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Abstract
Aims/hypothesis Diabetic kidney disease (DKD) is a severe diabetic complication that affects one third of individuals with 
type 1 diabetes. Although several genes and common variants have been shown to be associated with DKD, much of the 
predicted inheritance remains unexplained. Here, we performed next-generation sequencing to assess whether low-frequency 
variants, extending to a minor allele frequency (MAF) ≤10% (single or aggregated) contribute to the missing heritability 
in DKD.
Methods We performed whole-exome sequencing (WES) of 498 individuals and whole-genome sequencing (WGS) of 599 
individuals with type 1 diabetes. After quality control, next-generation sequencing data were available for a total of 1064 
individuals, of whom 541 had developed either severe albuminuria or end-stage kidney disease, and 523 had retained normal 
albumin excretion despite a long duration of type 1 diabetes. Single-variant and gene-aggregate tests for protein-altering 
variants (PAV) and protein-truncating variants (PTV) were performed separately for WES and WGS data and combined in 
a meta-analysis. We also performed genome-wide aggregate analyses on genomic windows (sliding window), promoters 
and enhancers using the WGS dataset.
Results In the single-variant meta-analysis, no variant reached genome-wide significance, but a suggestively associated com-
mon THAP7 rs369250 variant (p=1.50 ×  10−5, MAF=49%) was replicated in the FinnGen general population genome-wide 
association study (GWAS) data for chronic kidney disease and DKD phenotypes. The gene-aggregate meta-analysis provided 
suggestive evidence (p<4.0 ×  10−4) at four genes for DKD, of which NAT16 (MAFPAV≤10%) and LTA (also known as TNFβ, 
 MAFPAV≤5%) are replicated in the FinnGen general population GWAS data. The LTA rs2229092 C allele was associated with 
significantly lower TNFR1, TNFR2 and TNFR3 serum levels in a subset of FinnDiane participants. Of the intergenic regions 
suggestively associated with DKD, the enhancer on chromosome 18q12.3 (p=3.94 ×  10−5,  MAFvariants≤5%) showed interac-
tion with the METTL4 gene; the lead variant was replicated, and predicted to alter binding of the MafB transcription factor.
Conclusions/interpretation Our sequencing-based meta-analysis revealed multiple genes, variants and regulatory regions 
that were suggestively associated with DKD. However, as no variant or gene reached genome-wide significance, further 
studies are needed to validate the findings.
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Introduction

Type 1 diabetes is an autoimmune disease that is caused by 
destruction of the insulin-secreting beta cells in the islets of 
Langerhans in the pancreas. Long-term insulin irregularity 
leads to complications in several organs for a large propor-
tion of individuals with type 1 diabetes [1]. In particular, 
prolonged hyperglycaemia leads to a decline of kidney func-
tion and diabetic kidney disease (DKD) in approximately 
30% of individuals with type 1 diabetes [1, 2]. In the West-
ern world, DKD is the most common cause of end-stage 
kidney disease (ESKD), which can be treated only through 
dialysis or kidney transplantation [3]. In addition, DKD pre-
disposes the individuals to cardiovascular disease, and even 
early-stage DKD (moderate albuminuria) elevates the risk 
of myocardial infarction and stroke two- to threefold [4, 5].

Both genetic and environmental factors affect the occur-
rence of type 1 diabetes and its complications. Heritability 
estimates from genome-wide association studies (GWAS) 
suggest that genetic factors explain approximately one third 
of the DKD risk [6, 7]. The microarray-based chips used in 
GWAS include hundreds of thousands of common variable 
loci, and are thus excellent for the study of common variants 

that have modest effects on the disease risk [8, 9]. GWAS 
have shed light upon DKD mechanisms, but these earlier 
findings explain only a minority of the predicted genetic risk 
for DKD [10–13]. Our recent family-based linkage study 
and multi-cohort GWAS study suggested a role for rare 
genetic variants as risk factors for the development of DKD 
as well [14, 15]. Recently, whole-exome and whole-genome 
sequencing (WES and WGS, respectively) have enabled the 
study of low-frequency and rare variants that are expected 
to have larger effects on the disease risk. Although such rare 
signals are harder to detect, such studies have offered impor-
tant information on complex trait and disease mechanisms, 
and led to drug discoveries [16]. Indeed, even though the 
rare variants do not contribute much to the total heritability 
of DKD, they provide clues to the mechanisms of DKD.

WES offers a computationally simpler way of studying 
protein-altering variants (PAV) or protein-truncating vari-
ants (PTV) [17]. WGS studies additionally enable explora-
tion of the intronic and intergenic regions, which may affect 
gene expression levels through transcription factor binding 
site activity or other regulatory processes [18]. Recently, a 
WGS study in mainly non-diabetic individuals from mul-
tiple ancestries identified three novel loci for eGFR [19]. 
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However, there are currently only a few WES- or WGS-
based studies for DKD. Our previous WES study on DKD 
in type 1 diabetes yielded no significant findings, whereas 
a recent WES study identified four exome-wide significant 
loci for DKD [6, 20]. Furthermore, our previous WGS study 
of 74 sibling pairs proposed involvement of protein kinase 
C family members in DKD [14, 18]. Here, we use WES 
and WGS meta-analyses to study the genetic background 
of DKD. As we had limited power to detect low-frequency 
single-variant associations, we performed gene-aggregate 
tests as well as genome-wide and regulome-wide scans for 
the non-coding regions using the WGS data (Fig. 1).

Methods

Study participants All participants were recruited from 
the Finnish Diabetic Nephropathy Study (FinnDiane). 
FinnDiane is an ongoing nationwide prospective study that 
was established in 1997 to pinpoint risk factors for long-
term diabetic complications. All Finnish individuals with 
type 1 diabetes were invited during the active recruitment 
period, and the study currently comprises more than 6000 
individuals with type 1 diabetes, representing over 10% of 
individuals with type 1 diabetes in Finland. The sex of the 
participants was assigned by national registry data, based on 
genetic data. The study protocol was approved by the Ethical 
Committee of the Helsinki and Uusimaa Hospital District 
(491/E5/2006, 238/13/03/00/2015 and HUS-3313–2018, 
3 July 2019), and participants gave their informed consent 
before recruitment. This study was performed according to 
the principles of the Declaration of Helsinki. In brief, data 
on diabetic complications, history of cardiovascular events 
and prescribed medications were registered using stand-
ardised questionnaires, and blood and urine samples were 
collected during a standard visit to the attending physician. 

Participants were diagnosed with type 1 diabetes by their 
attending physician, had an onset of diabetes before the age 
of 40 years, and started permanent insulin treatment within 
the first year after the diagnosis [21]. DKD was defined 
based on albuminuria status, and participants with DKD had 
either severe albuminuria (≥200 μg/min) in two of three 
consecutive urine collections, or ESKD requiring dialysis 
or a kidney transplant, whereas control participants had a 
normal AER (AER <20 μg/min or equivalent) throughout 
the follow-up period.

Sequencing and data analysis WES and WGS were per-
formed for 498 and 599 individuals, respectively. WES 
was performed at the University of Oxford, UK, using an 
Illumina HiSeq2000 platform (San Diego, USA), with an 
average requirement of 20× target capture with ≥80% cov-
erage, as described previously [6]. WGS was performed by 
Macrogen (Rockville, MD, USA) using an Illumina HiSeq X 
platform, with a requirement of >30× average coverage for 
mapped reads. Based on initial quality control performed at 
the University of Oxford for WES, or by Macrogen for WGS, 
27 WES samples and 15 WGS samples were excluded due to 
a high homozygosity/heterozygosity ratio, abnormally low 
mapping depth or mapped PCR reads.

The WES and WGS samples were processed using the 
Genome Analysis Toolkit (GATK) version 4 golden stand-
ard pipeline, and annotated using SnpEff version 5.0e [22, 
23]. First, the fastq reads were trimmed using Trimmo-
matic version 0.36, the trimmed reads were run through 
FastQC version 0.11.9, and the results were aggregated 
and assessed using MultiQC version 1.11. The reads were 
aligned by lanes (1–8 lanes for WGS and 1 or 2 lanes for 
WES) and sorted, and duplicates were removed using Pic-
ard’s SortSam and MarkDuplicates tools. The reads were 
recalibrated by chromosome using the GATK BQSR and 
ApplyBQSR tools, and variants were called using the ERC 

Fig. 1  Study setup for single-
variant and gene and intergenic 
region aggregate analyses. We 
performed single-variant and 
gene-aggregate meta-analyses 
on the WES and WGS cohorts, 
covering the exome regions 
and surrounding regions. The 
gene-aggregate analysis was run 
only for low-frequency PAVs 
and PTVs. We also performed 
a single-variant analysis and 
genome- and regulome-wide 
window scans using only WGS 
data. We replicated the results 
against FinnDiane and THL 
Biobank GWAS data, publicly 
available FinnGen data and 
TOPMed WGS data

WGS n=583WES n=481

WES+WGS 
single-variant 
meta-analysis

Window scan:
Genome-wide N=1,318,834

Promoters: N=174,576
Enhancers: N=24,240

WES+WGS 
gene-aggregate
meta-analysis

WGS single- 
variant test

Firth testMeta SKAT-OScore test + 
METAL STAAR-O

Replication: - FinnDiane GWAS cohort n=3724 individuals  
- THLBB GWAS cohort n=2131 individuals  
- FinnGen PheWAS (four kidney disease phenotypes) 
- TOPMed WGS CKD cohort 



 Diabetologia

mode of HaplotypeCaller tool into a single- sample GVCF 
file. The GVCF files were combined into a multi-sample 
GVCF files using the GATK CombineGVCFs tool, and 
transformed into a VCF file using the GATK GenotypeG-
VCFs tool, separately for WES and WGS samples. Variants 
were then filtered using an excess heterozygosity threshold 
of 54.69. SNPs and indels were filtered separately accord-
ing to tranche thresholds recommended by GATK, with a 
truth sensitivity level of 99.7%. All variants were annotated 
using SnpEff version 5.0e based on the GRCh38.99 database 
(ftp.ensembl.org/pub/release-99/gtf/homo_sapiens). Com-
parison with pre-existing GWAS genotyping [24] showed 
99.5% concordance with the sequencing data. To prepare 
chromosome 6 with ALT contigs (HLA region), we used 
a workflow from https:// gatk. broad insti tute. org/ hc/ en- us/ 
artic les/ 36003 74989 92-- How- to- Map- reads- to-a- refer 
ence- with- alter nate- conti gs- like- GRCH38/ with modifica-
tions for GATK4. Post-pipeline variants with <98% call 
rate and a Hardy–Weinberg Equilibrium p value <1 ×  10−10 
were excluded. The relatively lenient p value threshold was 
selected because all participants had type 1 diabetes, and 
therefore all type 1 diabetes-associated variants are expected 
to show some deviation from Hardy–Weinberg equilibrium. 
Genetic principal components (PCs) were calculated using 
PLINK 1.9 (http:// pngu. mgh. harva rd. edu/ ~purce ll/ plink/) 
[25], and visual inspection of the first two PCs indicated 
no population outliers (Electronic Supplementary Material 
[ESM] Fig. 1). These first two PCs were used as covariates 
in all main analyses.

Variant‑based tests We performed single-variant genome-
wide association testing for the WGS data with Firth 
regression, using age of diabetes onset, sex and the two first 
genetic PCs as covariates. For meta-analysis of the WES 
and WGS data, we performed association testing with score 
test and meta-analysis using the inverse variant-weighted 
method. In WGS single-variant analysis, variants with a p 
value <5 ×  10−8 were considered genome-wide significant, 
and those with a p value <5 ×  10−5 were considered sugges-
tive. In the WES/WGS meta-analysis, a p value <3.5 ×  10−7 
was considered to indicate exome-wide significance, and a 
p value <3.5 ×  10−5 was considered suggestive. All single 
variants were considered without a minor allele frequency 
(MAF) filter. Single-variant tests were performed using 
RVTESTS (version 2.1.0) and the single-variant meta-anal-
ysis was performed using METAL version 2011–03–25 [26, 
27]. Power calculations were performed using the ‘genpwr’ 
package in R v4.2.1 (R Foundation for Statistical Comput-
ing, Austria), based on the sample numbers in the combined 
WES and WGS data.

Gene aggregation tests We performed gene-based tests 
on WES and WGS data separately for PTVs (including 

frameshift and nonsense variants, and loss or gain of start 
or stop codons) and PAVs (including missense variants, in-
frame insertions and deletions [INDELS] and PTVs) (ESM 
Table 1), assigned to specific genes within RefSeq exomes. 
We performed six separate gene-aggregate analyses based 
on PAVs and PTVs using MAF filters of ≤1% (rare), ≤5% 
(low frequency) and ≤10% (extended uncommon). p val-
ues <4 ×  10−6 were considered significant (adjusted for 
18,226 genes with PAVs with an MAF ≤10%) and p values 
<4 ×  10−4 were considered suggestive. Gene-based SKAT-
O meta-analysis was performed for WES and WGS cohorts 
using the MetaSKAT version 0.8.1 R package [28]. Results 
were filtered by including only genes with a cumulative 
minor allele count (MAC) ≥5 across all included variants 
within each gene.

Look‑up of monogenic kidney disease genes We studied 
whether known monogenic kidney disease genes were 
significantly enriched in our gene-based meta-analysis for 
DKD. Altogether, we considered 464 unique genes causing 
syndromic or monogenic kidney diseases as listed by Con-
naughton et al [29].

Whole‑genome sliding‑window and regulome‑wide analy‑
sis We performed genome-wide sliding-window tests and 
aggregation tests for promoters and enhancers for WGS 
data using the omnibus STAAR-O test in the STAAR ver-
sion 0.9.6 R package [30]. The genome-wide window scan 
tests were performed using partly overlapping windows 
with a window size of 4000 bp, with a shift of 2000 bp 
between the window start sites, and a minimum of five vari-
ants within the region. Importantly, sliding-window analyses 
were performed by weighting the variants using Combined 
Annotation Dependent Depletion (CADD) version 1.6 func-
tional annotations, variant rarity and annotation PCs, as cal-
culated and implemented previously [30, 31]. We used FAN-
TOM5 atlas cap analysis of gene expression (CAGE) profiles 
for both promoter and enhancer regions [32, 33], measured 
across multiple human primary cell lines, tissues and cancer 
cell lines, and converted from GRCh37 to GRCh38. The 
CAGE transcription start sites were extended to form full-
length promoters (1000 bp), while variants within enhancer 
and promoters were weighted only according to variant 
rarity (a functional annotation that is available for all vari-
ants). At least two variants were required for these regula-
tory region tests. An MAF threshold of ≤5% was used for all 
tests, and a cumulative MAC ≥5 was required for all regions. 
Altogether 184,609 promoters and 24,240 enhancers were 
tested, resulting in Bonferroni-corrected significance levels 
of p<2.86 ×   10−7 and 2.12 ×  10−6.

We aimed to identify putative enhancer target genes using 
Zenbu promoter capture Hi-C data from the YUE Lab data-
base (http:// 3dgen ome. fsm. north weste rn. edu/ chic. php) [34]. 

https://gatk.broadinstitute.org/hc/en-us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38/
https://gatk.broadinstitute.org/hc/en-us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38/
https://gatk.broadinstitute.org/hc/en-us/articles/360037498992--How-to-Map-reads-to-a-reference-with-alternate-contigs-like-GRCH38/
http://pngu.mgh.harvard.edu/~purcell/plink/
http://3dgenome.fsm.northwestern.edu/chic.php
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As no Hi-C data were available for kidneys, we searched for 
bladder as a related tissue.

Replication of findings in the FinnDiane GWAS Variants and 
genes were replicated against FinnDiane GWAS data [24]. 
Genomes were genotyped in four batches at the University of 
Virginia using HumanCoreExomBead arrays 12-1.0, 12-1.1 
and 24-1.0 (Illumina, USA). The GWAS data were converted 
from GRCh37 to GRCh38 genetic coordinates [35]. We 
removed individuals with high genotype missingness (>5%) 
and variants with excess heterozygosity (± 4 SD), high miss-
ingness (>2%), a low Hardy–Weinberg equilibrium p value 
(<10−6) or an MAC <3. For imputation, genotypes were pre-
phased using Eagle 2.3.5 and imputed using Beagle 4.1 (ver-
sion 08Jun17.d8b), based on the population-specific SISu 
version 3 reference panel consisting of WGS data for 3775 
Finnish individuals. Variants were annotated using SnpEff 
version 5.0e [22]. Altogether, 6449 individuals and 15.21 
million variants with imputation quality r2>0.7 passed the 
quality control. After exclusion of individuals included in 
the WES or WGS studies, the replication was tested in 3724 
individuals with type 1 diabetes, of whom cases had severe 
albuminuria or ESKD, and control individuals had normal 
AER with a minimum diabetes duration of 26 years.

Additionally, replication was attempted in GWAS data 
for 2356 non-overlapping Finnish individuals with type 1 
diabetes from the THL Biobank diabetes studies collection 
(thl.fi/biobank), with registry data for ESKD based on ICD-
10 codes (https:// icd. who. int/ brows e10/ 2019/ en) being avail-
able for 2131 individuals. These GWAS data were imputed 
using the same pipeline as the main data, with the SISu 
version 4 reference panel, and included 16.94 million vari-
ants after the quality control. As albuminuria data were not 
available for these individuals, they were grouped based on 
ESKD occurrence: there were 70 individuals with ESKD, 
and 2061 individuals without ESKD. Single-variant repli-
cations were conducted using the Firth test with RVTESTS 
and gene-aggregate replications were conducted using the 
SKAT-O test with REGENIE [36].

Single-variant replication was further tested using Finnish 
general population GWAS data from the FinnGen project r9 
release (https:// r9. finng en. fi/) covering four kidney disease 
phenotypes. Finally, we replicated the three non-HLA region 
genes and 16 SNPs against the Trans-Omic for Precision 
Medicine (TOPMed) eGFR WGS study on multi-ancestry 
general population with 23,732 individuals [19]. p values 
<0.0029 were considered Bonferroni significant after cor-
rection for 17 tested variants.

In silico annotation of the lead genes and variants We que-
ried the Human Kidney Expression Quantitative Trait Locus 
(eQTL) Atlas to identify the variants associated with gene 
expression levels [37]. Differential gene expression was 

investigated for kidney condition datasets in the Nephroseq 
classic portal version 4. The Transcription Factor Affinity 
Prediction (TRAP) tool (http:// trap. molgen. mpg. de/ cgi- bin/ 
trap_ two_ seq_ form. cgi) was used to predict transcription 
factors with differential binding affinity to the lead regula-
tory variant reference and alternative allele sequences by 
searching the JASPAR and TRANSFAC vertebrate motifs 
with the human background model [38–40]. Linkage dis-
equilibrium was evaluated using NIH LDlink tools (https:// 
ldlink. nih. gov/) in the Finnish population.

Measurement of TNF receptor levels and HLA haplo‑
types Serum levels of 21 proteins previously shown to be 
associated with DKD progression and/or ESKD develop-
ment, including three TNF receptors (TNFRSF1A/TNFR1, 
TNFRSF1B/TNFR2 and TNFRSF3/TNFR3) that bind 
lymphotoxin-α (LT-α), were measured at Olink Proteomics 
(Uppsala, Sweden), using an Olink Proseek Multiplex prot-
eomic platform with proximity extension assay method. The 
protein concentrations were pre-processed,  log2-transformed 
and normalised into ‘normalized protein expression values’ 
(NPX). Measurements were performed for 740 individuals; 
WES/WGS data were available for 128 of these individuals. 
Of these, eight had at least one rs2229092 alternative allele 
(seven had the C/A genotype, one had the C/C genotype). 
Variant association with the circulatory biomarkers was 
tested using linear regression in R, and the analyses were 
adjusted for age and sex. All 128 participants had severe 
albuminuria at the time of sample collection due to the Olink 
study design (A. S. Krolewski, unpublished data).

HLA alleles were previously imputed based on GWAS 
data and were available for 1021 individuals [14]. Based 
on a previously published OR table [41], we considered the 
HLA genotype as high risk if the individual had one high-
risk haplotype (OR≥3.64) combined with one moderate risk 
or neutral haplotype (OR≥0.87).

Results

In both the WES and WGS cohorts, the cases and control 
individuals had a similar age of type 1 diabetes onset and 
similar BMI, but the control individuals had longer duration 
of diabetes, and, based on the study design, higher base-
line eGFR (Table 1). There was also a higher proportion of 
women among control individuals compared with cases. All 
the following analyses were adjusted for sex, age of diabetes 
onset, and the first two PCs of the genetic PC analysis.

Single‑variant associations The meta-analysis of WES and 
WGS data identified six variants, five common and one 
with low frequency, including two PAVs, with a suggestive 

https://icd.who.int/browse10/2019/en
https://r9.finngen.fi/
http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi
http://trap.molgen.mpg.de/cgi-bin/trap_two_seq_form.cgi
https://ldlink.nih.gov/
https://ldlink.nih.gov/
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p value of 3.5 ×  10−5 (Table 2 and Fig. 2). The experiment 
had 80% power to detect low-frequency variants with an 
MAF of 5% and an OR=4.0 with genome-wide significance 
(α<5 ×  10−8) or an OR=2.8 with suggestive significance 
(α=3.5 ×  10−5; ESM Fig. 2). Extending the analysis to non-
coding regions, the single-variant association test for WGS 
data identified variants on intergenic regions 14p12 (close to 
CPSF2) and 16p11.1 (near a group of RNA genes and pseu-
dogenes) and two intronic variants in MYO9B that were sug-
gestively associated with DKD (p<5 ×  10−6; ESM Table 2).

We tested for replication of the suggestive single-variant 
DKD associations in the non-overlapping FinnDiane and 
THL Biobank GWAS data for individuals with type 1 dia-
betes (ESM Table 3), in the general population FinnGen 
GWAS data using four kidney disease definitions (ESM 
Table 4), and in the TOPMed WGS data for chronic kid-
ney disease (CKD). The THAP7 promoter rs369250 was 
replicated for CKD (p=2.7 ×  10−4, Bonferroni significant) 
and DKD (p=0.012) in the FinnGen GWAS data (ESM 
Table 4). The variant showed significant eQTL activity in 

Table 1  Clinical characteristics of participants with DKD or normal AER in the WES and WGS cohorts

Values are n or % for categorical variables and median (IQR) for continuous variables. Characteristics are those at the timepoint of DKD classi-
fication used in the analysis (i.e. most severe observed phenotype by the time of analysis) or the timepoint closest to that date based on available 
longitudinal data  (HbA1c, BMI, systolic and diastolic BP). Smoking status (current or former smoker vs never smoker) and lipid values were 
recorded at the study baseline

WGS WES

DKD Normal AER p value DKD Normal AER p value

n 291 292 250 231
DKD class
 Severe albuminuria 16 125
 ESKD 275 125
Sex (% female) 28.9 60.6 <0.001 47.5 61.8 <0.001
Age at diabetes onset (years) 11.8 (6.8, 17.0) 12.3 (7.3, 16.9) NS 12.6 (6.8, 17.0) 12.1 (7.7, 18.0) NS
Duration of diabetes (years) 29 (25, 35) 40 (38, 45) <0.001 24 (20, 33) 43 (40, 48) <0.001
eGFR (ml/min per 1.73m2) 10 (10, 10) 94 (83, 102) <0.001 10 (10, 50) 89 (77, 99) <0.001
HbA1c (%) 9.0 (8.0, 9.9) 8.0 (7.5, 8.4) <0.001 8.6 (7.7, 9.9) 8.3 (7.7, 8.9) NS
HbA1c (mmol/mol) 75 (64, 85) 64 (58, 68) <0.001 70 (61, 85) 67 (61, 74) NS
BMI (kg/m2) 23.8 (21.2, 27.8) 24.5 (22.8, 26.5) NS 25.1 (21.9, 27.1) 25.1 (22.9, 27.9) NS
Systolic BP 148 (134, 165) 135 (123, 145) <0.001 141 (129, 154) 138 (128, 149) NS
Diastolic BP 84 (76, 92) 77 (70, 82) <0.001 85 (79, 92) 76 (71, 82) <0.001
Total cholesterol (mmol/l) 5.23 (4.36, 6.00) 4.74 (4.22, 5.26) <0.001 4.89 (4.47, 5.54) 5.22 (4.66, 5.88) 0.001
Triacylglycerol (mmol/l) 1.56 (1.10, 2.28) 0.83 (0.64, 1.06) <0.001 0.87 (0.72, 1.14) 1.34 (0.99, 2.04) <0.001
Smokers 65.6 40.8 <0.001 38.4 55.4 <0.001

Table 2  Suggestive associations (p<3.5 ×  10−5) in the WES/WGS single-variant-based meta-analysis for DKD (n=1064)

a Chromosomal position given as chromosome:base pairs using the GRCh38 genome build
b Major/minor alleles
c p value for Hardy–Weinberg equilibrium in the WGS/WES data
d OR and 95% CI for the minor allele
e p value for association with DKD
TSS, transcription start site; UTR, untranslated region

Positiona Variant A1/A2b Gene Annotation MAF p  valuec (WGS/WES) OR (95% CI)d p  valuee

9:109,176,646 rs10979729 T/C EPB41L4B C→T (Pro846Pro) 0.07 1/0.3385 2.09 (1.53, 2.87) 6.76 ×  10−6

2:61,825,245 rs3736598 A/G FAM161A Non-coding 0.40 0.55/0.58 0.67 (0.56, 0.8) 1.30 ×  10−5

22:21,002,277 rs369250 G/A THAP7 Promoter–TSS 0.49 0.047/0.24 1.42 (1.24, 1.77) 1.50 ×  10−5

2:61,826,155 rs6748320 A/G FAM161A Non-coding 0.40 0.55/0.64 0.67 (0.56, 0.8) 1.58 ×  10−5

7:101,1611,49 rs1048365 T/C AP1S1 3′ UTR 0.12 0.87/0.32 0.58 (0.45, 0.74) 2.07 ×  10−5

7:105,107,452 rs117986340 G/T KMT2E G→T (Gly999Cys) 0.14 0.57/0.66 1.81 (1.37, 2.39) 2.71 ×  10−5
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human kidneys with THAP7-AS1 (p=8.488 ×  10−45) (ESM 
Table 5).

Gene‑aggregate tests In the gene-aggregate meta-analysis, 
LTA and TSEN54 reached a suggestive p value <4.0 ×  10−4 
for analyses with low-frequency or rare PAVs (Table 3). In 
addition, NAT16 and SLC10A6 reached the same sugges-
tive threshold when analysis was extended to variants with 
an MAF ≤10%. NAT16 contained six PAVs with an MAF 
≤10%, and the association was driven by rs34985488, which 
is associated with higher odds of DKD (A→C p.Phe63Cys, 
p=5.82 ×  10−5; ESM Table 6). The variant was predicted to 
be deleterious or possibly damaging by the SIFT [42] and 
PolyPhen [43] algorithms, respectively. On the HLA region, 

association at LTA was based on only one PAV, p.His51Pro 
(rs2229092), which was associated with lower risk of DKD 
(p=1.5 ×  10−4).

We sought replication of these four genes in FinnDiane 
GWAS, THL Biobank GWAS, TOPMed WGS and UK 
Biobank WES gene-aggregate data. Furthermore, for the sin-
gle variants within these genes that were nominally signifi-
cant (p<0.05) in the FinnDiane WES/WGS meta-analysis, 
we tested for replication in the FinnDiane, THL Biobank, 
FinnGen GWAS and TOPMed WGS data. No replication 
was observed in the gene-aggregate tests (ESM Table 7), but 
NAT16 rs34985488 was replicated in the FinnGen GWAS 
for the CKD phenotype (p=0.0028; Bonferroni significant) 
and LTA rs2229092 was replicated for the type 1 diabetes 
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Fig. 2  Manhattan plot for the WES/WGS single-variant meta-
analysis. The meta-analysis resulted in identification of six 
variants: five common ones (chr2 FAM161A rs3736598 
[p=1.30  ×   10−5], rs6748320 [p=1.58  ×   10−5], chr22 THAP7 

rs369250 [p=1.50 ×   10−5], chr7 AP1S1 rs1048365 [p=2.07 ×   10−5] 
and KMT2E rs117986340 [p=2.71 ×  10−5]), and one with a low fre-
quency (chr9 EPB41L4B rs10979729 [p=6.76 ×  10−6])

Table 3  Genes with a suggestive p value of <4 ×  10−4 in the SKAT-O gene-aggregate meta-analysis (n=1064)

a Replication results with p value <0.05 are shown
b p values <0.0029 were significant after Bonferroni correction for 17 tested variants
c LTA is localised on the HLA region, for which a different variant-calling pipeline was used (see Methods for further details)
ING, idiopathic nodular glomerulosclerosis

Gene Position p value MAF 
threshold

Variants 
tested

Variant type Replicationa Previous findings

NAT16 7:101,170,496–101,180,293 1.4 ×  10−4 0.1 6 PAV + PTV NAT16 rs34985488 FinnGen 
pCKD=0.0028b

Significant difference in gene 
expression between ING patients 
and control individuals [45]

LTAc 6:31,560,610–31,574,324 1.5 ×  10−4 0.05 1 PAV + PTV LTA rs2229092 FinnGen 
pT1D_with_kidney_complications=0.0044

DKD candidate gene [48]

SLC10A6 4:86,823,468–86,849,384 2.7 ×  10−4 0.1 3 PAV + PTV
TSEN54 17:75,515,944–75,524,735 3.7 ×  10−4 0.01 14 PAV + PTV TSEN2 splice site mutation asso-

ciated with atypical haemolytic 
uraemic syndrome [53]
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with kidney complications phenotype (p=0.0044, ESM 
Table 4). LTA rs2229092 was also associated with a lower 
risk of type 1 diabetes (OR 0.74, p=3.4 ×  10−16), possibly 
reflecting linkage disequilibrium with classical type 1 dia-
betes HLA DR/DQ haplotypes. We therefore tested whether 
the observed DKD association could be explained by HLA 
DR/DQ alleles and genotypes or a more severe diabetes phe-
notype. Altogether, 55% of the individuals had a high type 1 
diabetes risk HLA genotype (either high/high or high/neutral 
haplotypes, ESM Table 8). The LTA rs2229092 remained 
associated with DKD when the high-risk HLA genotype 
was included as a covariate in the model (p=5.2 ×  10−4), 
whereas the HLA risk genotype was not associated with 
DKD (p=0.13). These results support the inference that the 
rs2229092 signal is separate from the classical HLA DR/DQ 
type 1 diabetes associations. It has previously been estab-
lished that type 1 diabetes risk HLA haplotypes are associ-
ated with low random serum C-peptide concentrations and 
younger age at type 1 diabetes onset, and therefore we also 
tested whether rs2229092 is associated with these proxies 
[44]. The variant was not associated with age of type 1 dia-
betes onset (14.8 vs 13.2 years, p=0.07) or C-peptide levels 
at study baseline (0.009 vs 0.015 nmol/l, p=0.44), support-
ing its association with DKD rather than type 1 diabetes in 
our data.

LTA encodes LT-α, also known as TNFβ, which binds to 
TNF receptors. We took a subset of 128 FinnDiane partici-
pants for whom targeted Olink proteomics data were also 
available. The reference and alternative allele carriers had 
similar clinical characteristics (ESM Table 9), and the alter-
native C allele of LTA rs2229092 was associated with lower 

levels of serum TNF receptors, including TNFR1 (p=0.005), 
TNFR2 (p=0.003) and TNFR3 (p=0.017) (Fig. 3).

Enrichment of monogenic or syndromic kidney disease 
genes We further tested whether monogenic kidney dis-
ease genes are enriched among DKD-associated genes (ESM 
Table 10). The strongest evidence of enrichment occurred 
among the ‘cystic kidney disease or nephronophthisis’ class, 
as 11 of 96 of the monogenic genes (11%) were associated 
(p<0.05) with DKD in our WES/WGS meta-analysis (bino-
mial test, p=0.004).

Intergenic variant aggregate tests To improve the statistical 
power to discover non-coding genetic factors behind DKD, 
we performed promoter and enhancer aggregate analyses 
and functionally informed genome-wide sliding-window 
analyses. Two enhancers located at 18q12.3 (p=6.78 ×  10−5) 
and 9q21.11 (p=2.17 ×  10−4) were suggestively associated 
with DKD (Table 4). Based on Hi-C data, the chromosome 
18q12.3 region showed enhancer activity with the closest 
protein-coding gene METTL4 (located 186 kb upstream) in 
the bladder. The 9q21.11 locus, close to CTSL, is a pro-
moter–enhancer region, and showed enhancer activity with 
CTSL (ESM Table 5).

In the sliding-window analysis, the strongest associations 
were obtained for a chromosomal window on 12q14.3, 21 
kbp upstream of WSCD2 (p=4.66 ×  10−6) and intergenic 
region 4q22.3 (p=9.46  ×   10−6). However, none of the 
genomic windows (1,318,834 regions), promoter regions 
(184,609 regions) or enhancer regions (24,240 regions) 
remained significant after Bonferroni correction (Table 4).
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Fig. 3  Association of the LTA rs2229092 C allele and lower levels of 
TNF receptors. Serum levels of three TNF receptors that bind LT-α 
(TNFR1, TNFR2 and TNFR3) were measured using the Olink plat-
form, and serum TNF receptor levels were measured for 128 individ-
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and sex. The alternative C allele of LTA rs2229092 had significantly 
lower levels of (a) TNFR1, (b) TNFR2 and (c) TNFR3 compared 
with carriers of the reference allele. Differences between the groups 
are indicated by asterisks: *p<0.05, **p<0.01
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Replication for the genome-wide sliding-window, pro-
moter- and enhancer-wide analyses was performed by 
testing the nominally significant variants (ESM Table 11) 
in the replication data. We observed replication for 
rs183413211 of the 2q14.2 region 106 kb from SLC8A1 
(TOPMed pCKD=0.042; ESM Table 3) and rs16943099 
in the METTL4 enhancer region in 18q12.3 (FinnGen 
pT2D_with_renal_complications=8.6 ×  10−4 [Bonferroni significant] 
and pDKD=0.036; ESM Table 4).

To assess the potential functional effect of the vari-
ants within the identified enhancer regions, we applied 
the TRAP prediction tool to estimate whether the vari-
ants affect the transcription factor binding probability of 
the sequence. For the METTL4/18q12.3 enhancer region 
lead SNP, rs16943099, only the reference allele was pre-
dicted to provide a binding site for podocyte-specific 
transcription factor MafB (TRANSFAC V$MAFB_01, 
pREF<1.75 ×  10−6), which is absent in the alternative allele 
sequence (pALT=0.239; ESM Fig. 3 and ESM Table 5).

Sub‑analyses of the lead variants with DKD phenotypes and 
covariates We performed additional phenotypic analyses to 
further characterise the 17 lead variants from single-vari-
ant, gene-aggregate, sliding-window and regulome analy-
ses. Additional adjustment one by one for BMI, diastolic 
BP, systolic BP,  HbA1c, smoking status, total cholesterol 
and triacylglycerol levels generally modestly reduced the 
associations with DKD, but they remained significant (ESM 
Table 12). Furthermore, all lead variants showed highly 
similar or slightly lower associations when only individuals 
with ESKD (n=939) were included in the analysis (ESM 
Table 13). Finally, as some previous DKD associations have 
been shown to be sex-specific, we additionally tested for var-
iant–sex interaction, and rs16943099 adjacent to METTL4 
showed significant interaction with sex (p=0.01), with a 
significant association detected in men (OR 0.55; 95% CI 

0.43, 0.69; p=1.3 ×  10−6) but not in women (OR 0.88; 95% 
CI 0.66, 1.18; p=0.402) (ESM Table 13 and ESM Fig. 4).

Discussion

We studied 1064 Finnish individuals with type 1 diabetes, 
representing the extreme phenotypes for DKD, to identify 
novel rare and low-frequency variants associated with DKD. 
We included 546 individuals with severe DKD (severe albu-
minuria or ESKD) and 528 with type 1 diabetes but normal 
AER despite a diabetes duration of at least 25 years. We 
performed genome-wide single-variant analyses, includ-
ing an analysis of the HLA region, and used both gene and 
regulatory region aggregate tests to identify low-frequency 
variants, extending to an MAF ≤10%, associated with DKD 
susceptibility, revealing several putative associations with 
novel and functionally plausible genes for DKD.

The gene-aggregate meta-analysis for low-frequency 
and rare PAVs and PTVs identified two genes, LTA and 
TSEN54, as suggestively associated with DKD. As our 
previous GWAS also identified a common missense vari-
ant associated with DKD, namely the COL4A3 missense 
variant rs55703767 [10], we further extended the analysis 
to more common variants with an MAF ≤10%, resulting 
in suggestive association at NAT16 and SLC10A6. Through 
look-ups of the lead SNPs behind the gene-aggregate 
results, replication was found for NAT16 and LTA in the 
FinnGen cohort (ESM Table 3). NAT16 putatively encodes 
N-acetyltransferase 16. N-acetyltransferases transfer acetyl 
groups from acetyl-CoA to molecules such as arylamines. 
According to GTEx RNA-seq data (https:// www. gtexp 
ortal. org/ home/ gene/ NAT16), NAT16 is expressed in the 
kidney cortex and medulla, along with most other tissues, 
and NAT16 was previously found to show significantly 
higher expression in individuals with idiopathic nodular 

Table 4  STAAR-O aggregate analysis results for genome-wide sliding windows (n=1,318,834 regions), promoters (n=184,609) and enhancers 
(n=24,240); the analysis was performed for the WGS dataset only (n=583)

a Cumulative minor allele count (number of copies of the minor allele) across all the included variants within the given MAF class

Region Variant count Cumulative 
 MACa

p value MAF threshold Closest gene

Sliding windows
 12:108,104,001–108,108,000 (12q14.3) 14 22 4.66 ×  10−6 0.01 WSCD2
 4:75,122,001–75,126,000 (4q13.3) 21 61 9.46 ×  10−6 0.01
Promoters
 9:87,792,126–87,793,126 (9q21.11) 6 79 2.67 ×  10−5 0.05 CTSL3P (pseudogene)
 2:40,755,215–40,756,215 (2q14.2) 5 14 3.17 ×  10−5 0.05, 0.01 LINC01794 (lncRNA)
Enhancers
 18:2,350,865–2,351,244 (18q12.3) 2 24 3.94 ×  10−5 0.05 METTL4; MYOH1
 9:87,792,785–87,793,201 (9q21.11) 4 27 1.17 ×  10−4 0.05 CTSL

https://www.gtexportal.org/home/gene/NAT16
https://www.gtexportal.org/home/gene/NAT16
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glomerulosclerosis compared with healthy control indi-
viduals  (log2 fold change=7.11, p=1.67 ×  10−8) [45]. The 
lead SNP rs34985488 was classified as deleterious by SIFT 
and was replicated in the FinnGen CKD phenotype data-
set (p=0.0028). Interestingly, the NAT16 missense vari-
ant rs34985488, and one of the single-variant lead SNPs, 
rs1048365 in the AP1S1 3′ untranslated region, are in mod-
erate linkage disequilibrium (ESM Fig. 5).

The HLA region gene LTA, which encodes LT-α/TNFβ, 
plays an important role in the immune response, inflamma-
tion and apoptosis. LT-α binds to TNF receptors TNFR1 
and TNFR2 in its homotrimeric form, and to TNFR3 in its 
heterotrimeric form with LT-β/TNFC; all three TNF recep-
tors have been shown to be associated with progression of 
DKD [46, 47]. The LTA association with DKD was driven 
by rs2229092 (OR 0.39, p=1.47 ×  10−4), and the association 
was replicated in the FinnGen type 1 diabetes with kidney 
complications dataset (p=0.0044). However, in the single-
variant association meta-analysis, rs2229092 did not reach 
study-wide significance or the suggestive threshold, possibly 
due to lack of power. The alternative C allele of rs2229092 
was associated with lower serum levels of multiple TNF 
receptors, including TNFR1, TNFR2 and TNFR3, suggest-
ing that the variant protects from DKD through reduced 
inflammatory responses. The variant is not a known trans-
eQTL for any of the TNF receptors, and we hypothesise that 
the association is due to a biological feedback loop between 
circulating TNFβ concentrations and its corresponding 
TNF receptors. Of note, an association between DKD and 
LTA p.T60N (rs1041981) was already suggested by candi-
date gene studies 15 years ago, but the association has not 
been replicated in more recent large GWAS [48]. This may 
be partly due to exclusion of the HLA region from GWAS 
imputation or sequencing due to the complexity of the 
region. Interestingly, in the FinnGen r9 dataset, rs2229092 
was shown to confer protection against type 1 diabetes, other 
autoimmune diseases and diabetic complications, with oph-
thalmic complications being the most significant (OR 0.70, 
p=4.5 ×  10−13; ESM Table 3). Other researchers have noted 
that assessing causal effects of rs2229092 is difficult due to 
pleiotropy [49]. However, adjusting the association for the 
HLA risk genotype did not affect the association with DKD, 
suggesting that the association detected here reflects DKD 
rather than type 1 diabetes risk.

The WGS data allowed us to investigate low-frequency 
variants also in non-coding regions. On chromosome 
18q12.3, an enhancer interacting with the METTL4 gene 
was suggestively associated with DKD (p=6.78 ×  10−5). 
The association was led by rs16943099, and it replicated for 
‘type 2 diabetes with kidney complications’ (p=8.6 ×  10−4) 
in the FinnGen GWAS data. In silico prediction suggested 
that the rs16943099 minor C allele, which is associated with 
a lower risk of DKD, disrupted a transcription factor binding 

site for the podocyte-specific transcription factor MafB 
(ESM Fig. 3 and ESM Table 5); forced mafb expression 
was recently shown to prevent CKD in mice [50]. METTL4 
encodes Mettl4 methyltransferase, which has been shown to 
mediate  m6Am methylation on U2 snRNA in vitro [51]. An 
intergenic variant rs185299109 in the LINC00470/METTL4 
locus was previously found to be associated with DKD 
(eGFR-based CKD phenotype, p=1.3 ×  10−8) [10]. Moreo-
ver, methyl adenosine modification of the paralogous gene 
METTL3 was observed to promote podocyte injury in DKD 
[52], and a rare intronic variant in METTL8 was one of the 
novel findings for eGFR in the TOPMed WGS [19].

To our knowledge, our WES/WGS analysis of 1064 indi-
viduals with type 1 diabetes is one of the largest sequencing 
studies for DKD to date. However, previous studies have 
shown that a larger sample size is often needed to discover 
variants with modest effect size, and thus the main limita-
tion of this study is the sample size. We only had limited 
statistical power to detect single variants associated with 
DKD, and the putative associations detected in the single-
variant analyses should be interpreted with caution. The 
aggregate analyses increase the statistical power by increas-
ing the number of carriers and reducing the burden of mul-
tiple testing. While gene-aggregate analyses are commonly 
used in exome sequencing studies, the functionally weighted 
regulatory region aggregate analyses of the WGS data pro-
vide a novel way to identify regulatory variant associations 
more robustly. Furthermore, the study participants were 
carefully selected and characterised for their phenotype, 
and had either advanced DKD (with the majority develop-
ing ESKD) or a long duration of type 1 diabetes without 
DKD. Of note, although the discovery cohort’s phenotype 
was based on severe albuminuria or ESKD, many of the 
variants replicated for the eGFR-based CKD definition or a 
more general definition of type 1 and 2 diabetes with renal 
complications. We were unable to replicate common variants 
previously identified for DKD, such as the reported COL4A3 
missense variant rs55703767 (p=0.056), suggesting that we 
may have missed variants that are relevant for DKD due to 
the limited sample size. However, our main focus was the 
discovery of low-frequency and rare variants with functional 
relevance. We did not perform the genome-wide analyses 
separately for men and women due to the limited power, but, 
of the tested variants, the METTL4-adjacent rs16943099 
showed significant interaction with sex, and associated with 
DKD only in men.

We used two different sequencing platforms in the study. 
Even though the datasets were analysed using the same pipe-
line, there were differing read lengths of 150 bp for WGS 
and 100 bp for WES, and the mean number of low-frequency 
variants per gene was significantly greater in the WGS study 
(5.88) compared with the WES dataset (5.31). Due to the 
limitation of databases and tools, our study included only 
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transcribed enhancers, and the promoters were defined with 
an arbitrarily selected 1000 bp extension downstream from 
the transcription start site, although the promoter lengths 
vary.

Finally, no other WGS data for DKD were available for 
replication of our findings, but we attempted replication in 
multiple datasets, including studies with imputed GWAS 
data for DKD in type 1 diabetes, and GWAS, WES and 
WGS datasets of phenotypes for kidney disease from the 
general population. Due to these limitations, we report rep-
lication at nominal significance (p<0.05). Despite the lim-
ited replication available, replication at 18q12.3 (METTL4) 
rs16943099, THAP7 rs369250, and NAT16 rs34985488 
remained significant after correcting for the total number of 
tested SNPs (n=17). In addition, evidence from eQTL and 
differential gene expression in kidney tissue, as well as the 
LTA rs2229092 association with circulating TNF receptor 
levels, supports the relevance of the novel loci identified 
here, especially for the 18q12.3 (METTL4) enhancer region 
and the NAT16 and LTA genes. However, these genes and 
variants represent risk/protective alleles rather than high-
penetrance variants, and further validation is needed to con-
firm their role in DKD.

Supplementary Information The online version contains peer-reviewed 
but unedited supplementary material available at https:// doi. org/ 10. 
1007/ s00125- 024- 06241-1.
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