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Abstract
Aims/hypothesis  Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained 
hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro 
hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; 
gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant 
to the onset and progression of diabetes.
Methods  We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose con-
centrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time 
points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in 
transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and 
genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the 
effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-βH1 cells, 
followed by a glucose-stimulated insulin secretion assay.
Results  In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose 
exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 
345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose 
across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we 
identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of 
these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-
stimulated insulin production and secretion in EndoC-βH1 cells.
Conclusions/interpretation  The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of 
human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic 
signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeo-
stasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production.
Data availability  The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available 
in the database of Genotypes and Phenotypes (dbGap; https://​www.​ncbi.​nlm.​nih.​gov/​gap/) with accession no. phs001188.
v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene 
prediction analyses are available in the Zenodo data repository (https://​zenodo.​org/) under accession number 11123248. The 
code used in this study is publicly available at https://​github.​com/​Colli​nsLab​BioCo​mp/​publi​cation-​islet_​gluco​se_​timec​ourse.
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Introduction

Type 2 diabetes and related complications are among the 
leading causes of death globally [1]. Clinical and genetic 
studies highlight the central role of pancreatic islet dysfunc-
tion and disrupted glucose homeostasis in the development 
of sustained hyperglycaemia and type 2 diabetes (reviewed 
in [2, 3]). Within the pancreatic islet, multiple cell types 
have been implicated in type 2 diabetes progression, most 
notably beta cells which secrete insulin in response to glu-
cose stimulation [4], but also other cell types including alpha 

cells [5] and delta cells [6]. Common variant genetic asso-
ciation studies have identified >500 genetic signals associ-
ated with type 2 diabetes and type 2 diabetes-related traits 
[7], promising to deliver clues to the genes and molecular 
pathways underlying type 2 diabetes development and pro-
gression. However, most genetic signals identified to date lie 
outside protein-coding genes, masking the ‘effector genes’ 
responsible for driving the genetic association.

One approach to help identify and understand the genes 
that contribute to type 2 diabetes pathogenesis and progres-
sion is to explore the effects of physiologically relevant 
conditions, such as hyperglycaemia, on human islet gene 
expression. To date, human islet glucose-stimulus studies 
have shown the effects of hyperglycaemia on genes related 
to insulin secretion [8] and oxidative stress [9, 10]. The 
molecular picture from these studies is consistent with our 
understanding of type 2 diabetes pathophysiology; under 
normal conditions, transient increases in blood glucose 
stimulate insulin secretion. However, under the sustained 
hyperglycaemic conditions that occur in type 2 diabetes, the 
continual demands of insulin production lead to glucotox-
icity and apoptosis of beta cells [11] (and possibly other 
islet cell types [12]), further exacerbating the type 2 diabetes 
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condition. Despite the known importance of multiple islet 
cell types in the context of diabetes [4–6], to date, transcrip-
tomic studies examining the effects of hyperglycaemia on 
primary human islets have used gene expression readouts 
from bulk islet tissue [8–10], thus masking cell-type-specific 
expression signatures that may be relevant to diabetes.

In this study, we characterise the transcriptional changes 
associated with sustained glucose exposure across islet cell 
types by exposing human pancreatic islets from two donors 
to euglycaemic (2.8 mmol/l) and hyperglycaemic (15.0 
mmol/l) conditions in vitro and performing single-cell RNA-
seq (scRNA-seq) at seven time points over 24 h. The results 
from this study provide a high-resolution view of the effects 
of euglycaemic and hyperglycaemic conditions on islet cell 
types through time and should help guide future experiments 
to understand the molecular mechanisms that lead to islet 
dysfunction in disease states like type 2 diabetes.

Methods

Ethics statement  The pancreatic islets used in this study 
were isolated from cadaverous donors whose organs were 
consented for research. As per the United States’ Office for 
the Protection of Research Subjects policy, islets obtained 
from non-living individuals do not fall under the guidelines 
of human subject research. All experimental protocols per-
formed for this study were approved under National Insti-
tutes of Health (NIH) guidelines.

Islet procurement and processing  We obtained purified human 
pancreatic islets from two individuals through Prodo Laborato-
ries (Aliso Viejo, CA, USA; electronic supplementary material 
[ESM]  Table 1; ESM Human Islet Checklist). After receiving 
the islets, we equilibrated them to 37°C for 1 h in 2.8 mmol/l 
glucose media. Prior to shipment, islets were characterised by 
Prodo Laboratories using a glucose-stimulated insulin release 
assay (ESM Fig. 1). See ESM Methods for details.

Genotyping  We genotyped pancreatic islets from both 
donors as previously described [13]. We imputed filtered 
genotypes using Minimac4 v1.7.3 [14] on the TOPMed 
Imputation Server [15] and removed SNPs with an imputa-
tion r2≤0.3. See ESM Methods for details.

Single‑cell RNA sequencing of glucose‑stimulated pancre‑
atic islets  We exposed pancreatic islets to either low (2.8 
mmol/l) or high (15 mmol/l) glucose for 24 h and performed 
single-cell RNA-seq (scRNA-seq) at a baseline 2.8 mmol/l 
glucose before starting the experiment (time point 0) and at 
1, 2, 4, 8, 12 and 24 h time points. We incubated aliquots 
of 2000 islet equivalents (IEQs) at 37°C for the duration of 
the experiment and sampled wells at each time point. We 

performed experiments in duplicate, resulting in two repli-
cates for each donor, time point and glucose condition. We 
dissociated the islets and performed scRNA-seq using the 
10X Genomics Chromium platform (10X Genomics, Pleas-
anton, CA, USA) according to the manufacturer’s instruc-
tions. See ESM Methods for details.

Single‑cell RNA‑seq processing and quality control  We used 
CellRanger v3.1.0 (10X Genomics, Pleasanton, CA, USA) 
to process and align reads to GRCh38.p13, identify cell-
containing droplets and generate cell × gene count matri-
ces. We used a two-step approach with DecontX [16] to 
achieve the following objectives: (1) remove droplets with 
a high ambient transcript contamination from the single-cell 
sequencing experiment; and (2) adjust the raw counts matrix 
for the ambient expression signature. For the first pass, we 
applied DecontX to count matrices from CellRanger and cell 
type clusters derived from Seurat v4.3.0 [17] and removed 
cell-containing droplets with >10% ambient contamination 
from the CellRanger gene count matrix. For the second pass, 
we re-ran the DecontX workflow (including Seurat cluster-
ing) with the filtered gene count matrix, removed droplets 
with >10% ambient contamination, and used the DecontX-
adjusted count matrix.

To retain high-quality cells, we filtered multiplets using 
scrublet v0.2.1 [18], cells with >50% unique molecular 
identifier (UMI) counts from the mitochondrial genome, 
outlier cells based on the total number of UMIs and 
then on the number of genes expressed (≥1 count), and 
contaminated cells (identified by comparing sequencing 
reads with donor genotypes). We used scanpy v1.6.0 [19] to 
filter lowly expressed (≥1 count in ≤5 cells), mitochondrial 
and ribosomal genes and normalised UMI counts to the log-
transformed counts per 10,000 (loge[CP10K+1]). See ESM 
Methods for details.

Cell type annotation  We mean-centred and scaled the cell 
× gene expression matrix of the 2000 most variable genes 
across samples and performed principal component (PC) 
analysis using scanpy v1.6.0 [19]. We used a scree plot [20] 
to select nine PCs for downstream analyses and used har-
mony v0.0.5 [21] to adjust PCs for sample-specific batch 
effects. With the harmony-adjusted PCs, we clustered the 
cells using an iterative parameter sweep of a Leiden graph-
based algorithm v0.8.3 [22]. To optimise the clustering, we 
performed a parameter sweep and trained/tested a neural-
network-based cell type classifier (keras v2.4.3; https://​keras.​
io/) for each configuration. We evaluated parameter configu-
rations using Matthew’s correlation coefficient, selected a 
cluster resolution of 0.25 for the final analysis, and identified 
eight clusters. To determine the cell type identity of clusters, 
we used well-established marker genes for islet cell types. 
Finally, we applied the cell type classifier to cells that were 

https://keras.io/
https://keras.io/
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previously filtered due to mitochondrial count thresholds and 
recovered cells with a cell type predictor >0.5. See ESM 
Methods for details.

Time interpolation  Within each cell type, donor and glu-
cose condition, we calculated the interpolated time as the 
weighted sum of the sampled time from each cell and the 75 
nearest neighbours identified using scvelo v0.2.4 [23]. See 
ESM Methods for details.

Differential gene expression analysis  We performed differ-
ential gene expression (DGE) analysis using MAST v1.20.0 
[24], including cell complexity (i.e. the number of genes 
detected per cell) as a fixed effect covariate, participant 
and experiment identifiers as random effect covariates, and 
additional, model-specific fixed effect covariates (see ESM 
Methods).

For the discrete time DGE models, we fit separate models 
for each cell type and time point: (1) ‘basal vs high’ (BvH; 
comparing basal and high glucose cells across time); (2) 
‘basal vs low’ (BvL; comparing basal and low glucose cells 
across time); and (3) ‘low vs high’ (LvH; comparing low 
and high glucose cells across time). For the continuous time 
DGE models, we fit separate models for each cell type: (1) 
‘continuous time’ (to test for time effects); (2) ‘glucose’ (to 
test for glucose effects); and (3) ‘time–glucose interaction’ 
(to test for an interaction effect between time and glucose 
concentration).

For each model, we controlled for the false discovery 
rate (FDR) using the Benjamini–Hochberg (BH) procedure 
[25]. We removed genes with median counts per 10,000 
(CP10K)<1 prior to fitting models for each cell type. See 
ESM Methods for details.

Gene ontology enrichment and clustering analysis  For 
each DGE model (e.g. BvL at 1 h, BvL at 2 h, continu-
ous time, glucose), we identified enriched gene ontology 
(GO) terms from the ‘biological process’ ontology using 
clusterProfiler v4.8.3 [26]. We controlled for the number of 
tests performed using the BH procedure [25]. To visualise 
results, we modelled the semantic similarity of enriched GO 
terms (FDR<5%) using GOSemSim v2.26.1 [27] and cre-
ated network plots using enrichplot v1.20.3 [28]. See ESM 
Methods for details.

Nomination of candidate effector genes for type 2 diabetes 
and type 2 diabetes‑related traits  We nominated candidate 
effector genes using the polygenic priority score (PoPS) 
method v0.2 [29] and publicly available summary statistics 
for type 2 diabetes, fasting blood glucose, random blood 
glucose and HbA1c. For the genomic feature matrices, we 
constructed a ‘control’ matrix of housekeeping genes and 
a ‘test’ matrix comprising features from the single-cell data 

presented in this study (as performed by Weeks et al [29]), 
with the addition of cell type gene expression specificity val-
ues and test statistics from the differential expression models 
(excluding the BvH model). We calculated empirical p values 
from a null distribution (obtained by permuting ‘test’ matrix 
and repeating analysis 1000 times) and controlled the FDR 
across all genes considered using the BH procedure [25]. We 
compared the candidate effector genes with the 132 effector 
genes from the Type 2 Diabetes Knowledge Portal (https://​
t2d.​hugea​mp.​org). See ESM Methods for details.

CRISPR interference experiments  We designed and synthe-
sised three different guide RNAs (gRNAs) targeting tran-
scription start site regions of each candidate gene as well 
as two non-targeting gRNAs (ESM Table 2). As previously 
described [30], we cloned the gRNAs into the CRISPR inter-
ference (CRISPRi) vector and transfected HEK293T cells 
(ATCC, Manassas, VA, USA) with the lentivirus packaging 
plasmids and the CRISPRi plasmids. After concentrating 
and resuspending the vial suspension, we seeded around 1 
million EndoC-βH1 [31] cells in six-well plates and infected 
them with 0.2 ml of viral suspension (supplemented with 
polybrene). At 72 h post-transduction, we exposed cells to 
2 µg/ml puromycin to select for the infected cells. See ESM 
Methods for details.

Quantitative RT‑PCR experiments  We performed quantita-
tive RT-PCR (qRT-PCR) as previously described [32] using 
primers specific to each candidate gene and the reference 
gene (GAPDH; ESM Table 3). See ESM Methods for full 
details.

Glucose stimulation experiment in CRISPRi EndoC‑βH1 
cells  We seeded 1 million CRISPRi cells and the control 
cells in 12-well plates, fasted the cells in 1 ml low glucose 
KRBH at 37°C for 1 h, and exposed cells to low (2.8 mmol/l) 
and high (15 mmol/l) glucose KRBH at 37°C for 24 h. At 
1 h, we measured extracellular insulin content in the super-
natant fraction. At 24 h, we measured intracellular insulin 
content after removing residual medium and lysing the cells. 
At both time points, we calculated the insulin stimulation 
index as the ratio of the mean insulin content between the 
high and low glucose conditions. We calculated the 95% 
CI of the high–low means using Fieller’s method [33, 34] 
and compared the gene-targeting CRISPRi experiments with 
the control experiments using Welch’s t test [35]. See ESM 
Methods for details.

Comparison with results of previous bulk islet transcriptome 
studies  We compared the glucose-associated genes identi-
fied in this study with results from previous transcriptomic 
studies of glucose stimulation in bulk islets [8–10] (see ESM 
Methods for details).

https://t2d.hugeamp.org
https://t2d.hugeamp.org
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Results

Single‑cell RNA sequencing of glucose‑stimulated human 
pancreatic islets  We obtained human pancreatic islets from 
two donors and acclimated the islets to a basal, euglycaemic 
media of 2.8 mmol/l glucose (50 mg/dl) over 1 h (Fig. 1). 
After 1 h, we sampled a subset of cells and performed 
scRNA-seq. For the remaining cells, we either maintained 
them in the low (basal) glucose condition or exposed them 
to a high (hyperglycaemic) glucose concentration of 15.0 
mmol/l (270 mg/dl). We subsequently sampled cells at six 
additional time points for scRNA-seq over the course of 24 
h (cells remained exposed to glucose over the entire time 
course). We refer to cells from islets sampled after 1 h of 
acclimation in 2.8 mmol/l glucose as ‘basal’ cells (time 
point 0 h) and cells from islets sampled at later time points 
as either ‘low’ or ‘high’ glucose cells (time point 1–24 h). 
After quality control procedures (see Methods), we obtained 
68,007 cells spanning eight cell types, including endocrine 
cells (beta 29.0%, alpha 25.4%, delta 4.5% and gamma 
2.8%), exocrine cells (acinar 26.1% and ductal 11.7%), 

macrophages (0.3%) and endothelial cells (0.1%; ESM Figs 
2–4). For subsequent analysis, we removed macrophage and 
endothelial cells, as these cells were rare and poorly repre-
sented across donors, time points and glucose conditions 
(<80 cells at each time point; ESM Fig. 4).

Time‑point‑specific effects of glucose induction  We fit three 
discrete models to characterise the transcriptomic response 
of islet cell types to glucose stimulation at each time point. 
First, in the BvH glucose model, we compared the gene 
expression of cells in the basal state (2.8 mmol/l glucose, 0 
h time point) with cells in high glucose at each time point. 
This model identifies transcriptomic effects of high glucose 
at various time points but confounds the impact of high glu-
cose with time in culture. Second, in the BvL glucose model, 
we compared the expression of cells in the basal state (2.8 
mmol/l glucose, 0 h time point) with cells that remained in 
the low glucose condition at every other time point, thus 
isolating time in culture effects while removing the glucose 
concentration as a confounding factor. Finally, we fit a third 
model within each time point, comparing cells exposed to 

Fig. 1   Graphical overview of 
this study. (1) Upon receipt, 
we acclimated pancreatic 
islets from two donors (donor 
IDs indicated) to low glucose 
conditions (2.8 mmol/l) for 1 
h. (2) After acclimation, we 
exposed half of the islets to high 
glucose (15.0 mmol/l) and kept 
the other half in low glucose 
conditions (2.8 mmol/l). (3) 
At 0, 1, 2, 4, 8, 12 and 24 h 
time points, we sampled islets 
and (4) performed single-cell 
RNA sequencing. Time point 
0 corresponds to cells after 
1 h low-glucose acclimation, 
prior to starting the stimula-
tion experiment. Created with 
BioRender.com
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low glucose against cells exposed to high glucose (LvH) to 
identify glucose-related effects while controlling for time.

For the BvH and BvL models, the number of associated 
genes increased over time across all cell types (Fig. 2a). By 
contrast, for the LvH model (which best isolates glucose-
related effects), we observed very few transcriptional changes, 
except in the beta cells where the total number of associated 
genes peaked at 8 h (Fig. 2a). For cell types other than beta 
cells, the proportion of genes differentially expressed in both 
the BvH and BvL models increased across time, suggest-
ing that time in culture may confound the BvH results, as 
anticipated (Fig. 2b). Indeed, when we compared the signed 
−log10(p values) across models, we found that the BvH and 
BvL values but not the LvH values were strongly correlated 
(ESM Fig. 5). Combined, these results confirm the following: 
(1) that the BvH model confounds time and glucose effects; 
and (2) that the BvL and LvH models best isolate time and glu-
cose effects, respectively. Therefore, we chose to focus on the 
BvL and LvH models for subsequent analyses (ESM Fig. 6).

To further characterise the transcriptional response to 
time in culture and glucose exposure, we calculated the over-
lap of associated genes (FDR<5%) across time points within 
each model and cell type (ESM Figs 7, 8) and determined 
the earliest time point that a gene showed an association 
(ESM Fig. 9). Focusing on the BvL model (ESM Figs 7, 
9a), we observed a similar pattern across all cell types: a 
sustained cascade of transcription throughout the 24 h. Turn-
ing to the LvH model (ESM Fig. 8), the time point with the 
greatest number of uniquely associated genes varied across 
cell types: 24 h for acinar and delta cells, both 2 h and 4 h 
for alpha cells (where we found one associated gene) and 8 h 
for beta cells. Interestingly, for beta cells, we found that the 
number of differentially expressed genes increased drasti-
cally at 8 h and was sustained up to 24 h, indicating that a 
robust transcriptomic response of beta cells to continuous 
glucose exposure requires approximately 8 h. The timing of 
the transcriptomic response of beta cells to glucose exposure 
was also apparent when we considered the earliest time at 

a b

Fig. 2   Differentially expressed genes in discrete time models. (a) 
Number of associated genes (FDR<5%) at each time point for three 
models with time as a discrete variable: BvL (orange); BvH (green); 
and LvH (purple). (b) Fraction of associated genes that are model-

specific or shared across models at each time point. Colour denotes 
model or combination of models. ‘None’ indicates the fraction of 
genes without an association in any model
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which a differentially expressed gene was identified; in beta 
cells, roughly 65.6% (433/660) of all genes differentially 
expressed in the LvH model showed expression differences 
on or after 8 h (ESM Fig. 9b). This observation was unique 
to beta cells.

To describe the biological processes underlying the 
transcriptional changes, we identified enriched gene sets 
in the differentially expressed genes using the ‘biological 
process’ GO database and then clustered the enriched GO 
terms (FDR<5%) based on their semantic similarity (ESM 
Figs 10, 11). For the BvL model, we identified many GO 
terms related to stress response and cellular signalling across 
all cell types (ESM Fig. 10). Terms associated with earlier 
time points (e.g. 2 h and 4 h) involved translational activation 
and cellular response to stimuli, and those associated with 
later time points (e.g. 8 h, 12 h and 24 h) involved cellular 
respiration processes and transcriptional activation. For the 
LvH model, we found many terms enriched in beta cells, 
most of which were associated with metabolism, cellular 
respiration, cellular signalling, protein folding and protein 
localisation, consistent with known mechanisms of beta cell 
response to glucose stimulation (reviewed in [36, 37]).

Temporal dynamics of gene expression in response to glu‑
cose induction  While discrete models can effectively iden-
tify time-specific effects (ESM Figs 5–11), such models fail 
to make use of the full potential of the data as they do not 
simultaneously model gene expression across all time points, 
leading to reduced power to detect effects common to mul-
tiple time points and an inability to model more complex 
relationships such as interaction effects between time and 
glucose concentration (time–glucose effects). Treating time 
as a continuous variable, we fit a series of models to identify 
gene expression patterns associated with time (with glucose 
as a covariate), glucose concentration (with time as a covari-
ate) and time–glucose (with time and glucose as covariates).

To model time, we considered two metrics: (1) sampled 
time (i.e. the experimental time point); and (2) interpolated 
time (ESM Figs 12, 13), a metric that models similarities 
between cells based on the assumption that cells sampled at 
various time points are not synchronised at the exact same 
response phase (i.e. some cells sampled at 8 h may have 
lagged in their response to stimulation and therefore have 
an expression profile more similar to 6 h than 8 h). We fit 
the time, glucose and time–glucose models using the two 
different time metrics and found a slight boost in power 
using interpolated time over sampled time with concordant 
directions of effect (ESM Fig. 13b, c), suggesting that inter-
polated time represents the phase of cellular response more 
accurately than sampled time. Therefore, in all subsequent 
continuous models, we used interpolated time.

Across the three continuous models, we identified 1321 
genes with expression patterns associated with time, glucose 

and time–glucose (FDR<5%; ESM Figs 13c, 14). As antici-
pated, compared with the discrete models, the continuous 
models identified many effects that were not detected previ-
ously (ESM Fig. 15).

We calculated the overlap of associated genes between 
models within cell types (Fig. 3a) and between cell types 
within models (Fig. 3b). We found that across the three 
models within a given cell type, very few genes exhibited 
exclusive glucose effects (Fig. 3a). Beta cells had the most 
genes with glucose-specific effects, with 52 genes including 
those with known roles in beta cell function such as CDC42 
[38] and FIS1 [39]. By contrast, many genes were associated 
exclusively with time in culture, with the association being 
notably strong in alpha, delta, acinar, gamma and ductal 
cells but absent in beta cells. Compared with all cell types, 
beta cells had the most genes with time–glucose interac-
tion effects, featuring several well-established type 2 dia-
betes genes, including INS [40], ABCC8 [41, 42], SLC30A8 
[43, 44] and PCBD1 [45]. When we considered the overlap 
of genes across cell types within each model (Fig. 3b), we 
found that the genes associated with time in culture showed 
dispersed patterns: 5.3% (69/1311) were shared across all 
cell types; 56.3% (738/1311) were shared between a group-
ing of cell types; and 38.4% (504/1311) were cell-type-spe-
cific, with ductal cells having the most unique genes. For 
genes associated with glucose and time–glucose, the vast 
majority of associated genes were cell-type-specific, par-
ticularly in beta cells (94.8% [327/345] for glucose; 69.9% 
[292/418] for time–glucose).

We identified enriched gene sets for genes differentially 
expressed in the continuous models (ESM Fig. 16). We 
observed similar enriched processes as in the discrete mod-
els, including transcriptional regulation, stress response and 
protein synthesis pathways. In beta cells, similar gene sets 
were enriched across all three continuous models and largely 
featured terms related to metabolism, ATP synthesis, RNA 
processing and protein folding.

Nomination of candidate effector genes for type 2 diabetes 
and type 2 diabetes‑related traits  We sought to prioritise 
candidate effector genes for type 2 diabetes and type 2 dia-
betes-related traits by incorporating genetic association sum-
mary statistics. Using the PoPS method [29], we modelled 
genetic association summary statistics for type 2 diabetes, 
HbA1c, random blood glucose and fasting blood glucose 
using genomic features derived across all cell types in this 
study (e.g. cell-type-specific expression patterns, differential 
expression test statistics).

We identified 2449 unique candidate effector genes 
across all four phenotypes (FDR<5%): 1855 for type 2 
diabetes; 111 for HbA1c; 1023 for random blood glucose; 
and 1 for fasting blood glucose (Fig. 4). We compared the 
−log10(p value) for each gene across phenotypes and found 
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them to be moderately correlated (minimum r=0.5883; 
Fig.  4c). Among the candidate effector genes, 1949 

(79.6%) were associated with only one phenotype, 459 
(18.7%) were associated with two phenotypes, 41 (1.7%) 

a

b

Fig. 3   Differentially expressed genes in continuous time models. 
(a) Number of associated genes (FDR<5%) in each cell type that 
are model-specific or shared across models. (b) Number of associ-

ated genes (FDR<5%) from each model that are cell type-specific or 
shared across cell types
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were associated with three phenotypes and none were 
associated with all four phenotypes. Of the 132 effector 
genes from the Type 2 Diabetes Knowledge Portal (https://​
t2d.​hugea​mp.​org), we identified 48 (36.4%) as candidate 
effector genes for at least one phenotype, including INS, 
PAX6, ABCC8, KCNJ11, NKX2–2, G6PC2, PAM, FOXA2, 
SLC30A8, RFX6, PCSK1 and GLIS3.

Functional characterisation of candidate effector genes in 
a beta cell line  Using the EndoC-βH1 human beta cell line 
[31], we selected four candidate effector genes (ERO1B, 
HNRNPA2B1, RHOBTB3 and HOPX; Fig. 5a–d), decreased 
the expression of these genes using CRISPRi, and character-
ised the effect on insulin production and secretion after glu-
cose stimulation. We used qRT-PCR to compare expression 
of the targeted genes in the lines transfected with the CRIS-
PRi constructs to control lines transfected with non-targeting 
guide RNAs. We confirmed decreased expression (p<0.05, 
Welch’s t test) for all genes apart from HOPX (ESM Fig. 17). 
Focusing on the genes that showed successful inhibition 

(i.e. ERO1B, HNRNPA2B1, RHOBTB3), we repeated the 
CRISPRi experiment, stimulated cells in high (15 mmol/l) 
and low (2.8 mmol/l) glucose concentrations for 24 h, and 
measured extracellular insulin content (i.e. insulin secre-
tion) at 1 h and intracellular insulin content (i.e. insulin 
production) at 24 h, using non-targeting gRNAs as controls 
(ESM Fig. 18). For both measurements, we calculated the 
insulin stimulation index as the ratio of mean insulin con-
tent in high glucose conditions to the mean insulin content 
in low glucose conditions for downstream comparisons 
(Fig. 5e,f). Compared with controls, we found that knock-
down of ERO1B and HNRNPA2B1 decreased insulin secre-
tion (i.e. lower extracellular insulin stimulation index at 1 
h; p<0.05, Welch’s t test; Fig. 5e) and that knockdown of 
HNRNPA2B1 and RHOBTB3 decreased insulin production 
(i.e. lower intracellular insulin stimulation index at 24 h; 
p<0.05, Welch’s t test; Fig. 5f). Taken together with the 
functional assay results, our data implicates these genes as 
important regulators of insulin secretion and production 
upon glucose exposure in beta cells.

ba

c

Fig. 4   Candidate effector gene prediction. (a) Genomic locations 
for candidate effector genes (tick marks indicate FDR<5%) from 
genetic association summary statistics for type 2 diabetes (T2D), 
HbA1c, random blood glucose and fasting blood glucose (see key 

for colour code). Segments correspond to the chromosome location 
of genes (numerical labels). (b) Number of candidate effector genes 
(FDR<5%) across phenotypes. (c) Heatmap of p value correlations 
(red gradient) across phenotypes (see key for colour code)

https://t2d.hugeamp.org
https://t2d.hugeamp.org
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e
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d

Fig. 5   Functional validation of candidate effector genes. (a–c) 
Log2(fold-change) of candidate effector genes (facets) in the BvL (a) 
and LvH (b) and continuous time differential expression analyses (c) 
in beta cells. Error bars represent 95% CIs. Colour denotes FDR<5%. 
(d) Residual expression of candidate effector genes in beta cells at 

sampled time points under low and high glucose exposure (lines and 
points). (e, f) Insulin stimulation index from extracellular insulin after 
1 h glucose exposure (e) and intracellular insulin after 24 h glucose 
exposure (f) across control and CRISPRi EndoC-βH1 experiments 
*p<0.05, **p<0.01 (Welch’s t test). Error bars represent 95% CIs
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Discussion

In this study, we present an in-depth characterisation of the 
24 h transcriptomic response of human pancreatic islets to 
glucose exposure across cell types and time.

To characterise the effects of glucose exposure on islet cell 
types through time, we fit a variety of models. Across all cell 
types, we show that time in culture has a substantial impact 
on gene expression and, if not experimentally controlled for, 
will confound differential expression results (e.g. in the case 
of the BvH model). These findings are an important reminder 
that islet cell types, especially beta cells, are sensitive to 
intentional and unintentional experimental perturbations, as 
we have shown previously [46]. An important caveat is that 
the in vitro experimental conditions are not exact representa-
tions of in vivo conditions; factors such as time in culture can 
induce additional expression changes that must be controlled 
for. As an example, we found that many of the genes induced 
by glucose in beta cells also show time in culture effects 
(Fig. 3), suggesting that primary islets should be analysed 
as quickly as possible upon harvesting. In addition, previous 
studies have also identified single-cell dissociation proto-
cols as another source of variation that can lead to increased 
expression of immediate early genes (e.g. FOS, JUNB) [47, 
48]. Although we find several of these genes to be differen-
tially expressed in multiple cell types across all models (ESM 
Table 4), it is difficult to disentangle dissociation-induced 
effects from time in culture or glucose-induced effects, as 
these genes play an important role in the islet response to 
glucose [49, 50]. Nonetheless, dissociation-induced stress is 
a potential confounder to be aware of in single-cell datasets 
such as the one presented in this study.

When we focus only on glucose-related effects after con-
trolling for time, we find that the transcriptomic response in 
islets is primarily driven by beta cells. Within beta cells, we 
observe immediate transcriptional activity upon exposure to 
glucose. Transcriptional activity peaks, however, at 8 h and 
is largely maintained through to 24 h (e.g. in the LvH model, 
>65% of differentially expressed genes are from time points 
≥8 h). The observed timing of the transcriptional response 
of beta cells to glucose stimulation underscores the impor-
tance of prolonged glucose exposure assays.

Our work builds on previous glucose stimulation tran-
scriptomic studies in bulk islets [9, 10] by characterising the 
effects of glucose stimulation on individual islet cell types 
at multiple time points (ESM Fig. 19–22, ESM Table 5). 
From our high-resolution data, we identify specific cell types 
likely responsible for 305 (6.5%) of the genes previously 
identified in bulk studies, 260 of which are differentially 
expressed in beta cells only. For the remaining 45 genes, 
nine are cell type-specific and 36 are identified in multi-
ple cell types. Notably, all of the genes identified in multi-
ple cell types were found in beta cells too. However, many 

genes identified as differentially expressed were not shared 
between our study and previous ones. These differences 
could be due to a variety of reasons, including differences in 
islet preparation, differences in glucose stimulation concen-
trations, differences in the duration of glucose stimulation 
and confounding effects of cell type heterogeneity in bulk 
tissue studies [51].

By modelling genetic association summary statistics 
using genomic features derived from the single-cell data 
of this study, we nominate additional candidate effector 
genes for type 2 diabetes, HbA1c, random blood glucose 
and fasting blood glucose. We identify many genes with 
a well-defined role in relation to type 2 diabetes (e.g. 
ABCC8, SLC30A8), including 48 of the 132 type 2 diabetes 
effector genes from the Type 2 Diabetes Knowledge Portal. 
We also demonstrate the role of three candidate effector 
genes, ERO1B, HNRNPA2B1 and RHOBTB3, in insulin 
production and secretion in a human beta cell line, building 
on previous knowledge about these genes. ERO1B (also 
known as ERO1LB), an endoplasmic reticulum stress gene 
responsible for protein folding in the secretory pathway 
[52], is highly expressed in the pancreatic islet [53] and has 
been shown to regulate intracellular and secreted insulin 
in rodent models [54, 55]. Our data from human beta cells 
replicates the secreted insulin effect but did not identify 
an intracellular insulin effect. HNRNPA2B1 is an RNA-
binding protein involved in many post-transcriptional RNA 
regulation processes [56, 57] that has been shown to be 
differentially expressed upon glucose exposure in human 
EndoC-βH1 cells [58] and to regulate intracellular and 
secreted insulin content in mouse insulinoma MIN6 cells 
[59]. Our results in EndoC-βH1 cells demonstrate that the 
Hnrnpa2b1 loss of function effects on intracellular and 
secreted insulin content hold true in human cells. Last, 
RHOBTB3 plays a central role in transporting secretory 
proteins from endosomes to the Golgi apparatus [60] and 
has been associated with type 2 diabetes in primary human 
islets [61] as well as palmitic acid exposure in EndoC-βH1 
cells [61]. Although a previous study found no differences 
in RHOBTB3 expression after up to 48 h glucose stimulation 
in EndoC-βH1 cells [61], our results demonstrate a dynamic 
expression pattern of RHOBTB3 across 24 h under low and 
high glucose exposure (Fig. 5d) and establish a strong effect 
of RHOBTB3 inhibition on intracellular insulin content in 
EndoC-βH1 cells after glucose exposure for 24 h.

In conclusion, an important approach to help determine 
the molecular drivers of type 2 diabetes pathogenesis and 
progression is by understanding the effects of diverse, dis-
ease-relevant, environmental exposures on gene expression 
in type 2 diabetes-relevant tissues such as pancreatic islets. In 
this study, we report the effects of sustained glucose exposure 
on gene expression in islet cell types. Though restricted to 
just a 24 h exposure and limited in sample size due to the 
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intensive sampling across time and glucose exposures, these 
data may provide a relevant window into the consequences of 
the hyperglycaemic conditions that occur as one transitions 
from impaired glucose tolerance to type 2 diabetes.
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