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Abstract
Aims/hypothesis We compared the effects of sodium–glucose cotransporter 2 (SGLT2) inhibitors (SGLT2i) and glucagon-
like peptide-1 receptor agonists (GLP-1RA) on renal outcomes in individuals with type 2 diabetes, focusing on the changes 
in eGFR and albuminuria.
Methods This was a multicentre retrospective observational study on new users of diabetes medications. Participant char-
acteristics were assessed before and after propensity score matching. The primary endpoint, change in eGFR, was analysed 
using mixed-effects models. Secondary endpoints included categorical eGFR-based outcomes and changes in albuminuria. 
Subgroup and sensitivity analyses were performed to assess robustness of the findings.
Results After matching, 5701 participants/group were included. Participants were predominantly male, aged 61 years, with a 
10 year duration of diabetes, a baseline  HbA1c of 64 mmol/mol (8.0%) and BMI of 33 kg/m2. Chronic kidney disease (CKD) 
was present in 23% of participants. During a median of 2.1 years, from a baseline of 87 ml/min per 1.73  m2, eGFR remained 
higher in the SGLT2i group compared with the GLP-1RA group throughout the observation period by 1.2 ml/min per  
1.73  m2. No differences were detected in albuminuria change. The SGLT2i group exhibited lower rates of worsening CKD 
class and favourable changes in BP compared with the GLP-1RA group, despite lesser  HbA1c decline. SGLT2i also reduced 
eGFR decline better than GLP-1RA in participants without baseline CKD.
Conclusions/interpretation In individuals with type 2 diabetes, treatment with SGLT2i was associated with better preserva-
tion of renal function compared with GLP-1RA, as evidenced by slower decline in eGFR. These findings reinforce SGLT2i 
as preferred agents for renal protection in this patient population.
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Introduction

Diabetic kidney disease (DKD) is the leading cause of 
end-stage kidney disease (ESKD) globally [1] and it poses 
a substantial burden on society and healthcare systems [2, 
3]. The impact of chronic kidney disease (CKD) in type 2 
diabetes extends beyond renal dysfunction, encompassing 
a spectrum of systemic complications and comorbidities. 
The intricate interplay between diabetes and CKD ampli-
fies the risk of adverse outcomes, necessitating early inter-
vention and targeted management strategies.

Treatment for DKD aims to mitigate renal dysfunction, 
attenuate disease progression and reduce the risk of com-
plications. Multifaceted management includes lifestyle 
modification, pharmacotherapy and targeted interven-
tions to optimise glucose, BP, weight and lipid control. 
Renin–angiotensin system (RAS) blockers remain a cor-
nerstone therapy for DKD, offering benefits beyond BP 
control [4]. On top of that, several landmark clinical trials 
have provided robust evidence supporting the renal bene-
fits of sodium–glucose cotransporter 2 (SGLT2) inhibitors 
(SGLT2i), revolutionising the management of DKD. Sec-
ondary analysis of cardiovascular outcome trials (CVOTs) 
have reported remarkable improvements in all kidney 
outcomes [5–7]. Such evidence has been corroborated 

by trials showing nephroprotective effects of SGLT2i 
in individuals with CKD of any origin, with or without 
type 2 diabetes [8, 9]. Based on the compelling evidence 
from clinical trials, international guidelines endorse the 
use of SGLT2i as preferred agents for reducing the risk 
of kidney disease progression in individuals with type 2 
diabetes [10]. Although less prominently, glucagon-like 
peptide-1 receptor agonists (GLP-1RA) can also attenu-
ate renal dysfunction in type 2 diabetes. CVOTs found 
significant reductions in incident or worsening nephropa-
thy with GLP-1RA compared with placebo [11]. While 
this was mainly due to a protection from new-onset mac-
roalbuminuria, there was some evidence of slower loss of 
kidney function [12]. The FLOW study was dedicated to 
exploring the effects of semaglutide against the progres-
sion of kidney damage in individuals with type 2 diabetes 
and albuminuric CKD [13]: during a median of 3.4 years, 
semaglutide improved a composite outcome of kidney fail-
ure; ≥50% reduction in the eGFR; or death from kidney 
or cardiovascular causes [14]. The mechanisms whereby 
both SGLT2i and GLP-1RA can preserve kidney function 
encompass the improvements in glycaemia, BP and body 
weight. Yet, SGLT2i are believed to exert greater haemo-
dynamic activity, while GLP-1RA have a more prominent 
anti-inflammatory action [15].
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No randomised trial has directly compared the renal 
effects of SGLT2i with those of GLP-1RA, nor is any such 
trial planned. Indirect comparisons through network meta-
analyses conclude that SGLT2i ensure a greater protection 
than GLP-1RA against DKD progression [16–18]. Real-
world studies on this comparison provide mixed results. 
Some studies have reported better preservation of renal 
function with SGLT2i than with GLP-1RA [19–21], while 
others have reported similar kidney outcomes with either 
drug class [22, 23].

In view of this knowledge gap, we devised and performed 
a multicentre retrospective observational study on clinical-
level data, with the aim of comparing the long-term kidney 
outcomes of patients who initiated SGLT2i or GLP-1RA 
under routine care.

Methods

Study design and objectives DARWIN-Renal was a multi-
centre retrospective study conducted by the Italian Diabetes 
Society at 50 specialist care centres in Italy, with the pri-
mary aim of analysing renal outcomes associated with the 
use of dapagliflozin. The study rationale and design have 
been described before [24], and the analytical framework 
was extended to all SGLT2i as a class [25]. The protocol 
complied with the declaration of Helsinki and was approved 
by the Ethics Committee of all participating centres. Accord-
ing to the national regulation on retrospective studies using 
anonymised data, patients’ informed consent was waived. 
The study was funded by the Italian Diabetes Society and 
partly supported by an unrestricted grant from AstraZeneca. 
This report conforms with the STROBE checklist, as modi-
fied for the comparison of matched cohorts.

We herein report a predefined analysis comparing patients 
initiating any SGLT2i vs any GLP-1RA.

Cohort definition We selected two groups of patients: (1) 
those who initiated any SGLT2i (dapagliflozin, empagli-
flozin, canagliflozin, ertugliflozin) between 1 January 2015 
and 30 September 2020; and (2) those who initiated any 
GLP-1RA (exenatide twice daily; exenatide, liraglutide, lixi-
senatide, dulaglutide, semaglutide once weekly) in the same 
time period. The index date was the day when the SGLT2i 
or GLP-1RA was prescribed for the first time. Patients could 
be included if they were aged 18–80 years, had type 2 dia-
betes for at least one year and had available information 
on renal outcomes. The exclusion criteria were as follows: 
other forms of diabetes; therapy with SGLT2i or GLP-1RA 
in the prior 12 months; simultaneous initiation of SGLT2i 
and GLP-1RA; concomitant initiation of insulin; CKD stage 
V; or dialysis.

Data collection The set of variables recorded from the elec-
tronic chart for each patient is described elsewhere [25, 26]. 
Briefly, at the index date (with a grace period of −90 days) 
and at each follow-up time point, we recorded demographics 
(sex was recorded as reported in the patients’ ID documents; 
race/ethnicity were not available in the database), anthropo-
metrics, BP, laboratory data, presence or absence of chronic 
complications, and background therapy for diabetes and for 
the control of cardiovascular risk factors. We also collected 
pre-index-date eGFR values to compute the baseline eGFR 
slope.

Endpoints The primary endpoint was the change in eGFR, 
according to the CKD-EPI equation [27]. Secondary out-
comes were as follows: total and chronic (from 6 months 
on) eGFR slopes; changes in urinary albumin/creatinine 
ratio (UACR),  HbA1c, body weight and BP; new-onset CKD 
(defined as the occurrence of two eGFR values <60 ml/min 
per 1.73  m2 at least 90 days apart, among those who had a 
baseline eGFR >60 ml/min per 1.73  m2); worsening in CKD 
class (stage I eGFR ≥90 ml/min per 1.73  m2; stage II 60–90 
ml/min per 1.73  m2; stage IIIa 45–60 ml/min per 1.73  m2; 
stage IIIb 30–45 ml/min per 1.73  m2; stage VI 15–30; stage 
V <15 ml/min per 1.73  m2); sustained loss of kidney func-
tion (defined as an eGFR reduction of 40% or greater relative 
to baseline value); sustained doubling of serum creatinine 
(equal to a reduction in eGFR of 57% or greater relative to 
baseline value); ESKD (defined as a confirmed eGFR <15 
ml/min per 1.73  m2 on at least two occasions at least 90 days 
apart); and initiation of dialysis.

Sample size For the comparison of eGFR change (primary 
endpoint) between the two groups, it was estimated that a 
sample size of 1184 individuals per group was needed to 
detect a difference of 2 ml/min per 1.73  m2 with power 0.9 
and α 0.05.

Statistical analysis Continuous variables are presented as 
mean (SD), while categorical variables are reported as n (%). 
Non-normal variables were log-transformed before analysis 
with parametric tests (log-transformed variables are shown 
in their original unit of measure). Comparisons between two 
groups were performed using the Wilcoxon–Mann–Whitney 
test or the χ2 test, as appropriate.

The change over time in continuous variables was com-
pared between the two groups using the mixed model for 
repeated measures (MMRM). eGFR, UACR  (log10),  HbA1c, 
body weight and BP were used as the dependent variables. 
Treatment group, time, the group by time interaction, and 
baseline values were entered as fixed effects. The hetero-
geneous compound symmetry was chosen as the variance 
structure. The output of the MMRM were the marginal 
means in each group and the mean difference between 
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Table 1  Characteristics of the ITT population (patients in the first imputed dataset)

Characteristic Before PSM After PSM

SGLT2i GLP−1RA SMD SGLT2i GLP−1RA SMD

Number 14435 6226 5705 5705
Demographics
 Sex, male, n (%) 8988 (62.3) 3691 (59.3) 0.06 3462 (60.7) 3408 (59.7) 0.02
 Age, years 61.4 (8.9) 61.0 (9.5) 0.04 60.9 (9.2) 60.8 (9.5) 0.02
 Diabetes duration, years 11.8 (8.6) 10.1 (8.0) 0.20 9.9 (7.8) 9.9 (8.0) <0.01
Anthropometrics
 Weight, kg 88.8 (18.1) 94.3 (18.9) 0.30 92.2 (18.9) 92.8 (17.8) 0.03
 Height, cm 167.3 (9.7) 167.5 (9.8) 0.03 167.7 (9.8) 167.6 (9.8) <0.01
 BMI, kg/m2 31.7 (5.8) 33.6 (6.2) 0.31 32.8 (6.2) 33.0 (5.7) 0.04
 Waist, cm 109.0 (13.4) 112.8 (13.7) 0.28 111.3 (14.1) 111.8 (12.8) 0.04
Risk factors and laboratory measurements
 Systolic BP, mmHg 137.8 (19.0) 137.5 (18.7) 0.02 137.2 (18.4) 137.3 (18.5) <0.01
 Diastolic BP, mmHg 79.2 (10.2) 80.1 (10.1) 0.08 79.9 (10.3) 80.0 (10.2) <0.01
 Fasting plasma glucose, mmol/l
    mg/dl

9.6 (3.2)
172.6 (58.2)

9.1 (2.8)
163.0 (49.3)

0.17 9.1 (2.8)
163.7 (50.4)

9.1(5.5)
163.7 (49.6)

<0.01

  HbA1c, mmol/mol 68 (12) 64 (10) 0.27 64 (10) 64 (10) <0.01
  HbA1c, % 8.4 (1.5) 8.0 (1.3) 8.0 (1.3) 8.0 (1.3)
 Total cholesterol, mmol/l 4.5 (1.1) 4.5 (1.1) <0.01 4.6 (1.1) 4.5 (1.1) 0.01
 Total cholesterol, mg/dl 172.3 (43.5) 172.7 (43.3) 173.4 (42.6) 172.8 (43.5)
 HDL-cholesterol, mmol/l 1.2 (0.4) 1.2 (0.4) 0.01 1.2 (0.4) 1.2 (0.4) 0.01
 HDL-cholesterol, mg/dl 46.6 (14.3) 46.8 (13.8) 47.0 (14.0) 46.8 (13.9)
 LDL-cholesterol, mmol/l 2.5 (1.0) 2.5 (1.0) 0.03 2.5 (0.9) 2.5 (0.9) <0.01
 LDL-cholesterol, mg/dl 93.4 (36.2) 94.5 (36.1) 94.9 (35.8) 94.6 (36.0)
 Triglycerides, mmol/l 1.9 (1.4) 1.8 (1.3) 0.04 1.8 (1.3) 1.8 (1.3) <0.01
 Triglycerides, mg/dl 167.5 (125.2) 162.8 (118.8) 163.6 (114.7) 162.5 (119.9)
 Baseline eGFR, ml/min per 1.73  m2 86.7 (16.6) 84.1 (19.9) 0.15 85.9 (17.1) 85.8 (18.5) <0.01
 eGFR at month −12, ml/min per 1.73  m2 87.7 (18.1) 84.1 (20.0) 0.13 86.8 (18.0) 86.6 (18.8) 0.01
 AER, mg/g 68.8 (360.5) 70.4 (336.8) <0.01 62.4 (360.4) 63.5 (302.0) <0.01
 eGFR slope, ml/min per 1.73  m2 per  yeara −0.5 (17.0) −0.7 (15.9) 0.01 −0.4 (15.1) −0.6 (16.1) 0.01
Complications, n (%)
 CKD stage III or higher 879 (6.1) 815 (13.1) 0.26 479 (8.4) 518 (9.1) 0.02
 Pathological albuminuria 2354 (16.3) 1016 (16.3) <0.01 877 (15.4) 889 (15.6) <0.01
 Diabetic retinopathy 2749 (19.0) 820 (13.2) 0.16 696 (12.2) 718 (12.6) 0.01
 Diabetic macular oedema 395 (2.7) 105 (1.7) 0.07 101 (1.8) 95 (1.7) <0.01
 Stroke / TIA 216 (1.5) 84 (1.3) 0.01 67 (1.2) 73 (1.3) <0.01
 Carotid atherosclerosis 2876 (19.9) 1210 (19.4) 0.01 989 (17.3) 1095 (19.2) 0.05
 Ischaemic heart disease 2108 (14.6) 645 (10.4) 0.13 620 (10.9) 598 (10.5) 0.01
 Left ventricular hypertrophy 1122 (7.8) 446 (7.2) 0.02 398 (7.0) 393 (6.9) <0.01
 Heart failure 487 (3.4) 145 (2.3) 0.06 148 (2.6) 137 (2.4) 0.01
 Any site revascularisation 1489 (10.3) 487 (7.8) 0.08 496 (8.7) 450 (7.9) 0.03
 Microvascular complications 5518 (38.2) 2279 (36.6) 0.03 1890 (33.1) 1919 (33.6) 0.01
 Macrovascular complications 5150 (35.7) 1933 (31.0) 0.10 1769 (31.0) 1755 (30.8) <0.01
 Established CVD 2514 (17.4) 808 (13.0) 0.12 757 (13.3) 743 (13.0) <0.01
Glucose-lowering medications, n (%)
 Metformin 11487 (79.6) 5109 (82.1) 0.06 4782 (83.8) 4768 (83.6) <0.01
 Sulfonylurea / repaglinide 901 (6.2) 779 (12.5) 0.23 636 (11.1) 661 (11.6) 0.01
 Pioglitazone 234 (1.6) 291 (4.7) 0.19 178 (3.1) 205 (3.6) 0.03
 Acarbose 87 (0.6) 29 (0.5) 0.02 26 (0.5) 27 (0.5) <0.01
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groups, and their SEs. Rates of occurrence of categorical 
outcomes were compared between the two groups using the 
Cox proportional hazards model, reporting HRs and 95% 
CIs. The proportional hazards assumption was verified by 
visual inspection and Schoenfeld residuals.

To yield comparable groups, we performed propensity 
score matching (PSM) of patients who initiated SGLT2i 
or GLP-1RA. Propensity scores were calculated with a 
logistic regression where treatment was the dependent 
variable; covariates are listed in Table 1, chosen using the 
modified disjunctive cause criterion [28]. Individuals in the 
two groups were matched 1:1 with a calliper of 0.1 pooled 
SD using nearest neighbour method without replacement. 
Between-group balance before and after PSM was evaluated 
by calculating the standardised mean difference (SMD). Suc-
cess of matching was defined as SMD<0.1 for all variables 
listed in Table 1. Because PSM requires a complete dataset, 
we performed multiple imputation by chained equations 
(MICE) to obtain ten imputed datasets. Imputation was per-
formed on the same variables used for PSM, without a priori 
constraints and setting the maximum number of iterations 
to 20. All analyses were run on each of the ten datasets and 
results were then pooled. Imputation had the sole scope of 
enabling the calculation of propensity score for matching 
and was not intended to overcome the missingness in out-
come data. Indeed, post-index date outcome variables were 
not imputed and, for each outcome, individuals with missing 
follow-up data were excluded. Persistence of a good balance 
in subgroups of the matched populations was verified and 
variables that were consistently imbalanced (SMD>0.1) in 
≥50% of the imputed datasets were entered as covariates in 
the MMRM or survival analyses. As done before [25], the 
comparison between matched cohorts was performed with 

an unpaired approach because the balance of clinical char-
acteristics was reached only between groups and not within 
pairs of matched individuals. This approach has been shown 
to yield results that do not significantly deviate from those 
of the paired analysis [25].

The primary analysis was conducted in the intention-to-
treat (ITT) population, comprising all new users of SGLT2i 
or GLP-1RA who had at least one eGFR value post-index 
date, censored at event occurrence or last observation. We 
performed a sensitivity analysis on the on-treatment popu-
lation, censoring patients at the time of index drug discon-
tinuation, the event or last observation, whichever occurred 
first. Drug discontinuation was defined as the first follow-up 
visit at which the drug was no longer being prescribed. A 
further, modified on-treatment analysis incorporated censor-
ing when patients in the SGLT2i group initiated GLP-1RA 
and vice versa.

The primary endpoint was re-examined in subgroups 
of patients based on pre-specified clinical characteristics 
at baseline. Patients were divided into strata and the mean 
between-group difference in eGFR was calculated in each 
stratum and compared across strata. Interaction p values were 
reported as nominal and adjusted with Bonferroni correction.

We performed a sensitivity analysis excluding patients 
with CKD at baseline (eGFR <60 ml/min per 1.73  m2 or 
UACR >30 mg/g), which required that multiple imputation 
and PSM be repeated in the new datasets.

The conventional statistical significance threshold of 0.05 
was used, without a hierarchical testing, except that secondary 
endpoints were analysed only when significance on the pri-
mary endpoint was met. The analyses were run in R 4.2.2 (R 
Development Core Team; https:// www.r- proje ct. org/), using 
the MatchIt, mice, glmmTMB, stats and survival packages.

Data are presented as mean (STD) or as n (%), as appropriate
Absolute SMD is shown for each variable as a measure of between-group balance
a eGFR according to the CKD-EPI equation
TIA, transient ischaemic attack

Table 1  (continued)

Characteristic Before PSM After PSM

SGLT2i GLP−1RA SMD SGLT2i GLP−1RA SMD

 Bolus insulin 4248 (29.4) 189 (3.0) 0.67 195 (3.4) 189 (3.3) <0.01
 Basal insulin 6307 (43.7) 1473 (23.7) 0.42 1303 (22.8) 1327 (23.3) <0.01
Other medications, n (%)
 Statins 8281 (57.4) 3339 (53.6) 0.08 3090 (54.2) 3043 (53.3) 0.02
 Antiplatelet agent 5894 (40.8) 2243 (36.0) 0.10 2074 (36.4) 2022 (35.4) 0.02
 RAS blocker 8559 (59.3) 3685 (59.2) <0.01 3335 (58.5) 3332 (58.4) <0.01
 Beta blocker 4364 (30.2) 1776 (28.5) 0.04 1629 (28.6) 1613 (28.3) <0.01
 Calcium-channel inhibitor 3074 (21.3) 1408 (22.6) 0.03 1278 (22.4) 1258 (22.1) <0.01
 Diuretic 4189 (29.0) 2052 (33.0) 0.09 1783 (31.3) 1777 (31.1) <0.01
 Anticoagulant 353 (2.4) 155 (2.5) <0.01 137 (2.4) 128 (2.2) 0.01

https://www.r-project.org/
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Results

Patient disposition and characteristics From a population 
of 48,593 patients, after applying exclusion criteria, we 
identified 14,435 new users of SGLT2i and 6226 new users 
of GLP-1RA who had at least one post-baseline eGFR and 
who were not initiated with insulin treatment or were not 
receiving concomitant treatment with an SGLT2i and GLP-
1RA (Fig. 1). Before matching, new users of SGLT2i had 
longer diabetes duration, lower BMI, higher fasting plasma 
glucose,  HbA1c and eGFR, and a greater prevalence of retin-
opathy and CVD (Table 1). Concomitant glucose-lowering 
medications were also different between the groups before 
matching, with a lower proportion of individuals on oral 
medications and more on insulin in the SGLT2i group.

After matching, the analysis included a mean of 5701 
individuals per group, with small differences across the ten 
imputed dataset: the first imputed dataset shown in Table 1 
contained 5705 (range 5684–5719) individuals per group. 
All analyses were performed in each imputed dataset and 
then pooled. The matched populations were 60% men, aged 

61 years and with a diabetes duration of 10 years. Mean 
BMI was 33 kg/m2, baseline  HbA1c 64 mmol/mol (8.0%) and 
eGFR 86 ml/min per 1.73  m2. Only 8–9% had an eGFR <60 
ml/min per 1.73  m2 but ~15% had UACR >30 mg/g (23% 
had CKD). While one-third of the patients had any micro-
angiopathy and one-third had any macroangiopathy, only 
13% had established CVD. The most common concomitant 
glucose-lowering medications were metformin (84%) and 
basal insulin (23%). These characteristics are representa-
tive of the T2D population seen in diabetes specialist care 
in Italy.

The newly initiated SGLT2i were distributed as follows: 
dapagliflozin (52.8%; mean daily dose 9.9 mg); empagliflo-
zin (38.6%; mean daily dose 15.6 mg); canagliflozin (8.5%; 
mean daily dose 172 mg); and ertugliflozin (<0.1%; mean 
daily dose 15 mg). The newly initiated GLP-1RA were dis-
tributed as follows: dulaglutide (52.3%; mean weekly dose 
1.34 mg); liraglutide (30.8%; mean daily dose 1.35 mg); 
exenatide (10.7%; 2 mg weekly dose); semaglutide (3.8%; 
mean weekly dose 0.6 mg); and lixisenatide (2.3%; mean 
daily dose 10 mg).

Change in eGFR The analysis was based on a median of 5 
(IQR 3–9) eGFR values for each patient in both groups. The 
median (IQR) follow-up time was 2.1 years (1.1–334). The 
observation was closed at 54 months because the residual 
sample size dropped below 10% after that time point. The 
eGFR slope from months −12 to 0 was −0.8 and −0.9 ml/
min per 1.73  m2 per year in the SGLT2i group and GLP-
1RA group, respectively. The two groups were matched for 
eGFR at baseline and at month −12 (Table 1). After the 
index date, the eGFR remained significantly higher in the 
SGLT2i group for the entire duration of observation, with a 
difference of 1.19 (95% CI 0.47, 1.90) ml/min per 1.73  m2 
(p=0.0001; Fig. 2a).

The total post-index-date eGFR slope was less negative 
in the SGLT2i group vs the GLP-1RA group by 0.5 ml/min 
per 1.73  m2 per year (95% CI 0.3, 0.8): −1.1 vs −1.6 ml/
min per 1.73  m2 per year; (p<0.001; Fig. 2b). Results for 
the chronic slope, calculated from 6 months onwards, were 
almost identical (p<0.001).

Loss of kidney function The hazard of worsening of CKD 
class was significantly lower in the SGLT2i group than in the 
GLP-1RA group (HR 0.92 [95% CI 0.86, 0.99]; p=0.027; 
Fig. 2c). In addition, the rate of creatinine doubling (≥57% 
eGFR loss) was lower in the SGLT2i group than in the 
GLP-1RA group (HR 0.64 [95% CI 0.41, 0.99]; p=0.047; 
Fig. 2d). The other eGFR-based categorical outcomes were 
all in favour of SGLT2i, although the differences were not 
statistically significant (Fig. 2e). In all analyses, the events 
of ESKD and dialysis were too low to be compared between 
groups.

Patients initiating drugs 

(N=48,593)

SGLT2i

(n=16,603)

Others

(n=31,990)

SGLT2i

(n=16,603)

GLP-1RA

(n=7138)

New users

SGLT2i

(n=15,240)

GLP-1RA

(n=6411)

At least 1 eGFR after baseline

SGLT2i

(n=14,495)

GLP-1RA

(n=6226)

No concomitant insulin 

initiation

SGLT2i

(n=14,435)

GLP-1RA

(n=6226)

No concomitant use of 

SGLT2i and GLP-1RA

PSM

SGLT2i

(n=5701)

GLP-1RA

(n=5701)

Fig. 1  Study flow chart
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Change in albuminuria This analysis was conducted on a 
mean of 4819 individuals across the ten imputed datasets with 
available follow-up values for UACR. In five imputed datasets, 
the concomitant use of sulfonylurea was imbalanced between 
groups and was adjusted. The analysis was based on a median 
of four UACR values per individual in both groups. UACR 
consistently declined at 6–24 months in the SGLT2i group but 
the change in UACR over time was similar for the two groups 
(ESM Fig. 1a). There was also no difference in the rates of 
new-onset macroalbuminuria (ESM Fig. 1b).

Intermediate endpoints HbA1c declined to a greater 
extent with GLP-1RA than with SGLT2i, by 1.8 mmol/
mol (0.2%; p<0.0001; Fig. 3a). On the other hand, body 
weight declined to a greater extent in the SGLT2i group, by 
1.3 kg (p=0.0008; Fig. 3b). A greater improvement in sys-
tolic BP was seen with SGLT2i than with GLP-1RA by 1.1 
mmHg (p=0.001; Fig. 3c); the same was true of diastolic BP  
(−0.6 mmHg; p=0.0006; Fig. 3d).

Subgroup analyses The primary outcome was re-examined 
in strata of the ITT population defined by key baseline char-
acteristics. After correction for multiple testing, new users 
of SGLT2i displayed less decline in eGFR than new users of 
GLP-1RA, especially if they had a longer disease duration 
or were on insulin (Fig. 4). There was no difference by sex.

The on-treatment population included a mean of 5624 
matched patients per group (ESM Table 1). For the primary 
endpoint, during a median observation of 1.7 years (IQR 
0.9, 2.9) in each group, eGFR declined less with SGLT2i 
than with GLP-1RA by 1.45 ml/min per 1.73  m2 (95% CI 
0.72, 2.19; p=0.0001). The rates of new-onset CKD (HR 0.83 
[95% CI 0.69, 0.99]; p=0.041) and worsening of CKD class 
(HR 0.93 [95% CI 0.86, 0.99]; p=0.037) remained in favour 
of SGLT2i, whereas the other eGFR-based categorical out-
comes were not significantly different between groups (ESM 
Fig. 2). Likewise, no differences were detected in the change 
in albuminuria, albuminuria class or rates of new-onset 
macroalbuminuria. Results for intermediate endpoints were 
almost superimposable to those in the ITT analysis (ESM 

Fig. 2  Major kidney outcomes. 
(a) Change in eGFR (primary 
outcome) in the two groups  
(a54 months). The table shows 
the number of patients contrib-
uting with values to the model. 
(b) Total and chronic eGFR 
slopes. (c, d) Kaplan–Meier 
curves for the worsening of 
CKD class (c) and creatinine 
doubling (≥57% reduction in 
eGFR) (d). The tables show the 
number of patients at risk. (e) 
Forest plot of kidney outcomes 
in the ITT population. Tabular 
results are presented as crude 
rates in each group, HRs and 
95% CIs along with their p 
values
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Table 2). There were 1.8% of individuals in the SGLT2i 
group who initiated GLP-1RA or vice versa after the index 
date. Additional censoring at these events did not mean-
ingfully modify the primary outcome (difference in eGFR  
1.35 ml/min per 1.73  m2 [95% CI 0.62, 2.09]; p=0.0004).

We also performed a sensitivity analysis excluding patients 
with CKD at baseline; this included a mean of 4416 matched 
individuals per group, all having eGFR>60 ml/min per  
1.73  m2 and UACR<30 mg/g at baseline (ESM Table 3). 
During a median of 1.8 years (IQR 1.0–3.1), eGFR declined 
less with SGLT2i than with GLP-1RA by 1.12 ml/min per 
1.73  m2 (95% CI 0.43, 1.81; p=0.0015; ESM Fig. 3a). The 
rate of worsening CKD class was significantly lower in the 
SGLT2i group (HR 0.89 [95% CI 0.82, 0.96]; p=0.0017; ESM 
Fig. 3b), whereas other eGFR-based categorical outcomes 
did not differ significantly (ESM Fig. 3e, ESM Table 2). The 
change in albuminuria was similar between groups (ESM 
Fig. 3c) but the rate of new-onset macroalbuminuria was 
greater in the SGLT2i than in the GLP-1RA group (HR 2.03; 
95% CI 1.14–3.63; p=0.00; ESM Fig. 3d). When a confirma-
tory value was requested for macroalbuminuria, the rates were 
not significantly different between groups (HR 1.56 [95% CI 

0.87, 2.80]). Intermediate endpoints showed similar differ-
ences as in the primary analysis (ESM Table 2).

Discussion

Among matched patients with type 2 diabetes, initiation of 
SGLT2i was associated with better renal outcomes than initia-
tion of GLP-1RA. New users of SGLT2i displayed less decline 
in eGFR over time, yielding a 1.2 ml/min per 1.73  m2 higher 
value during a median observation of about 2 years and a slope 
that was less negative by 0.5 ml/min per 1.73  m2 per year than 
in new users of GLP-1RA. SGLT2i also provided protection 
against the worsening of CKD class and the doubling of serum 
creatinine (ITT population) or new-onset CKD (on-treatment 
population). These findings confirm that SGLT2i are more effec-
tive in providing protection against the loss of kidney function.

It is remarkable that these results were obtained in a 
population of patients with an overall preserved eGFR 
(mean 86 ml/min per 1.73  m2). However, 23% of the entire 
population had CKD defined by eGFR or albuminuria 

Fig. 3  Intermediate endpoints. The change over time in  HbA1c (a), 
body weight (b), systolic BP (c) and diastolic BP (d) is shown for the 
two groups and compared using the MMRM. The tables show the 

number of patients contributing with values at each time point of the 
model. a54 months. DBP, diastolic BP; SBP, systolic BP
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criteria. To rule out the possibility that this small CKD sub-
group drove the different kidney outcomes, we performed 
a secondary analysis excluding all individuals with CKD 
before matching. Starting from an eGFR of ~90 ml/min per  
1.73  m2, SGLT2i initiators displayed slower eGFR decline 
and a lesser degree of worsening of eGFR class. In this pop-
ulation, however, new users of GLP-1RA had lower rates of 
new-onset macroalbuminuria.

Our findings need to be interpreted in the light of recent 
observational studies. In a large US multi-database study, 
a composite renal outcome (eGFR decline ≥50%, ESKD, 
or all-cause mortality) had similar rates in the SGLT2i and 
GLP-1RA cohorts [23]. Similar results were obtained in a 
Swedish study examining a composite renal outcome that 
included albuminuria [22]. On the other hand, in a popu-
lation-based study in Hong Kong, users of SGLT2i had a 
slower eGFR decline than users of GLP-1RAs, by about 
0.7–0.8 ml/min per 1.73  m2 per year, along with a lower rate 
of the composite kidney outcome [20]. Another retrospective 
study from Japan found that SGLT2i use was associated with 
a slower eGFR decline when compared with GLP-1RA use 

[19]. The inconsistency of these results may be due to inclu-
sion of macroalbuminuria in the composite outcome but 
other methodological aspects are crucial and our study has 
notable strengths [24]. The data source was highly homoge-
neous and all patients were followed in the same specialist 
setting, with uniform access to care and universal public 
coverage. The availability of several clinical laboratory vari-
ables ensured that PSM generated similar cohorts, emulat-
ing the target trial, because matched patients had the same 
probability of treatment with either drug class. Matching on 
variables that define severity and disease stage, along with 
the new-user design, reasonably ruled out time-lag bias and 
immortal time bias [29]. With an observation time reaching 
54 months, this is one of longest studies on this comparison. 
This is important because a follow-up of at least 2 years is 
recommended for the calculation of reliable eGFR slopes 
[30]. However, slopes can produce unrealistically positive 
values due to the recovery after a transient drop in eGFR 
after SGLT2i initiation [31]. This is why we elected to ana-
lyse eGFR change over time using the MMRM, which makes 
no assumption on the shape of eGFR curves, automatically 

Fig. 4  Subgroup analysis. The 
primary endpoint (change in 
eGFR) was computed for each 
stratum of the initial popula-
tion and compared between the 
SGLT2i and GLP-1RA groups. 
Nominal p values are shown 
(*significant after adjusting 
with Bonferroni correction)
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handles missing data at individual time points, and limits 
the constrains on the availability of post-index date values. 
Another notable advantage of our study was the analysis 
of albuminuria change and the availability of intermediate 
endpoints, for interpreting the primary results. The simi-
lar change in albuminuria between SGLT2i and GLP-1RA 
well aligns with the notion that GLP-1RA are active against 
new-onset macroalbuminuria and provides robust study 
credibility [32]. Yet, among the individuals without CKD, 
rates of new-onset macroalbuminuria were in favour of GLP-
1RA. This finding does not align with trial data [33] or prior 
observational studies [20]. Speculatively, the finding may be 
driven by false-positives events in the SGLT2i group due to 
genitourinary tract infections, as it was attenuated when a 
confirmatory UACR value in the macroalbuminuric range 
was requested. SGLT2i were significantly less effective in 
reducing  HbA1c than GLP-1RA, suggesting that protection 
against eGFR decline may not directly rely on glycaemic 
control. Conversely, the protection against the rise in albumi-
nuria provided by GLP-1RA may be mediated at least in part 
by the better glycaemic control [34] and by the anti-inflam-
matory effects of such agents [35]. Use of SGLT2i was 
associated with greater improvements in BP, underscoring 
their prominent haemodynamic effect [15, 36]. Consistent 
with a network metanalysis of randomised trials [37], body 
weight reduction was greater in the SGLT2i group. However, 
semaglutide (the most potent weight-reducing GLP-1RA) 
accounted for a minority of the GLP-1RA cohort, and not 
all patients on GLP-1RA reached the highest licenced dose 
that exerts the greatest effect on body weight. Additionally, 
the relevance of the difference in weight reduction between 
the two groups remains unclear, because there is no evidence 
that weight loss mediates the effects of GLP-1RA on renal 
outcomes [38].

Subgroup analysis highlights that the superiority of 
SGLT2i over GLP-1RA was more marked in individuals 
with features of advanced type 2 diabetes. However, given 
the non-randomised nature of the study, the between-group 
balance is not guaranteed across all strata of the population 
and would require repeating the matching procedure for each 
stratum.

Drop-in GLP-1RA in the SGLT2i group or vice versa 
was a rare event because, during most of the study period, 
the National Health System did not reimburse the SGLT2i/
GLP-1RA combination. The complementary mode of 
action of the two classes warrant considering the combi-
nation approach, which may optimise renal protection in 
type 2 diabetes [26]. Results of the FLOW trial have now 
provided solid evidence that GLP-1RA (namely semaglu-
tide) can slow the progression of kidney disease in people 
with albuminuric DKD [14]. Future studies will be needed 
to explore whether the SGLT2i/GLP-1RA combination is 

more effective than SGLT2i alone for preventing adverse 
kidney outcomes [39].

Limitations of our study mainly pertain to its observa-
tional non-randomised design. First, we cannot exclude 
residual confounding due to unmeasured factors. The 
between-group differences before matching reflect a typi-
cal channelling of SGLT2i to patients at a more advanced 
disease stage, while GLP-1RA are used more in individuals 
with obesity. Despite matching for several clinical labora-
tory variables, it is impossible to nullify such selection bias 
and residual differences may be attributable to neglected or 
occult factors, including socioeconomic ones [40]. Second, 
because the study was conducted in the diabetes specialist 
care setting, results may not be extrapolated to other set-
ting, such as primary care or nephrology. Given that baseline 
eGFR was ~85 ml/min per 1.73  m2 and a minority of patients 
had CKD at baseline, our findings are poorly relevant to peo-
ple with type 2 diabetes and established DKD. A dedicated 
real-world study will be needed to compare the effectiveness 
of SGLT2i vs GLP-1RA in this specific population. In addi-
tion, although results in the on-treatment population strongly 
supported the ITT analysis, we had no information on adher-
ence to treatment or on the reasons for drug discontinuation, 
including side effects. Finally, we had no information on 
competing events, including major adverse cardiovascular 
events (MACE) and heart failure. Under the assumption that 
both SGLT2i and GLP-1RA delay mortality of people with 
type 2 diabetes [41], this should not have a significant effect 
on the estimation of kidney outcomes.

In conclusion, our study reveals that among matched indi-
viduals with type 2 diabetes followed by Italian diabetes 
specialists, initiation of an SGLT2i was associated with less 
decline in eGFR over time, with higher eGFR values and 
less negative eGFR slopes compared with GLP-1RA ini-
tiation. These findings support a broad benefit of SGLT2i 
in preserving kidney function. Our study underscores the 
potential of SGLT2i as preferred therapeutic agents for 
renal protection in patients with type 2 diabetes, although 
the potential for a sequential combination with a GLP-1RA 
remains to be ascertained.
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