700 g  
for 5 min at 4°C. Finally, 300 µl from each sample was trans-
ferred into a new microtube and stored at −20°C until the 
Human Insulin ELISA was performed. For quantifying insu-
lin content, we used the Mercodia Human Insulin ELISA kit 
(catalogue no. 10-1113-01, Mercodia, Sweden) to evaluate 
insulin secretion in EndoC-βH1 cells. Full details are available 
in ESM Methods ‘Human insulin ELISA’. This experiment 
was performed four times, with the technical replicates with 
the mean of each experiment treated as biological replicates.

RNA isolation, reverse transcription and quantitative 
RT‑PCR  Total RNA was extracted from EndoC-βH1 cells 72 h  
post transfection using Invitrogen TRIzol (Thermo Fisher 

Scientific, catalogue no. 15596018) and the Zymo Research 
Direct-zol RNA MiniPrep Plus kit (catalogue no. R2070), 
following the manufacturer’s instructions.

The quantity and purity of RNA extracted were assessed 
using a NanoDrop 2000 spectrophotometer (Thermo Fisher 
Scientific, USA).

First-strand cDNA synthesis was performed using 
the SuperScript VILO cDNA Synthesis Kit (Thermo 
Fisher Scientific, catalogue no. 11754050), following the 
manufacturer’s instructions. The quantity and purity of 
cDNA synthesised were assessed using a NanoDrop 2000 
spectrophotometer.

Reverse transcriptase quantitative PCR (RT-qPCR) was 
performed using TaqMan Fast Advanced Master Mix (cata-
logue no. 4444556, Applied BioSystems, USA) and analysed 
with the Agilent Technologies AriaMX Real-Time System. 
Knockdown efficiency was assessed by RT-qPCR of the target 
genes using the following primers: FXR2 (Taqman FXR2, 
catalogue no. 4331182, assay ID Hs00191579_m1_FAM, 
Thermo Fisher), SMCO4 (Taqman SMCO4, catalogue no. 
4351372, assay ID HS04980617_g1_FAM, Thermo Fisher). 
The endogenous control gene was beta-actin (Taqman ACTB, 
catalogue no. 4331182, assay ID HS01060665_g1_VIC, 
Thermo Fisher). For details see ESM Methods ‘Quantitative 
RT-PCR’. The endogenous control gene was used to normal-
ise gene expression following the ΔΔCt method [23]. The 
non-template control did not show amplification.

Statistical analyses  Wilcoxon rank-sum tests were used to 
determine enrichment of expression of genes linked to pro-
moter-interacting region OCRs (PIR-OCRs). Bar-plots with 
error bars represents mean and standard deviation, while bar-
plots without error bars represent summary information as 
either a count or ratio from gene lists. In boxplots, the central 
line represents the median, edges represent 25th–75th percen-
tiles, whiskers represent 1.5 times IQR and outliers are depicted 
as points. For experiments for glucose-stimulated insulin secre-
tion assays, paired two-sided t tests were used to assess statisti-
cal significance. Randomisation was not carried out as it was 
not applicable to our study design and analysts were not blinded 
to study variables. No data were excluded from this study.

Ethics statement  Research was conducted in accordance 
with the Children’s Hospital of Philadelphia’s ethics and 
compliance policies. The researchers had access to deiden-
tified biospecimens and datasets.

Results

Epigenetic landscape of cell line models of metabolism  To 
gain insights into key aspects of the epigenetic landscape 
of type 2 diabetes-relevant cell models, we analysed 
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high-resolution promoter-focused Capture-C and ATAC-seq 
data in triplicate for the EndoC-BH1 and HepG2 cell lines, 
along with SGBS cells both at the pre-adipocyte stage and 
the in vitro differentiated adipocyte-like state (SGBS_undiff, 
SGBS_diff). We also leveraged the gene expression in each 
cell line using bulk RNA-seq [14].

For analysing the promoter-centric chromatin architec-
ture, we identified Capture-C-defined contacts with gene 
promoters both at the level of individual restriction frag-
ments (1frag) and by in silico binning four consecutive frag-
ments (4frag) in order to increase the power to call distant 
interactions, as previously performed [14, 20, 24], yielding 
53,689 1frag and 92,152 4frag promoter contacts for EndoC-
BH1, respectively, and ranging from 80,449 to 229,880 1frag 
and 155,569 to 293,618 4frag promoter contacts for the other 
cell lines (Fig. 1a, ESM Table 1).

We leveraged ATAC-seq to identify OCRs, which poten-
tially act as cREs to influence gene expression. We called OCRs 
as the set of reproducible peaks in at least two of three repli-
cates. We identified 68,596 OCRs in EndoC-BH1 cells, 73,296 
in HepG2, 74,296 in SGBS_undiff and 52,609 in SGBS_diff.

We then annotated OCRs to genes if they either over-
lapped with a promoter (−1500/+500 bp) or intersected the 
other end called by promoter-focused Capture-C, which we 
termed promoter interacting regions (PIRs). We found that 
28% of OCRs contacted at least one gene promoter (Fig. 1b, 
ESM Table 2), which is in line with previous reports [14, 
20]. We next compared the distribution of distances between 
the putative enhancer and promoter-connected region frag-
ments and found that they were comparable (mean: EndoC-
BH1, 133,320.9 bp; HepG2, 109,703.7 bp; SGBS_undiff, 
155,686.6 bp; SGBS_diff, 207,733.6 bp) (Fig. 1c).

Next, we determined the degree of similarity across pro-
moter–OCR connections between cell types by comparing 
the magnitude of overlap between the PIR-OCR-connected 
regions using the Jaccard index, i.e. the ratio of nucleotides 
located in both annotations to the union present in either set 
of annotations. We found that the four cell types displayed 
less than 30% overlap (Fig. 1d), suggesting that the promoter 
landscapes have distinct cell type-specific epigenetic and 
chromatin conformational features that contribute to transcrip-
tional differences across these cell lines. Also consistent with 

previous reports, we observed bait-to-bait contacts ranging 
from 10% to 29% of called loops (ESM Table 3).

Comparison of promoter‑focused defined maps with existing 
enhancer atlases  To further validate our OCR–gene con-
tacts, we compared the expression of genes with a promoter 
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contacting at least one OCR vs that of genes not in contact 
with any OCR. Consistent with our prior promoter-focused 
Capture-C datasets [16, 17, 19], genes with a promoter in 
contact with OCRs were generally expressed at significantly 
higher levels (unpaired Mann–Whitney U test, two-sided 
p<2.2 × 10−16) than those without OCR contacts across 
cell types (Fig. 2a). Similarly, we assessed the degree of 
similarity to GTEx expression profiles of equivalent tissue 
types and found that the genes contacted in our cell lines 
were expressed at higher levels in the corresponding tissue 
in that public domain dataset [25] (Fig. 2b). These results 
suggest that promoter contacts with OCRs are associated 
with increased gene expression.

We then compared the chromatin states identified by 
the epigenome roadmap with the open connected regions 
defined by ATAC-seq and promoter-focused Capture-C. As 
expected, we found at least fourfold enrichment for active 
and bivalent TSSs and enhancers, given that OCRs can rep-
resent either active or ‘poised’ regulatory elements (Fig. 2c). 
The shared TSS/promoter signature represents the number 
of bait-to-bait interactions present, suggesting either that 
some genes are co-regulated or that promoters of genes not 
expressed in a particular cell type can act as enhancers, as 
previously reported by others [26].

We subsequently examined the VISTA database for 
curated validated enhancers in different embryological 
tissues [27]. However, there were only six experimentally 
validated pancreatic enhancers within the database. Despite 
this limitation, we observed in our data that a known 
human enhancer, hs1977, was in contact with the ABCC8 
promoter (Fig. 2d, e). ABCC8 encodes a component of an 
ATP-sensitive potassium channel expressed in beta cells and 
modulates glucose-dependent insulin secretion [28]. This 
enhancer region was accessible only in EndoC-BH1 cells, 

while expression was observed in the pancreas in the VISTA 
database, although several of the in situs display staining in 
neural tissues in addition to the pancreas. We also identified 
a liver enhancer, hs1752, expressed in the liver, heart and 
other abdominal tissues with contacts to PCYOX1L, which 
encodes prenylcysteine oxidase 1 like (Fig. 2f, g). Prenyl-
cysteine oxidases are enzymes that scavenge free cysteines 
from a metabolic pathway involved in the degradation of 
prenylated proteins [29]. This cRE was also connected to the 
promoter of several non-coding RNAs: miR-143, miR-145 
and AC131025.2. Taken together, these results support the 
use of chromatin features in these cell lines as a valid model 
to investigate cREs for type 2 diabetes-related traits.

Variant‑to‑gene mapping in metabolic‑relevant cells and pri‑
oritisation of type 2 diabetes‑associated GWAS signals  Next, 
we sought to investigate the degree that cellular models are 
enriched for heritability associated with metabolic traits. To 
this end, we performed partitioned LD score regression [30] 
to test for enrichment of putative cREs (promoter OCRs + 
PIR-OCRs) (Fig. 3, ESM Table 4). We observed signifi-
cant enrichment of EndoC-BH1 cREs for type 2 diabetes, 
fasting glucose, BMI and fetal body weight. HepG2 cREs 
were enriched for coronary artery disease and fasting glu-
cose levels. SGBS_diff cREs were enriched for WHR, fast-
ing insulin, plasma triglyceride and HDL-cholesterol levels, 
while SGBS_undiff cREs were enriched for WHR. cREs 
across all cell types were enriched for height. In addition, 
we included recent GWAS studies from Alzheimer’s disease 
and systemic lupus erythematosus as negative controls, and 
as expected we did not observe enrichment for these neural 
and immune GWAS traits in these principally metabolic cell 
types [30–32]. Therefore, these results supported the util-
ity of these cell models in investigating the cis-regulatory 
architecture for the type 2 diabetes-related traits.

To implicate type 2 diabetes causal variants impacting 
cREs, we curated the set of lead sentinel SNPs from the 
two most recent European and trans-ancestral GWAS reports 
for the disease [33, 34]. We identified proxies in high LD 
with the reported lead variants for each signal (r2>0.8) and 
intersected their genomic coordinates with OCRs and PIRs 
(Table 1). The subsequent 810 implicated genes from this 
variant-to-gene (V2G) mapping strategy, corresponding to 
370 type 2 diabetes sentinels, revealed that the majority of 
putative causal variants did not contact the gene nearest to 
the sentinel, and in most cases where the nearest gene was 
implicated other gene promoters were also additionally con-
tacted (Fig. 4a, ESM Table 5). Of these 810 genes implicated 
by this V2G mapping approach, 79.9% were specific to one 
cell line (130 EndoC-BH1, 311 HepG2, 123 SGBS_diff, 83 
SGBS_undiff) while 163 (20.1%) were shared in at least 
two cell types and 53 (6.5%) across all cell types (Fig. 4b). 
We compared the list of genes with phenotypes identified in 

Fig. 2   Validation of promoter-connected cREs. (a) The distribu-
tion of gene expression from matching cell line data (log2 TPM+1) 
between genes with promoters with at least one PIR-OCR contact 
(red) and those genes without PIR-OCRs (green). (b) The distribution 
of gene expression from GTEx tissue (log2 TPM+1) from the cells 
between genes with promoters with at least one PIR-OCR contact 
(red) and those genes without PIR-OCRs (green). Pancreas expres-
sion with EndoC-BH1 contacts; visceral/subcutaneous adipose tis-
sue expression with SGBS_diff and SGBS_undiff contacts; and liver 
expression with HepG2 contacts. In boxplots, the central line repre-
sents the median, box edges represent 25th–75th percentiles, whisk-
ers represent 1.5 times the IQR and outliers are depicted as points. 
(c) log2-fold enrichment of PIR-OCRs to ChromHMM-defined anno-
tations for the epigenome roadmap for the indicated cell type/tissue 
type pairs. (d) Genomic location of a verified pancreas enhancer in 
beta cells from the VISTA regulatory element browser with chroma-
tin contacts to ABCC8. (e) lacZ staining from the VISTA browser 
showing the expression pattern for the contact between ABCC8 and 
hs1977 detailed in (d). (f) Genomic location of a liver-expressed reg-
ulatory element from VISTA with chromatin contacts to PCYOX1L in 
HepG2 cells (g) lacZ staining from the VISTA browser showing the 
expression pattern for the contact between PCYOX1L and hs1752

◂
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mice, and found significant enrichment for nervous system, 
haematopoietic system, growth/size body region and mortal-
ity/ageing (ESM Fig. 2, ESM Table 6).

One obvious mechanism by which non-coding variants 
can influence gene expression is through disruption of TF 
binding sites. To investigate this possibility, we predicted 
whether any of the V2G-implicated open proxies that con-
tacted genes contained known TF binding motifs. This 
approach led to the identification of 288 proxies predicted to 
alter binding affinity (Fig. 4c, ESM Table 7). Most notably, 
we observed that several binding sites for zinc finger TF KLF 
and GLI families were disrupted by variants identified in 

EndoC-BH1. Seventeen of the TFs with motifs impacted by 
type 2 diabetes variants are predicted effector transcripts in 
at least one cell type (HES2, ZNF384, STAT6, NR2C1, ONE-
CUT1, TCF12, SOX15, TP53, HNF1B, TCF4, TCF3, OSR1, 
PPARG​, NFKB1, CREB3, ZBTB6, ZBTB26). We compared 
the motifs with publicly available chromatin immunopre-
cipitation (ChIP) data from ENCODE, to determine if there 
is evidence of TF binding at the genomic location in vari-
ous cellular contexts (ESM Fig. 3, ESM Table 8). We also 
checked the expression of implicated TFs and observed 280 
of 447 (62.6%) of the predicted TFs with disrupted motifs 
had transcripts per million mapped reads (TPM) >1 and 187 

Fig. 3   Enrichment of meta-
bolic traits in EndoC-BH1 and 
relevant cells. A summary of 
partitioned LD score regression 
showing the z score of enrich-
ment for indicated traits. Colour 
indicates the z-transformed p 
values, with traits significantly 
enriched marked with asterisks
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Table 1   Summary table of the 
input sentinels and proxies used 
in this study and how many in at 
least one cell type

AFR, African ancestry analysis; AMR, American ancestry analysis; EAS, East Asian ancestry analysis; 
EUR, European ancestry analysis; TRANSE, trans-ancestral analysis

Variable Mahajan et al, 
2018 [36]

Vujkovic et al, 2020 [45]

Ancestry EUR AFR AMR EAS EUR TRANSE
No. of sentinel SNPs 403 21 2 86 425 553
No. of proxy SNPs 8781 129 20 2253 10,339 10,893
No. of PIR-OCR proxy SNPs 314 2 5 72 301 271
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Fig. 4   V2G mapping of type 2 diabetes loci across cell types. (a) 
The counts of sentinels implicated to the nearest gene to the senti-
nel, to multiple genes including the nearest gene or to gene(s) not 
including the gene closest to sentinel for each cell type. (b) Overlap 
of genes implicated in type 2 diabetes in each cell type; the top bar 
graph indicates the number of genes in each intersection set (intersec-
tion size). Red indicates the subset of genes found in one cell type, 
blue indicates two cell types, black indicates three cell types and 
green indicates the genes implicated in all four cell types. The side 
bar graph indicates the total number of genes per cell type (set size). 
(c) TFs predicted to be impacted by proxy SNPs. The x-axis indi-
cates whether the mean effect of type 2 diabetes SNPs is predicted 
to be increasing or decreasing stability and the y-axis indicates the 

expression of the TF. Colour is scaled to indicate the mean expres-
sion of the predicted target genes and size indicates the number of 
proxies predicted to disrupt a given TF motif. (d) Network showing 
predicted proxies (blue) connected by promoter-focused Capture-
C and ATAC-seq to target genes (coloured by expression: blue, 
low; yellow, higher expression). (e) Intersection of our list of impli-
cated genes in EndoC-BH1s with several known databases. T2D_
Mahajan_2022_finemapped_nominations [36]; Open_Targets_T2D 
[46]; T2D_effector_index [37]; GWAS_catalogue [47]; Miguel-
Escalada_et_al_Islet_Promoter_Capture_HiC [3]; Thomsen_2016_
EndoC-BH1_screen_hits [8]. Ref-Alt, reference allele minus alterna-
tive allele; T2D, type 2 diabetes
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had TPM >10 in EndoC-BH1 cells, suggesting that a major-
ity of predicted TFs are expressed (ESM Fig. 4).

We then examined the genes contacting proxies regard-
less of the status of predicted disruption of TF binding sites. 
While some signals were only predicted to have one proxy 
interacting with one gene, others yielded multiple proxies 
with contacts to multiple genes (Fig. 4d). While this could 
suggest a subset of variants acting through multiple genes, 
further work is necessary to functionally validate these pre-
dictions. We note that we did not observe a trend towards 
those multi-gene signals corresponding to more statistically 
significant type 2 diabetes GWAS loci.

Next, we compared our analysis with previous type 2 
diabetes functional prioritisation approaches, yielding 
moderate agreement but highlighting a potentially higher 
confidence gene set for further investigation [3, 8, 35–37] 
(Fig. 4e, ESM Table 9). Additionally, we compared our find-
ings with a recent CRISPR interference (CRISPRi) screen 
identifying potential type 2 diabetes effectors, noting eight 
overlapping genes, seven associated with decreased insulin 
content and one with increased content (decreased: CHD4, 
PRPF18, GMEB1, CREB3, PITPNM2, SIN3A and ATP6 
V1C1; increased: FADS1). However, this overlap did not 
reach strict statistical significance (Fisher’s test, one-sided, 
p=0.09). Moreover, we compared our list with one generated 
using chromatin conformation in pancreatic cells, finding 
100 genes annotated as type 2 diabetes effectors in beta cell 
Hi-C also present in our dataset (ESM Table 10) [9].

Subsequently, we compared our results with eQTL asso-
ciations of nearby genes [5, 25]. Among 221 eQTL-linked 
genes associated with type 2 diabetes risk loci in pancreatic/
islet tissues, only 12 had open proxies in chromatin con-
tact with their promoters in EndoC-BH1 cells: SMCO4, 
DOC2A, OPRL1, TUFM, YBEY, MTMR11, UBE2D3, PLE-
KHA1, GPSM1, RNF6, ABCD9 and AGFG2. Six genes were 
implicated by both liver eQTLs and our promoter-focused 
Capture-C in HepG2 cells, while 25 genes were linked to 
adipose tissue eQTLs and our Capture-C in at least one adi-
pose model (SGBS_undiff, SGBS_diff) (ESM Table 11). 
Colocalisation analyses between GTEx v7 and DIAMANTE 
type 2 diabetes GWAS signals [33] revealed 22 genes colo-
calised (posterior inclusion probability (PIP) >0.85) in the 
pancreas, with only DOC2A also implicated by our Capture-
C approach. We detected 11 genes with eQTL colocalisation 
in the liver, of which MAN2C1, AP3S2 and CEP68 were also 
implicated by promoter contacts in HepG2. Additionally, 54 
genes were identified in subcutaneous or visceral adipose 
tissue, with AP3S2, CALR and NDUFAF6 also implicated 
by our V2G approach in SGBS_diff cells, while PABPC4, 
PLEKHA1, AP3S2 and DCAF16 were implicated in the 
SGBS_undiff dataset (ESM Table 12). Although there is 
limited overlap, the intersection of these methods can better 
prioritise genes for functional validation.

Inhibition of SMCO4 expression increases glucose‑stimulated 
insulin secretion in EndoC‑BH1  In our analysis pipeline, two 
genes, SMCO4 and FXR2, were among those identified as 
potential type 2 diabetes candidate genes (Fig. 5a, b) in both 
EndoC-BH1 and prior primary beta cell chromatin maps [9]. 
Additionally, an eQTL associated with SMCO4 colocalises 
with a type 2 diabetes signal marked by rs57235767 in islets 
[5]. To investigate the impact of these two genes on insulin 
secretion in EndoC-BH1 cells (Fig. 5c), we performed tar-
geted knockdown experiments of SMCO4 and FXR2. Confir-
mation of SMCO4 and FXR2 knockdown was achieved using 
RT-qPCR (Fig. 5d). Our analyses revealed a significant 
increase in insulin secretion in SMCO4 knockdown cells 
relative to non-targeting siRNA controls (~18.0% increase, 
paired two-tailed t test p=0.0243) (Fig. 5e). Notably, there 
was no significant difference when IBMX was added to the 
stimulation medium (ESM Fig. 5). IBMX raises cellular lev-
els of cAMP to stimulate secretion of insulin. These results 
suggest that that SMCO4, but not FXR2, inhibits glucose-
stimulated insulin secretion in EndoC-BH1 cells, while hav-
ing no significant impact on IBMX-stimulated secretion.

Discussion

Through the integration of GWAS data with the data 
generation of the trifecta of promoter-focused Capture-
C, ATAC-seq and RNA-seq in type 2 diabetes-related 
relevant cellular models, we could reveal which settings 
showed enrichment for loci and V2G genes for subsequent 
informing of functional studies to pursue candidate causal 
variants and their corresponding effector genes. Given that 
prior studies have examined putative effectors of type 2 
diabetes-associated SNPs in pancreatic islets using eQTLs 
and promoter Hi-C [3, 5, 6], along with similar work in 
adipose [38] and skeletal muscle cells [39], our work com-
plements previous efforts with cellular models particularly 
amenable for functional experiments to address such com-
plex, polygenic diseases operating across multiple tissue 
settings.

Partitioned LD score regression analyses revealed differ-
ences in cellular composition for metabolic-related traits. 
Type 2 diabetes and fasting glucose displayed enrichment 
in EndoC-BH1 cells, which supports evidence from prior 
studies highlighting the pancreas's role in glucose regula-
tion [7]. BMI enrichment in EndoC-BH1 cells is consistent 
with the insulin–obesity association [40]. Height exhibited 
enrichment across all cell types, possibly due to the large 
sample size and its reflection of various physiological pro-
cesses [41]. Fasting insulin levels and WHR were enriched 
in the adipose model SGBS_diff, indicating differing genetic 
impacts on metabolic physiology between type 2 diabetes 
and associated risk factors (Fig. 3). No enrichment was 
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found for polycystic ovary syndrome, a disorder leading to 
infertility that often presents with insulin resistance [42].

V2G mapping identified SMCO4 as a candidate 
gene affecting insulin secretion. From public expres-
sion resources, SMCO4 is expressed in most tissues from 

RNA-seq and immunohistochemistry data [43]. Further 
work would be necessary to characterise its role in pan-
creatic islet cells and other tissues. In addition, we queried 
several prior studies and found that SMCO4 is not reported 
to be differentially expressed in islets/beta cells in type 2 
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Fig. 5   Assaying effects of SMCO4 and FXR2 knockdown in Endo-
BH1 cells on glucose-stimulated insulin secretion. (a, b) Genomic 
locations of SMCO4 (a) and FXR2 (b) relative to implicated proxy 
variants. The top tracks represent Hi-C contact matrices from EndoC-
BH1 Hi-C data, while the subsequent tracks depict significant con-
tacts for Capture-C (Chicago score ≥5) and ATAC-seq (normalised 
using the reads-per-genomic-content approach). The locations of 
implicated SNPs are drawn as vertical lines. (c) Diagram summaris-
ing the time course of insulin treatment. (d) RT-qPCR results of the 
knockdown of either FXR2 or SMCO4. The data were adjusted using 
the ΔΔCt method and all conditions were subsequently normalised to 

basal non-targeting control. Two datapoints are depicted and the top 
of the bar graph depicts the mean expression and error bars depict 
the SD. (e) Boxplots depict the results of the insulin secretion assay, 
the central line represents the median, box edges represent 25th–75th 
percentiles, whiskers represent 1.5 times the IQR and outliers are 
depicted as points. Insulin content and secretion were calculated from 
ELISA plates with standard curves (see Methods). Measurements 
were taken for either basal (0 mmol/l glucose) or 20 mmol/l glucose. 
The mean of six technical replicates was taken for four biological rep-
licates. Paired two-tailed t tests were used to assess statistical signifi-
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diabetes. It is possible that SMCO4 functions early in type 
2 diabetes development or in a limited subset of cells. FXR2 
knockdown showed less efficiency and no significant effect 
on insulin secretion, possibly due to either reduced knock-
down efficiency or compensation by its paralog FXR1.

Despite the valuable insights gained, our study has notable 
limitations. While commonly used for molecular validation of 
disease variants, the use of immortalised cell lines does not 
fully recapitulate the chromatin landscape of the in vivo state of 
primary cells/tissues. Moreover, these cells provide snapshots 
of cellular states under limited conditions and do not take into 
account possible temporal effects at loci over time. Incorporat-
ing multiple lines of evidence facilitates determination of cau-
sality of disease-relevant variants. Further comparative analyses 
under different physiological conditions may offer additional 
insights into gene expression programmes and expand the list 
of nominated genes. In our functional assays, while we suc-
cessfully validated SMCO4 knockdown, we faced challenges 
in assaying SMCO4 protein knockdown via western blot due to 
the small size and negative charge of the protein. Further work 
is warranted to further clarify the function of SMCO4 in beta 
cells in the context of type 2 diabetes and related traits. In addi-
tion, we only assayed for functional consequences of putative 
effector genes in EndoC-BH1 cells. Future work could assay 
responsiveness to insulin via downstream molecular readouts 
and other physiological responses in SGBS and HepG2 cells.

The combined results from our V2G mapping analyses 
present potential targets for further validation and functional 
assessment in cellular models, especially when combined with 
other orthogonal datasets available in the public domain. Addi-
tional work is necessary to determine whether these obser-
vations represent true cases of pleiotropy. Our datasets were 
generated to capture the ‘normal context’ of disease-associated 
susceptibility variants before the disease induces thousands of 
non-causal changes after onset. However, it has been proposed 
that some SNPs may act by retethering regulatory elements 
to ectopic target genes to contribute to disease [44]. High-
throughput functional validation methods, such as Perturb-
seq, may offer insights into how eQTLs, chromatin conforma-
tion and other data contribute to effector gene nominations. 
Future studies focused on highlighting the dynamic nature of 
enhancers in a variety of cellular states and disease contexts are 
warranted, as well as comparing the 3D architecture of larger 
cohorts with diverse genetic backgrounds, in order to clarify 
how generalised this model is in shedding light on the genomic 
aetiology of common metabolic disease pathogenesis.
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