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Abstract
Iterative advances in understanding of the genetics of type 1 diabetes have identified >70 genetic regions associated with 
risk of the disease, including strong associations across the HLA class II region that account for >50% of heritability. 
The increased availability of genetic data combined with the decreased costs of generating these data, have facilitated the 
development of polygenic scores that aggregate risk variants from associated loci into a single number: either a genetic risk 
score (GRS) or a polygenic risk score (PRS). PRSs incorporate the risk of many possibly correlated variants from across 
the genome, even if they do not reach genome-wide significance, whereas GRSs estimate the cumulative contribution of a 
smaller subset of genetic variants that reach genome-wide significance. Type 1 diabetes GRSs have utility in diabetes clas-
sification, aiding discrimination between type 1 diabetes, type 2 diabetes and MODY. Type 1 diabetes GRSs are also being 
used in newborn screening studies to identify infants at risk of future presentation of the disease. Most early studies of type 
1 diabetes genetics have been conducted in European ancestry populations, but, to develop accurate GRSs across diverse 
ancestries, large case–control cohorts from non-European populations are still needed. The current barriers to GRS imple-
mentation within healthcare are mainly related to a lack of guidance and knowledge on integration with other biomarkers 
and clinical variables. Once these limitations are addressed, there is huge potential for ‘test and treat’ approaches to be used 
to tailor care for individuals with type 1 diabetes.

Keywords  Autoimmune disorders · Diabetes · Genetic risk score · Genetics · Review · Type 1 diabetes

Abbreviations
CRS	� Combined risk score
GRS	� Genetic risk score
GWAS	� Genome-wide association studies
LADA	� Latent autoimmune diabetes of adults
PRS	� Polygenic risk score

T1DGC	� Type 1 Diabetes Genetics Consortium
TEDDY	� The Environmental Determinants of Diabetes in 

the Young
VNTR	� Variable number of tandem repeats

 *	 R. David Leslie 
	 r.d.g.leslie@qmul.ac.uk

 *	 Richard A. Oram 
	 R.Oram@exeter.ac.uk

 *	 Struan F. A. Grant 
	 grants@chop.edu

1	 University of Exeter College of Medicine and Health, Exeter, 
UK

2	 Blizard Institute, Queen Mary University of London, 
London, UK

3	 Royal Devon University Healthcare NHS Foundation Trust, 
Exeter, UK

4	 Division of Human Genetics, Children’s Hospital 
of Philadelphia, Philadelphia, PA, USA

5	 Division of Diabetes and Endocrinology, Children’s Hospital 
of Philadelphia, Philadelphia, PA, USA

6	 Center for Spatial and Functional Genomics, Children’s 
Hospital of Philadelphia, Philadelphia, PA, USA

7	 Department of Genetics, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, PA, USA

8	 Institute for Diabetes, Obesity and Metabolism, Perelman 
School of Medicine, University of Pennsylvania, 
Philadelphia, PA, USA

9	 Department of Pediatrics, Perelman School of Medicine, 
University of Pennsylvania, Philadelphia, PA, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-023-05955-y&domain=pdf
http://orcid.org/0000-0001-9496-3796
http://orcid.org/0000-0002-6174-6135
http://orcid.org/0000-0002-3367-789X
http://orcid.org/0000-0002-1786-1531
http://orcid.org/0000-0003-3581-8980
http://orcid.org/0000-0003-2025-5302


1590	 Diabetologia (2023) 66:1589–1600

1 3

Introduction

The pathogenesis of type 1 diabetes is commonly 
described as occurring in stages [1, 2]. Background genetic 
risk combined with environmental triggers are thought to 
contribute to the initiation of autoimmunity, commonly 
defined by the presence of islet-specific autoantibodies to 
insulin, IA-2, GAD and ZnT8. The stages are defined as 
follows: stage 1, presence of two or more islet-specific 
autoantibodies [3]; stage 2, progression to dysglycaemia; 
and stage 3, meeting standard clinical diagnostic criteria 
for diabetes [4, 5].

Type 1 diabetes is a common complex disease with 
numerous associated loci across the genome and particu-
larly strong HLA associations [6–10]. Genetic predisposi-
tion is an important contributor to type 1 diabetes develop-
ment risk. Historically, genetic risk was assessed by family 
history or measured by HLA typing and genotyping of 
other type 1 diabetes-associated loci [6, 8–13]. Recently, 
summarising genetic risk for common diseases as genetic 
risk scores (GRSs) and polygenic risk scores (PRSs) has 
proved an efficient method to measure heritable risk [14, 
15].

Here, we describe the genetic architecture of type 1 
diabetes, focusing on GRS development and the utility of 
GRSs for the classification and prediction of type 1 dia-
betes and their potential for integration into clinical care.

Heritability of type 1 diabetes

Twin and family studies provided evidence for a sub-
stantial heritable component of type 1 diabetes, which 
declines substantially with increasing age at diagnosis 
[6, 8–13, 16–18]. Concordance rates within monozygotic 
and dizygotic twin pairs suggest a risk of >50% and ~8%, 

respectively [9–13, 16–18]. Sibling concordance rates 
range from 6% to 10%, with a risk of 6–9% for offspring 
of an affected father and 1–4% for offspring of an affected 
mother, suggesting relative maternal protection from type 
1 diabetes [9–13, 16–18].

Family-based linkage analyses attributed a large pro-
portion of type 1 diabetes heritability to variation in the 
class II HLA genes residing within the MHC region on 
chromosome 6 [19]. The HLA haplotypes (combina-
tion of alleles at multiple loci on the same chromosome) 
DRB1*03:01–DQA1*05:01–DQB1*02:01 (DR3) and 
DRB1*04:XX–DQA1*03:01–DQB1*03:02 (DR4-DQ8) 
confer the highest type 1 diabetes genetic risk and are 
relatively common in European ancestry populations 
(Table 1) [6–8, 13, 20, 21]. Each person has two haplo-
types, which in combination can be referred to as an HLA 
diplotype [22]. A single copy of a DR3 or DR4-DQ8 hap-
lotype increases the odds of type 1 diabetes by 4.5 and 7, 
respectively [6]. DR3/DR4-DQ8 heterozygosity increases 
the type 1 diabetes risk by over 30-fold, a substantially 
higher risk than in the case of homozygosity for either 
haplotype. Conversely, some HLA haplotypes, such as 
DRB1*15:01–DQA1*01:02–DQB1*06:02 (DR15-DQ6.2), 
are associated with strong and sometimes dominant reduc-
tions in type 1 diabetes risk [6, 20]. The degree of risk and 
protection conferred by HLA haplotypes varies with age, 
for example the impact of class I HLA alleles declines in 
individuals diagnosed after age 7 years [13, 23].

Family-based linkage studies and subsequent case–con-
trol genome-wide association studies (GWAS) have iden-
tified >70 common non-HLA type 1 diabetes risk loci 
(Fig. 1a) [24–31]. Non-HLA risk alleles have lower effect 
sizes (typical ORs ~0.5–2.3) than the strongest HLA risk 
allele, with only the insulin (INS) variable number of tan-
dem repeats (VNTR) risk-increasing allele having an OR in 
excess of 2 [6]. The >50% of heritable risk explained by the 
HLA region is similar to what is seen in other autoimmune 
diseases but contrasts with the situation in other common 

Table 1   Prevalence of five common type 1 diabetes risk or protective HLA-DR-DQ haplotypes in different ethnic groups [13]

Haplotype European 
populations 
(%)

Middle Eastern 
populations (%)

African 
populations 
(%)

East Asian 
populations 
(%)

South Asian 
populations 
(%)

DR3-DQ2.5 (DRB1*03:01–DQA1*05:01–DQB1*02:01) 12.2 8.9 7.2 6.8 7.5
DR4-DQ8.1 (DRB1*04:XX–DQA1*03:01–DQB1*03:02) 9.8 8.3 4.7 5.7 8.9
DR9-DQ9.3 (DRB1*09:01-DQA1*03:02-DQB1*03:03) 1.0 0.4 0.0 15.5 0.6
DR15-DQ6.1 (DRB1*15:02-DQA1*01:03-DQB1*06:01) 

and DR15-DQ6.2 (DRB1*15:01-DQA1*01:02-
DQB1*06:02)

14.1 9.1 12.8 10.1 19.1

DR15-DQ6.3 (DRB1*15:XX-DQA1*01:03-DQB1*06:03) 
and DR15-DQ6.9 (DRB1*15:XX-DQA1*01:02-
DQB1*06:09)

6.8 5.3 5.9 2.7 8.3
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complex diseases, for example type 2 diabetes, in which her-
itability is more equally distributed across all chromosomes 
(as shown in Figs 1b and 2) [6, 25, 28–43]. Identifying vari-
ants with small effect sizes, which can combine to have an 
additive effect on disease risk, is necessary for capturing 
the full repertoire of genetic risk to aid in unravelling the 
biology driving pathogenesis [6, 7]. Despite most genetic 
studies focusing on childhood-onset disease, new cases of 
type 1 diabetes occur throughout adulthood [44, 45]. There 
is a clear need for further large association studies of adult-
onset type 1 diabetes to assess the genetic contribution to 
age at diagnosis and clinical heterogeneity of the disease.

Measurement of individual variants has not been use-
ful for individual risk prediction or disease classification 
[8]; instead, PRSs and GRSs aggregate the contribution of 
associated loci to disease risk [14, 15]. PRSs use a proba-
bilistic approach to incorporate the risk of many possibly 
correlated variants from across the genome even if they do 
not reach genome-wide significance, whereas GRSs estimate 

the cumulative contribution of genetic variants that are sig-
nificantly associated with disease in GWAS [14, 15]. The 
aggregation of genetic risk has utility in mechanistic studies 
(e.g. Mendelian randomisation) as well as practical clinical 
applications (as discussed later in this review).

Development of type 1 diabetes GRSs

Natural history studies have provided insight into type 1 
diabetes progression in individuals at elevated genetic risk. 
Early studies, for example BABYDIAB, Diabetes Autoim-
munity Study in the Young (DAISY) and the observational 
arm of the Type 1 Diabetes TrialNet Pathway to Prevention 
[46–48], used family history to recruit participants. Other 
studies recruited individuals based on high HLA risk 
(e.g. Type 1 Diabetes Prediction and Prevention [DIPP], 
DAISY, The Environmental Determinants of Diabetes in 
the Young [TEDDY] [48–50]). As increasing numbers of 
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Fig. 1   Manhattan plots of genotyped and imputed genetic variants 
associated with type 1 and type 2 diabetes across the genome from 
the T1D Knowledge Portal [30, 31]. (a) Manhattan plot of type 1 dia-
betes variants, showing the most dominant association present in the 
HLA region on chromosome 6 (red box). Common risk variants that 
have been identified include loci that harbour the insulin (INS), cyto-
toxic T-lymphocyte associated protein 4 (CTLA4), protein tyrosine 

phosphatase non-receptor type 22 (PTPN22) and interferon induced 
with helicase C domain 1 (IFIH1 [also known as MDA-5]) genes and 
the regions around the IL-2 receptor alpha gene (IL2RA [also known 
as CD25]) [28–32]. (b) Manhattan plot identifying multiple common 
type 2 diabetes variants, each with a similar moderate effect. Each 
point represents a genetic variant. This figure is available as part of a 
downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05955-y/MediaObjects/125_2023_5955_MOESM1_ESM.pptx
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non-HLA variants continued to be identified in association 
with type 1 diabetes, this information was incorporated 
into disease prediction scores and rapidly tested (Fig. 3) 
[6, 7, 21, 33, 51–55]. A combined GRS including seven 
non-HLA variants and four HLA haplotypes was discrimi-
native of type 1 diabetes, with an AUC of the receiver 
operating characteristic curve of 0.817 in 953 controls 
and 790 cases, but was not externally validated [14, 55, 
56]. Winkler et al found that a GRS including 12 non-
HLA loci performs modestly well for identifying type 1 
diabetes risk (AUC=0.588) [51]. They then showed that 
a type 1 diabetes GRS incorporating 40 non-HLA vari-
ants and typing of DR3 and DR4-DQ8 variants predicted 
disease development (AUC=0.84–0.87) [21]. They per-
formed multivariable logistic regression and a Bayesian 
algorithm in the Type 1 Diabetes Genetics Consortium 
(T1DGC) dataset to develop weights for each variant and 
validated these in the BABYDIAB/BABYDIET datasets 
[21, 46]. A GRS including DR3/DR4-DQ8 carrier status 
and nine non-HLA variants had similar predictive power 
(AUC=0.82–0.86), highlighting the skewed heritability 

of type 1 diabetes based on relatively few loci and the 
dominant role of HLA variants in future type 1 diabetes 
development [21].

Oram et al developed a 30 SNP type 1 diabetes GRS 
(termed GRS1) using DR3 and DR4-DQ8 HLA weights 
from the Winkler et al study [21] but used SNP ‘tags’ for 
key HLA alleles [7, 57]. Because of extensive linkage dis-
equilibrium within the HLA region, HLA variants can be 
identified without the need for full HLA typing or sequenc-
ing by conventional methods [57]. GRS1 included the dom-
inant protective (ORs ~0.03–0.05) HLA DR15-DQ6 haplo-
type, common to populations of European ancestry [7, 58]. 
HLA information obtained from SNP tags reduces the costs 
of measuring genetic risk through the use of small custom 
genotyping panels (or genome-wide genotyping array data) 
[7, 8, 57]. Non-HLA GRS1 variants had weights based on 
ORs from the largest published GWAS and assumed an 
additive risk contribution [7]. GRS1 was highly effective 
in discriminating type 1 from type 2 diabetes (AUC=0.87), 
with most discriminative power provided by the top nine 
SNPs (AUC=0.87). Bonifacio et al combined the Winkler 

Common variants 
with large effects

Common variants 
with small effects

Rare variants with 
small effects

Rare variants with 
large effects

Fig. 2   Type 1 diabetes genetic risk includes common HLA variants 
with large effects. The 35 type 1 diabetes-associated HLA SNPs, 32 
type 1 diabetes-associated non-HLA SNPs and 89 type 2 diabetes-
associated SNPs highlight the large impact of HLA variants in type 
1 diabetes, compared with the small effect of common type 2 diabe-
tes variants. Minor allele frequencies were ascertained from the UK 

Biobank European American subset [28] and the Genome Aggrega-
tion Database (gnomAD) browser European (non-Finnish) subset 
[82]. Type 1 diabetes SNP effect sizes were obtained from [6]. Type 2 
diabetes SNP effect sizes were obtained from [34–41, 43]. T1D, type 
1 diabetes; T2D, type 2 diabetes. This figure is available as part of a 
downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05955-y/MediaObjects/125_2023_5955_MOESM1_ESM.pptx
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et al and Oram et al GRSs [7, 21] and tested this ‘merged’ 
GRS in the TEDDY study [59]. This merged score required 
only cheap custom SNP assays and formed the basis for a 
future large population screening study (discussed in ‘GRS 
utility in population screening’).

Previous HLA association studies highlighted risk var-
iants and HLA associations that are more prominent in 
non-European ancestries (e.g. HLA-DRB1*09-DQA1*03-
DQB1*03:03 in East Asian populations), which were not 
used in early GRS models [29]. Improved SNP array 
density coverage and larger reference datasets enabled 
more accurate GWAS and HLA imputation. Sharp et al 
developed a type 1 diabetes GRS (termed GRS2), using 
multiplicative interaction terms to further capture HLA 
class II allele contributions (https://​github.​com/​seths​h7/​
hla-​prs-​toolk​it) [6]. GRS2 includes 35 HLA and 32 non-
HLA variants, along with SNP tags for 14 HLA class II 
alleles and interaction terms for 18 HLA DR-DQ haplo-
type combinations, the latter of which had not been previ-
ously included in typical GRS models. GRS2 had an AUC 
of 0.93 for all cases of type 1 diabetes in the T1DGC 
dataset (n=16,086), with the highest discrimination at 
the youngest ages, highlighting the benefit of compre-
hensively capturing HLA risk and the stronger genetic 
associations in very young children [6].

Differences in trans‑ancestry 
and ancestry‑specific scores

The GRS models described above were derived from 
European ancestry cohort studies and their discrimina-
tory power may differ in cohorts of different ancestries 
(Fig. 4) [6, 7, 13, 33, 53, 55, 59–66]. A nine SNP GRS was 
discriminative of type 1 diabetes in a South Asian popula-
tion, with an AUC of 0.84, only slightly lower than that 
in European ancestry individuals (AUC=0.87) [66]. The 
lower nine SNP GRS distribution in the South Asian popu-
lation than in a European cohort was partly explained by 
background allele frequency differences between strong-
effect HLA DR-DQ alleles (Table 1) [66]. The strongly 
protective HLA DR15-DQ6.2 haplotype is almost absent 
from South Asia but is common among European popula-
tions, impacting the risk prediction of GRS1 and GRS2. 
Furthermore, DR3 has a greater impact on type 1 diabetes 
risk in South Asian populations than in European popula-
tions, whereas the association with DR4-DQ8 is weaker.

Early GRSs proved discriminative in people from 
Europe, South Asia and Iran and in Hispanic populations, 
but were less discriminative in African American popula-
tions (AUC=0.75) [13, 62, 67]. Perry et al demonstrated 
the application of GRSs in individuals from the USA 
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Fig. 3   Timeline of type 1 diabetes GRS development. ROC, receiver operating characteristic.This figure is available as part of a downl​oadab​le 
slide​set

https://github.com/sethsh7/hla-prs-toolkit
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with European and Hispanic ancestry, and highlighted the 
need for an ancestry-specific GRS with equal discrimina-
tive power to identify type 1 diabetes in African ances-
try individuals [62]. Onengut-Gumuscu et al undertook a 
case–control study in individuals of African ancestry and 
confirmed the association of HLA DR3 and DR4-DQ8 and 
six non-HLA loci with risk of type 1 diabetes. They used 
the top seven GWAS variants to develop a discrimina-
tive African ancestry type 1 diabetes GRS [26], which has 
now been validated in several cohorts. GRS2 performed 
similarly in Hispanic, White and Black individuals in the 
SEARCH for Diabetes in Youth population-based cohort; 
however, the score distribution differed between each eth-
nicity [68]. The addition of four type 1 diabetes-associated 
SNPs to GRS2 improved the AUC in an African American 
cohort and a European African cohort [33]. The discrimi-
nation of GRS2 in these instances provides further evi-
dence that accurate inclusion of a diverse range of HLA 
variants, to form trans-ancestry GRS models, may improve 
utility across ancestries. Differences in underlying type 1 
diabetes genetic risk may account for differences in GRS 
distribution, if HLA risk alleles are captured well. How-
ever, GRS models may need to be optimised or normalised 
for ancestry to achieve the best sensitivity and specificity.

In East Asian individuals, type 1 diabetes has a lower 
childhood prevalence and incidence. A recent GWAS of 
2596 individuals with autoantibody-positive type 1 diabetes 
and 5082 control participants in a Chinese Han population 

revealed two novel type 1 diabetes risk loci and two previ-
ously reported risk loci [53]. Fine-mapping revealed a novel 
locus at HLA-C position 275. A GRS was developed, with 
a higher score associated with earlier age at type 1 diabetes 
diagnosis (AUC=0.87) [53]. Differences in HLA associa-
tions have also been described in Japanese populations, in 
which DR3 is absent and DR4-DQ8 is not associated with 
type 1 diabetes risk [55]. Typically rare in White Euro-
pean populations, DRB1*0405-DQB1*0401, DRB1*0802-
DQB1*0302 and DRB1*0901-DQB1*0303 confer type 1 
diabetes risk in Japanese populations, with DRB1*1502-
DQB1*0601 being the major protective haplotype [55]. 
In Korean populations, the Asian-specific DRB1*0405-
DQB1*0401 and DRB1*0901-DQB1*0303 haplotypes are 
present alongside DR3. The variation in HLA haplotypes 
based on ancestry and geographic origin suggests a need to 
tag these HLA alleles well, either with trans-ancestry or with 
ancestry-specific scores.

GRS utility for the classification of diabetes

Classification of type 1 and type 2 diabetes  The increas-
ing prevalence of obesity, resulting in higher numbers of 
people being diagnosed with type 2 diabetes at younger 
ages and increased levels of obesity in people with type 
1 diabetes, has made the classification of type 1 diabetes 
progressively more challenging [7, 45, 69]. There is also 

Fig. 4   World map of GRS model performance in predicting risk of 
type 1 diabetes (T1D), type 2 diabetes (T2D), MODY and latent auto-
immune diabetes of adults (LADA) in different cohorts and ethnic 

groups. WTCCC, Wellcome Trust Case Control Consortium. Image 
by rawpixel.com on Freepik. This figure is available as part of a 
downl​oadab​le slide​set

https://static-content.springer.com/esm/art%3A10.1007%2Fs00125-023-05955-y/MediaObjects/125_2023_5955_MOESM1_ESM.pptx
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increasing recognition that type 1 diabetes can present at any 
age; indeed, onset occurs more frequently in adulthood than 
in childhood. Historically, clinical features and/or antibody 
status have been used to classify diabetes but the addition of 
information from GRSs may improve discrimination.

GRS1 was initially found to be equally discriminative 
of type 1 diabetes from type 2 diabetes [7] and MODY 
[65]. When evaluating the additional benefit of GRS1 over 
conventional clinical features and biomarkers, a combined 
model provided the best discrimination of progression to 
severe insulin deficiency [7]. This approach was validated 
in cohorts of people with adult-onset type 1 diabetes and 
GADA-positive type 2 diabetes, with insulin deficiency 
as an outcome [70, 71]. Thomas et al found that individu-
als with type 1 diabetes have higher GRS1 scores than 
individuals with type 2 diabetes (p<0.001) among those 
diagnosed over the age of 30 [69]. More recently, GRS2 
was shown to be similarly discriminative of type 1 diabetes 
in the ancestrally diverse SEARCH for Diabetes in Youth 
study [68].

Type 1 diabetes, MODY and integration into clinical 
care  GRSs have potential for distinguishing MODY from 
type 1 diabetes (Fig. 5) [65]. A high GRS1 score (>50th 
centile) was indicative of type 1 diabetes, while lower scores 
indicated an elevated probability of monogenic disease [65]. 
The addition of GRS1 to testing for GADA, IA2A, ZnT8A 
and C-peptide may help identify those likely to have mono-
genic diabetes.

Utility in large cohort studies  Integration of SNP array data into 
large population-based datasets allows the aetiology of diabetes 
to be investigated without requiring additional autoantibody 
testing [8]. Within the UK Biobank dataset, GRS1 alone identi-
fied type 1 diabetes in 42% of adults aged 31–60 years with a 
high genetic risk and provided evidence that the onset of type 
1 diabetes may occur at any age [45]. Individuals who were 
diagnosed later and those with a younger age at diagnosis had 
similar clinical presentations, for example diabetic ketoacidosis 
as a discharge diagnosis [45]. Thomas et al subsequently used 
a type 1 diabetes GRS to validate various approaches to clini-
cal and healthcare record-based classification of insulin-treated 
diabetes where classification biomarkers are unavailable [72].

GRSs can provide insight into the aetiology 
of diabetes in specific cohorts

Early‑onset diabetes  Until recently it was believed that all 
early-onset type 1 diabetes cases were neonatal diabetes mel-
litus [65, 73]. A median GRS1 cut-off in individuals with 
neonatal diabetes (n=48) with unknown genetics identified 
those most likely to have a monogenic form of diabetes 
(<50th centile) compared with probable early-onset diabetes 
(>50th centile) [65]. A high GRS (>95th centile) confirmed 
the presence of early-onset (<6 months) type 1 diabetes in 
38% of infants with type 1 diabetes at <6 months [73].

Adult‑onset diabetes  Adult-onset type 1 diabetes is currently 
defined clinically, but may be misclassified as type 2 diabetes 

Fig. 5   Schematic demonstrating 
the distribution of type 1 dia-
betes GRSs for type 1 diabetes, 
type 2 diabetes, MODY and 
latent autoimmune diabetes of 
adults (LADA) [6, 45, 54, 65]. 
A type 1 diabetes GRS is effec-
tive at discriminating type 1 
diabetes from MODY and type 
2 diabetes [65]. GRS outcomes 
for type 2 diabetes and MODY 
display similarities. GRSs for 
individuals with LADA overlap 
type 1 diabetes and type 2 
diabetes GRSs [54]. The dashed 
blue line represents the mean 
GRS2 score for individuals with 
type 2 diabetes. The red dashed 
line represents the mean GRS2 
score for individuals with type 1 
diabetes. T1D, type 1 diabetes; 
T2D, type 2 diabetes. This 
figure is available as part of a 
downl​oadab​le slide​set
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because of overlapping presenting clinical features and the 
historical view that the onset of type 1 diabetes occurs pre-
dominantly in childhood [45, 74]. In cohorts of people with 
adult-onset diabetes and clinically diagnosed type 2 diabetes, 
the presence of autoantibodies and elevated type 1 diabetes 
genetic risk is associated with progression to insulin treat-
ment, highlighting a likely misdiagnosis [75]. There is a rela-
tive paucity of data on, and variability in, speed of progres-
sion to diagnosis of adult type 1 diabetes and progression to 
insulin deficiency [65–68, 76]. Autoantibody-positive (com-
monly GADA) adult cohorts defined by initial non-insulin-
based therapy have previously been described as having latent 
autoimmune diabetes of adults (LADA), but more recently as 
having slowly evolving, immune-mediated diabetes of adults 
[73]. There is ongoing discussion as to whether this more vari-
able phenotype (including progression to insulin dependence) 
represents the accepted proportion of individuals with type 2 
diabetes and false-positive autoantibodies (a proportion that 
varies with the prior probability of type 1 diabetes), or people 
with overlapping type 1 diabetes and type 2 diabetes aetiolo-
gies, or people with a separate disease entity [75].
The first GWAS of LADA identified strong genetic signals 
associated with both type 1 and type 2 diabetes [77]. A 67 
SNP type 1 diabetes GRS better predicted LADA status 
(AUC=0.67) than a type 2 diabetes GRS (AUC=0.57), sug-
gesting genetic similarity between type 1 diabetes and LADA 
(Fig. 5) [74]. The LADA GWAS identified a novel independ-
ent signal in the PFKFB3 locus and weaker associations of 
class I HLA variants, which are strongly implicated in type 
1 diabetes heritability. A conditional analysis confirmed this 
weak association, highlighting a potential genetic discrimina-
tor between LADA and type 1 diabetes [54]. In twin stud-
ies the heritability of type 1 diabetes (and hence measurable 
genetic risk) decreases with age, yet still contributes a greater 
risk than is the case with many common complex diseases 
[61]. It is possible that, in future, with larger studies focused on 
adult type 1 diabetes, we may be able to better define genetic 
similarities and differences in type 1 diabetes across all ages. 
Currently, even with the limitation that most type 1 diabetes 
studies are carried out in children, it is likely that type 1 diabe-
tes GRSs will be used in combination with other biomarkers, 
such as autoantibodies, to better identify and classify type 1 
diabetes in individuals with features of both type 1 diabetes 
and other types of diabetes [45, 71].

Future of genomics and genetics 
in healthcare

GRS utility in population screening  Population screening is 
increasingly important to identify high-risk individuals with 
stage 1 and stage 2 type 1 diabetes, particularly as disease-
modifying therapy is translated to clinical care [11]. As ~90% 

of individuals who develop type 1 diabetes do not have a 
relative with the disease, identifying individuals who will 
progress to stage 3 is challenging [50, 78]. Variation in inci-
dence of new islet autoimmunity means that there is no sin-
gle age at which autoantibodies will be detected in everyone 
who will progress to stage 3. It is possible, but potentially 
expensive, to implement screening at multiple time points. 
As genetic risk does not change with time, including a type 
1 diabetes GRS as part of newborn screening could identify 
these individuals at highest risk for more intense monitoring, 
with autoantibody testing implemented in the minority of 
individuals in the population who account for the majority of 
type 1 diabetes cases [11]. Using GRS2 in simulation studies, 
Sharp et al showed that >77% of future type 1 diabetes cases 
can be identified within 10% of the general population, iden-
tifying a subset of individuals who may benefit from follow-
up antibody screening [6]. Bonifacio showed that children 
in TEDDY with DR3/DR4-DQ8 or DR4-DQ8/DR4-DQ8 
and a GRS >14.4 had a 11.0% risk of developing multiple 
autoantibody status by age 6 years compared with a 4.1% risk 
in children with a GRS ≤14.4 [59]. In the Global Platform 
for the Prevention of Autoimmune Diabetes (GPPAD) study 
[79], participants with a risk of multiple autoantibody devel-
opment of >10%, informed by a GRS, received exposure to 
insulin prior to islet autoantibody development.

Population-based screening approaches for type 1 dia-
betes, using islet autoantibody status alone or combined 
with a GRS, have been further described by Sims et al [11].

Combined risk scores and type 1 diabetes prediction  Gen-
erally, more accurate prediction models include multiple 
time-dependent clinical biomarkers [80]. The combination 
of multiple predictive factors, for example family history, 
autoantibody status and GRSs, may improve the prediction 
of type 1 diabetes through a combined risk score (CRS) 
[80]. A CRS in high-risk children aged 2 years (n=7798) 
significantly enhanced the prediction of type 1 diabetes 
(AUC≥ 0.92) compared with the use of autoantibody status 
alone [80]. A 30 SNP GRS combined with age, autoanti-
body status and Diabetes Prevention Trial-Type 1 risk score 
predicted progression to type 1 diabetes in at-risk family 
members (initially without diabetes) of TrialNet Pathway 
to Prevention participants (time-dependent AUC=0.73–
0.79) [61]. Using genetics in CRSs is likely to help risk 
stratify individuals (initially without a diabetes diagnosis) 
who are either autoantibody negative or single autoanti-
body positive, alongside other risk scores that incorporate 
metabolic measures for predicting stage 1 and stage 2 type 
1 diabetes [80].

Genomics revolution  The increase in genetic discoveries has 
driven the development of GRSs. SNP genotyping of indi-
viduals is becoming increasingly cheap (<15 US cents per 
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SNP); GRS development costs are mainly related to blood 
sampling and the extraction of DNA [7]. Once performed, 
SNP genotyping information can be interpreted across an indi-
vidual’s lifetime, reducing the need for costly repeat testing. 
As the discriminative power of most type 1 diabetes GRSs is 
attributed to nine SNPs, determining type 1 diabetes risk will 
become an increasingly cheap endeavour, using either cheap 
custom assays or genetic data in healthcare records [7].

The increasing availability of direct-to-consumer test-
ing (e.g. 23andMe, www.​23and​me.​com/​en-​gb/) means that 
individuals are increasingly gaining access to their own 
genetic information. There is potential for tests to integrate 
genetic information to generate GRSs with relatively low 
costs and easy accessibility, although there are associated 
risks with respect to direct consumer interpretation [81].

Availability and barriers to translation  Limited guidelines 
and regulations exist for assessing the clinical readiness of 
GRSs; however, contrasting methodologies and applications 
make providing a definitive estimate of GRS predictive per-
formance difficult [14, 81]. Furthermore, issues exist around 
GRS study designs and analyses, for example uncertain pop-
ulation substructures can drive inaccuracies in GRSs [81]. 
Study heterogeneity means that GRS models require regula-
tion, to ensure that scores are accurate and robustly capable 
of informing clinical practice [14].

GRS interpretation within healthcare has not been fully 
explored [81]. There is significant potential for type 1 
diabetes GRSs to identify high-risk individuals for fol-
low-up care and treatment; however, how to communi-
cate GRSs to people with type 1 diabetes and how GRSs 
should inform clinical judgement need further research 
prior to their implementation in clinical care [81]. The 
clinical implications of incorrect GRSs depend on disease 
severity, the effect of non-genetic risk factors and the 
impact of interventions.

If GRSs are to be integrated into clinical care, sufficient 
regulations are necessary to prevent genetic discrimina-
tion. A lack of GRS use in cohorts of non-European ances-
try remains a major limitation to their translation to clini-
cal care [6, 13, 14, 81]. Protective guidelines are essential 
for recruiting under-represented ethnicities to minimise 
genetic determinist views that would disproportionately 
impact those facing greater social inequalities [81].

Conclusion

The increase in genetic studies and GWAS has enhanced 
the utility of type 1 diabetes GRS estimates owing to the 
greater understanding of disease heritability. Given that the 
genetic component is very pronounced in type 1 diabetes 
and has already been well characterised, it is likely to lead 

the way in the application of GRSs to diagnosing a complex 
trait. Improvements in HLA capture and the greater number 
of larger population-based cohorts have enabled the devel-
opment of GRS models with the ability to discriminate 
between type 1 diabetes and other diabetes phenotypes. 
Type 1 diabetes GRSs, alone and in combination with other 
factors, also have utility for predicting autoantibody onset 
and thus identifying individuals for recruitment to popula-
tion screening studies for earlier therapeutic intervention. 
Despite advancements in type 1 diabetes GRS models, 
there is a clear need for models based on non-European 
ancestries to fully capture the genetics of type 1 diabetes. 
The lack of training for healthcare professionals in the use 
of GRSs and lack of regulations on their use should be 
addressed before type 1 diabetes GRSs are translated into 
clinical practice. Once these issues have been addressed, 
type 1 diabetes GRSs have significant potential for identi-
fying and informing treatment in individuals with type 1 
diabetes.
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