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Impact of insufficient sleep on dysregulated blood glucose control
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Abstract
Aims/hypothesis Sleep, diet and exercise are fundamental to metabolic homeostasis. In this secondary analysis of a repeated
measures, nutritional intervention study, we tested whether an individual’s sleep quality, duration and timing impact glycaemic
response to a breakfast meal the following morning.
Methods Healthy adults’ data (N = 953 [41% twins]) were analysed from the PREDICT dietary intervention trial. Participants
consumed isoenergetic standardised meals over 2 weeks in the clinic and at home. Actigraphy was used to assess sleep variables
(duration, efficiency, timing) and continuous glucose monitors were used to measure glycaemic variation (>8000 meals).
Results Sleep variables were significantly associated with postprandial glycaemic control (2 h incremental AUC), at both
between- and within-person levels. Sleep period time interacted with meal type, with a smaller effect of poor sleep on postpran-
dial blood glucose levels when high-carbohydrate (low fat/protein) (pinteraction = 0.02) and high-fat (pinteraction = 0.03) breakfasts
were consumed compared with a reference 75 g OGTT. Within-person sleep period time had a similar interaction (high
carbohydrate: pinteraction = 0.001, high fat: pinteraction = 0.02). Within- and between-person sleep efficiency were significantly
associated with lower postprandial blood glucose levels irrespective of meal type (both p < 0.03). Later sleep midpoint (time
deviation from midnight) was found to be significantly associated with higher postprandial glucose, in both between-person and
within-person comparisons (p = 0.035 and p = 0.051, respectively).
Conclusions/interpretation Poor sleep efficiency and later bedtime routines are associated with more pronounced postprandial
glycaemic responses to breakfast the following morning. A person’s deviation from their usual sleep pattern was also associated
with poorer postprandial glycaemic control. These findings underscore sleep as a modifiable, non-pharmacological therapeutic
target for the optimal regulation of human metabolic health.
Trial registration ClinicalTrials.gov NCT03479866.
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Abbreviations
CGM Continuous glucose monitor
iAUC Incremental AUC
PREDICT Personalized REsponses to

DIetary Composition Trial
SE Sleep efficiency
SPT Sleep period time

Introduction

Diet, physical activity and sleep are increasingly recognised as
coremodifiable components of a healthy lifestyle. Sleep disor-
ders often coalesce with other health ailments, and in this way
provide a barometer of general health [1]. Sleep has direct
causal effects on many life-threatening diseases such as
CVD, obesity and type 2 diabetes [2–5]. Its disturbance (such
as obstructive sleep apnoea) is associated with type 2 diabetes
prevalence and complications [6] and can disrupt glucose
homeostasis [7]. These and other data [8–10] point to a strong
link between sleep quality/duration and glucose homeostasis.
However, while there have been numerous large prospective
cohort studies focused on the relationship between self-
reported sleep, disease and wellbeing, objective data on sleep
and postprandial glucose metabolism typically emanates from
small studies conducted in tightly controlled settings and in
specific population subgroups such as those suffering sleep
disturbances owing to pregnancy, sleep apnoea, depression,

obesity or diabetes [11]. Thus, the evidence base for potential
recommendations concerning the effects of sleep on glucose
metabolism in generally healthy people has considerable
scope for expansion.

The purpose of this study was to investigate the relation-
ship between sleep (duration, efficiency and midpoint) and
postprandial glycaemic response to breakfasts of varying
macronutrient composition in healthy adults from the UK
and USA. Given the established role of sleep in glucose
control in people with type 2 diabetes [12], we hypothesised
that shorter sleep duration and poorer quality sleep would be
associated with higher 2 h postprandial glucose incremental
AUC (iAUC). We also hypothesised that there would be an
interaction between sleep and meal type, meaning that the
effect of sleep on postprandial glycaemic control would be
modified by the macronutrient composition of a meal. We
further investigated whether within-person sleep changes
(deviations from the usual sleep pattern for a given partici-
pant) predicted that individual’s postprandial glycaemic
control.

Methods

Participants

Participants from the UK and the USA were enrolled into the
Personalized REsponses to DIetary Composition Trial 1

357Diabetologia  (2022) 65:356–365



(PREDICT1; Clin ica lTr ia ls .gov regis t ra t ion no.
NCT03479866), a single-arm, multiple-test-meal challenge
study conducted over 14 consecutive days. Metabolic
responses to various foods differing in macronutrient and
energy content were determined in relation to each partici-
pant’s meal timing and sleep, as well as a range of biological
characteristics [13]. The study was conducted between
June 2018 andMay 2019 and included 1002 generally healthy
participants aged 18–65 years in the UK, as well as 100 gener-
ally healthy participants in the USA, with data being
combined as there were no differences of effects for the two
locations. Some of the UK participants were recruited from
the TwinsUK research cohort, which includes both monozy-
gotic twin (sharing the vast majority of their DNA sequence)
and dizygotic twins (sharing roughly half of their DNA
sequence) [14]. ‘Healthy’ was defined as being free of diag-
nosed diseases from the exclusion criteria. Exclusion criteria
were as follows: ongoing inflammatory disease; cancer in the
last 3 years (excluding skin cancer); long-term gastrointestinal
disorders; taking immunosuppressants; using proton-pump
inhibitors; diabetes; depression; eating disorder; and pregnan-
cy. A full description of the PREDICT1 study protocol,
including the rationale for the sample size, can be found else-
where [13]. The current report describes secondary analyses
of the PREDICT1 trial.

Ethical approval

Ethical approval for the study was obtained from the Research
Ethics Committee and Integrated Research Application
System (IRAS 236407) and from the Institutional Review
Board (Partners Healthcare IRB 2018P002078) in the UK
and USA, respectively. Written informed consent was obtain-
ed from each participant immediately prior to enrolment in the
trial during the baseline clinic visit.

Test meal challenges

Participants consumed standardised test meals of different
nutritional composition (carbohydrates, fat, protein and
dietary fibre). The meals were consumed either for breakfast
or lunch in a randomised meal order and consisted of eight
different standardised meals designated as follows: (1) meta-
bolic challenge meal; (2) medium fat and carb; (3) high fat
35 g; (4) high carb (with low fat and protein); (5) 75 g OGTT,
consisting of carbohydrates only; (6) high fibre; (7) high fat
40 g; and (8) high protein. The detailed nutritional composi-
tion of the test meals can be found in Fig. 1 (see also [13]).

Participants were asked to consume only their standardised
breakfasts after no less than 8 h of fasting and to drink only
still water during the fasting period. In addition, participants

Fig. 1 (a) Glucose 2 h iAUC distribution by test meal type. Box plot shows median and IQR; whiskers represent IQR and outliers (>1.5 × IQR) are
shown. (b) Nutritional composition by test meal type. The iAUC data has also been published in [26]
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were requested to consume all their meals within 10 min, with
the exception of the OGTT, which was to be consumed within
5 min. Participants were also requested to limit physical exer-
cise during the 3 h period following the meal, as well as during
the 8 h fasting period prior to its consumption. More detailed
explanation of the test meal challenge protocol can be found
elsewhere [13].

In this analysis, we included only the logged meals that
complied with the protocol and passed logging accuracy
assessment conducted by the study staff [13]. For example,
overnight fasting was manually checked for each user, with
the accuracy of meal being marked down if the time between
last logged food the day before and the first on the following
day was less than 8 h. Since glucose tolerance differs across
the day owing to circadian effects that are independent of
sleep [15], we excluded all meals except those consumed at
breakfast from the analyses, thereby reducing non-sleep-
related circadian effects on glucose regulation [15–17]. The
OGTT was used as the reference meal type in the linear
mixed-effects models, as the OGTT is the reference standard
for assessing post-load glycaemic control in clinical settings.

Sleep assessment

Activity and sleep were monitored using a wearable device
with a triaxial accelerometer (AX3, Axivity; Newcastle Upon
Tyne, UK). Accelerometers were fitted by trained research
staff on the non-dominant wrist and were worn by the partic-
ipants for the duration of the entire study.

Raw accelerometer data were analysed using GGIR, a
multi-day raw accelerometer data analysis package in R [18,
19]. The raw accelerometer data from a wrist actigraphy units
were converted into a single activity time series (BFEN)
aggregated into epochs of 30 s. Sleep/wake detection was
performed using the validated angle-z method implemented
in GGIR [19]. Based on prior evidence linking sleep with
metabolic system regulation [12], primary a priori target vari-
ables were as follows: (1) sleep duration or total sleep period
time (SPT); (2) sleep efficiency (SE), where SE represents the
ratio of time asleep to the total SPT; and (3) sleep midpoint, or
the middle time point between bedtime and waking up
(expressed in hours as a deviation from midnight). Sleep
predictors were further decomposed into within-person effects
(as opposed to between-person effects) using person-mean
centring [20]. In the context of this study, such person-mean
centring translated into the person’s 2 week average and his/
her deviation from that average on a particular day.

A set of filtering conditions consistent with the practices of
typical sleep analysis was applied to remove entries with inva-
lid sleep data [21]. Nights with <2 h or >15 h of sleep or with
SE <20% were excluded from the analysis, as they likely
resulted from artefacts or poor-quality data (355 nights
[2.5%]). Nights with more than 10% data classified as invalid

were also excluded (399 nights [2.8%]). In addition, nights
with a sleep onset during 08:00–17:00 h or a sleep offset after
00:00 h were excluded (26 nights [0.2%]). Finally, data from
participants with less than 7 days of data and/or a percentage
of invalid nights >35% (n = 89) were removed. We also
removed data from participants who travelled in different time
zones during the study, owing to disruption of their regular
sleep patterns.

Glucose assessment

Postprandial blood glucose was computed using a continuous
glucose monitoring (CGM) wearable device (Freestyle Libre
Pro; Abbott, Abbott Park, IL, USA), which measures interstitial
glucose every 15 min. Monitors were fitted by trained research
staff to the participant’s upper non-dominant arm and were
worn for the entire study duration. Owing to the CGM’s cali-
bration requirements, CGM data collected 12 h after fitting the
device to a participant was used for analysis [13].

Incremental area under the blood glucose curve has been
shown to accurately describe glycaemic responses to foods [22].
Accordingly, the primary outcome for this analysis was 2 h iAUC
for postprandial glucose with interpolated baseline (glucoseiAUC0-
2h). The baseline value was interpolated at the meal start time
based on the nearest CGM readings immediately before and after
that time. The distribution of glucoseiAUC0-2h was right skewed.
Thus, these data were transformed using a square-root transfor-
mation, which yielded better normalisation than conventional
logarithmic transformations (electronic supplementary material
[ESM] Fig. 1).

Statistical analysis

Data analysis was performed using R version 3.6.1 [23]. To
account for the individual uniqueness/variation of postprandi-
al glycaemic responses (inter-individual variability) and the
covariance structure resulting from repeated measurements
(which would violate the independence of observations
assumption necessary for linear regression), data were
modelled using a linear mixed-effects model approach. We
analysed data using lme4 package with lme4’s default
REML (restricted or ‘residual’maximum likelihood) criterion
to estimate variance components [24]. The lmerTest package
was used to calculate p values [25]; p < 0.05 was considered
statistically significant.

All models were initially constructed with only the margin-
al terms for sleep and meal; the multiplicative interaction term
for sleep × meal was added to the subsequent models.
Similarly, all between-person models were subsequently re-
run using the within-person approach. The outcome was
glucoseiAUC0-2h. Potential confounders were also taken into
consideration. The models consisted of nine fixed effects:
(1) different between-person and within-person sleep
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variables (SE, SPT, sleep midpoint); (2) standardised meal
type; (3) sex; (4) age; (5) BMI; (6) zygosity (not a twin,
monozygotic, dizygotic); (7) weekend; and (8) season; and
(9) when applicable, sleep variable and standardisedmeal type
interaction term to assess the combined effect of sleep variable
and meal type on postprandial glucose metabolism. For
random effects terms, we used participant ID (randomly
generated study identification [ID] number) and family ID to
allow for person-specific linear regressions, where partici-
pants have their own intercepts for the association of interest.
Participant ID was nested within family ID to account for the
data’s nested/hierarchical structure and the fact that measures
coming from twins belonging to the same family might be
more similar to each other owing to genetic and/or environ-
mental factors. The models had random intercepts but no
random slopes. Visual inspection of diagnostic plots did not
reveal any strong deviations from homoscedasticity or
normality, and all models were checked for multicollinearity.
The main hypotheses tested were as follows: (1) whether the
relationship between sleep (quality, timing or duration) and
blood glucose is statistically different from the null hypothesis
of no effect; and (2) whether the relationship between sleep

and postprandial glycaemic response differs in magnitude
conditional on the type of breakfast consumed. ESM
Methods provides R codes for each of the main hypothesis
tests. Owing to the hypothesis-driven nature of the analyses
reported here, we considered a nominal p value threshold of
0.05 to be of statistical significance.

Results

Participant characteristics

Data from 953 participants were used to analyse 8395 sleep and
postprandial responses (Fig. 1, Table 1). Consort diagrams for
the PREDICT1 study can be found elsewhere [26].

To provide insights into the effects of sleep on postprandial
glycaemic control at both within-individual and group level, we
present these two sets of results separately. All models were
adjusted for age, sex, BMI, meal type, zygosity, weekend and
season. We found no significant interactions between postpran-
dial glucose and sex, meaning that there was no evidence to
believe the results are different for the two sexes.

Table 1 Participant
characteristics Characteristic PREDICT1 UK

(n=869)

PREDICT1 USA

(n=84)

Overall

(n=953)

Sex, n (%) 636 (73.2) 55 (65.5) 691 (72.5)

Female 233 (26.8) 29 (34.5) 262 (27.5)

Male

Age, years 46.2 ±11.9 41.8 ±12.8 45.8 ±12.0

Zygosity, n (%)

NT 303 (34.9) 84 (100) 387 (40.6)

DZ 151 (17.4) 0 (0) 151 (15.8)

MZ 415 (47.8) 0 (0) 415 (43.5)

BMI, kg/m2 25.7 ±5.01 25.7 ±4.26 25.7 ±4.95

SE, %a 0.89 ±0.057 0.89 ±0.062 0.89 ±0.058

SPT, ha 7.69 (6.87, 8.48) 7.64 (6.66, 8.61) 7.68 (6.86, 8.50)

Sleep midpoint as a deviation from midnight, ha 3.25 ±1.15 2.87 ±1.30 3.21 ±1.17

Glucose 2 h iAUC, mmol/l×sa 83.0 ±31.3 81.5 ±32.6 82.8 ±31.4

Meal type, n (%)a

OGTT 1507 (19.8) 136 (17.2) 1643 (19.6)

High carb 1475 (19.4) 140 (17.7) 1615 (19.2)

High fat 35 g 215 (2.8) 0 (0) 215 (2.6)

High fat 40 g 1105 (14.5) 144 (18.2) 1249 (14.9)

High fibre 683 (9.0) 76 (9.6) 759 (9.0)

High protein 844 (11.1) 75 (9.5) 919 (10.9)

MCM 319 (4.2) 71 (9.0) 390 (4.6)

Medium fat and carb 1457 (19.2) 148 (18.7) 1605 (19.1)

Values are mean ± SD, median (Q1, Q3)
ameals n = 7605 for PREDICT1 UK, n = 790 for PREDICT1 USA and n = 8395 overall)

DZ, dizygotic twin; MCM, metabolic challenge meal; MZ, monozygotic twin; NT, not a twin
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SPT

Between-participant effectsWe found no statistically signifi-
cant association between SPT and glucoseiAUC0-2h (ESM
Table 1). However, we found a statistically significant

interaction between SPT and meal type, with SPT having a
significantly negative association with glucoseiAUC0-2h

following high-carbohydrate and high-fat breakfasts (βSPT ×

high carb = −1.10, pSPT × high carb = 0.021;βSPT × high fat 40g =
−1.07, pSPT × high fat 40g = 0.031) (Fig. 2 and ESM Table 1).

Within-participant effects The person-centred model revealed
an effect similar to that of the between-person model, suggest-
ing that an SPT that exceeded a person’s average SPT is asso-
ciated with lower postprandial response following a high-
carbohydrate or high-fat breakfast (βSPT-person × high carb =
−1.84, pSPT-person × high carb = 0.001; βSPT-person × high fat

40g = −1.36, pSPT-person × high fat 40g = 0.019) (ESM Table 2).

SE

Between-participant effects A larger between-person SE was
significantly associated with lower glucoseiAUC0-2h (βSE =
−10.48 [95% CI −19.85, −1.11], pSE = 0.028) (ESM
Table 3). In a model assessing the interaction of SE and meal
type, higher SE was still significantly associated with lower
glucoseiAUC0-2h (βSE = −19.18 [95% CI −36.46, −1.91], pSE
= 0.030), but none of the interaction terms was statistically
significant (ESM Table 3). This association remained similar
after additional adjustment for SPT (p = 0.016).

40

60

80

100

120

4 6 8 10 12

Sleep period time (h)

G
lu
c
o
s
e
 2
h
 i
A
U
C
 (
m
m
o
l/
l 
x
 s
)

Meal type

OGTT

High carb

High fat 35g

High fat 40g

High fibre

High protein

MCM

Medium fat & carb

Fig. 2 Meal type and SPT interaction effects on glucose 2 h iAUC. The
plot fits the model using the marginal effects of the interaction terms with
the standard errors. MCM, metabolic challenge meal

Table 2 Between-person sleep midpoint and postprandial blood glucose concentrations

Predictor Model without interaction Model with interaction

Estimate 95% CI p value Estimate 95% CI p value

(Intercept) 81.13 72.61, 89.65 <0.001 80.70 71.90, 89.51 <0.001

Sleep midpointa 0.52 0.04, 1.01 0.035 0.69 −0.17, 1.55 0.116

Meal (high carb) −15.92 −17.23, −14.60 <0.001 −14.83 −18.74, −10.93 <0.001

Meal (high fat 35 g) −42.42 −45.38, −39.46 <0.001 −41.66 −50.39, −32.93 <0.001

Meal (high fat 40 g) −49.98 −51.39, −48.58 <0.001 −48.17 −52.31, −44.03 <0.001

Meal (high fibre) −21.20 −22.82, −19.57 <0.001 −17.62 −22.41, −12.83 <0.001

Meal (high protein) −49.56 −51.11, −48.01 <0.001 −51.21 −55.71, −46.71 <0.001

Meal (MCM at home) −36.55 −38.67, −34.43 <0.001 −33.10 −39.73, −26.46 <0.001

Meal (medium fat and carb) −27.90 −29.19, −26.60 <0.001 −29.06 −32.94, −25.18 <0.001

Sleep midpoint × Meal (high carb) −0.33 −1.46, 0.80 0.565

Sleep midpoint × Meal (high fat 35 g) −0.23 −2.77, 2.31 0.860

Sleep midpoint × Meal (high fat 40 g) −0.58 −1.82, 0.66 0.358

Sleep midpoint × Meal (high fibre) −1.09 −2.46, 0.29 0.121

Sleep midpoint × Meal (high protein) 0.49 −0.79, 1.77 0.455

Sleep midpoint × Meal (MCM at home) −1.13 −3.19, 0.92 0.280

Sleep midpoint × 0.37 −0.77, 1.51 0.525

Random effects terms for both models: intraclass correlation coefficient, 0.45; N = 953username; N = 765family_id; n observations 8395; marginal R2 /
conditional R2 = 0.363/0.652
a Sleep midpoint is expressed in hours as a deviation from midnight

MCM, Metabolic challenge meal
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Within-participant effects A greater within-person SE was
significantly associated with lower glucoseiAUC0-2h (βSE =
−11.93 [95% CISE −21.83, −2.04], pSE = 0.018), meaning
that achieving better than one’s average SE was associated
with better postprandial glycaemic control the following day
(ESM Table 4). In the model with SE and meal type interac-
tion term, higher within-person SEwas still significantly asso-
ciated with lower glucoseiAUC0-2h (βSE = −29.75 [95% CISE
−52.29, −7.21], pSE = 0.010) (ESM Table 4).

Sleep midpoint

Between-participant and within-participant effects A later
between-person sleep midpoint (expressed in hours as a devi-
ation from midnight) was significantly associated with higher
glucose iAUC (βmidpoint = 0.52 [95% CImidpoint 0.04, 1.01],
pmidpoint = 0.035) (Table 2). This effect was largely driven by
sleep onset (going to bed later) rather than sleep offset
(waking up later) (ESM Tables 5–7). The effect ceased to be
significant in a model incorporating an interaction term
between sleep midpoint and meal type (Table 2). In the
within-person effects model, having a later sleep midpoint
than one’s average had a similar coefficient (βmidpoint =
0.51 [95% CImidpoint 0.00, 1.02], pmidpoint = 0.051).

Discussion

Here, we describe for the first time how sleep duration, quality
and midpoint associate with postprandial glucose metabolism
in healthy individuals. While sleep is generally recognised as
one of the pillars of good health, the data reported here suggest
that one-size-fits-all sleep recommendations are suboptimal,
particularly in the context of postprandial glycaemic control, a
key component of diabetes prevention.

By analysing both between-person and within-person
effects, this study provides unique and powerful insights into
both population-level and person-level effects of sleep on
metabolic health. Notably, our data suggest that sleep dura-
tion, efficiency and midpoint are important determinants of
postprandial glycaemic control at a population level, while
illustrating that to optimise sleep recommendations it is likely
necessary to tailor these to the individual.

Diet, sleep and health are interrelated. Several studies have
investigated the relationship between sleep duration and
glucose metabolism in pregnant women and reported a posi-
tive association between reduced sleep duration and impaired
glucose metabolism [4, 27]. However, we are not aware of any
other studies to date that investigate the relationship between
objectively assessed sleep characteristics and postprandial
glucose metabolism in generally healthy adults. The findings
from this intervention study, with repeated test meal chal-
lenges, combined with objective assessments of sleep and

blood glucose from a large population, complement a relative-
ly small body of knowledge around a topic that is likely to be
of high relevance for diabetes prevention [26]. Importantly,
many earlier studies were undertaken in sleep laboratories
with small sample size [11].While the controlled environment
of such studies is necessary to understand specific aspects of
sleep and metabolism, the real-world, community-dwelling
setting of the current study provides novel insights into how
habitual sleep affects metabolic health.

The main analyses in this study focused on interactions of
sleep and meal type and selected the OGTT as the ‘breakfast’
against which all other breakfast meals were compared. This is
primarily because the OGTT is the standard clinical test used
to assess glucose tolerance. While this is not a realistic break-
fast meal, there is a growing trend, particularly among youn-
ger people [28], to consume energy drinks as a pick-me-up the
morning after a poor night’s sleep, with the sugar content of a
75 g OGTT equating to roughly two to three servings of stan-
dard energy drinks.

SPT

With SPT being a marker of sleep duration, the lack of a
significant marginal effect in the model without interactions
indicates that sleep duration is not a major determinant of
glucose metabolism.While this finding does not support some
prior studies that have demonstrated a potential link between
decreased sleep duration and insulin resistance, it is consistent
with findings from a randomised controlled trial of 42 normal-
weight adult short sleepers [11]. This may be because the
effect of sleep duration in glycaemic control may be non-line-
ar, with sleep affecting glucose metabolism only once sleep
duration dips below a specific bound [11]. Moreover, sleep
duration for the vast majority of PREDICT1 participants fell
within the recommended range, as indicated by the mean
6.87 h of sleep within the lowest quartile of the SPT distribu-
tion (Table 1). Accordingly, this study may have been under-
powered to detect an association between sleep duration and
postprandial glycaemic control.

We found a significant statistical interaction between SPT and
meal type, with high-carbohydrate meals and high-fat meals
resulting in significantly lower glucose iAUCs compared with
the OGTT reference, which contained only sugar. Although this
study did not include pregnant women, the interaction effect
between carbohydrate-rich meals and SPT is consistent with
the results reported in a prior study in which reduced sleep was
associated with impaired carbohydrate metabolism in pregnant
women [29]. Thus, we conclude that the SPT has a similar
impact on postprandial carbohydrate metabolism in men and
pregnant and non-pregnant women. Additionally, the significant
interaction between SPT and high-fat meals is supported by the
finding that sleep disruption in fat-fed mice negatively affected
glucose metabolism, with metabolism improving after recovery
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sleep [30]. As for the within-person SPT model, our findings
suggest that both a longer SPT in general, as well as having a
longer SPT than one is used to, are associated with improved
postprandial glycaemic control the following morning. The pres-
ence of a significant finding with the SPT × high-carbohydrate
meal interaction term in the person-centred model suggests that
getting more sleep than usual might be more important for post-
prandial glycaemic control than the absolute amount of sleep
achieved. This insight offers a potential avenue for personalised
(within-person) sleep interventions.

SE

Better SE, between-person as well as within-person, was signif-
icantly associated with lower glucose iAUC, meaning that better
SE, which is a proxy of sleep quality, was associated with better
glucose management following breakfast. However, the absence
of SE × meal interactions suggests that SEmay be beneficial for
postprandial glucose response irrespective of meal composition.
Although there is not much research on SE and glucose metab-
olism in healthy adults, our findings concur with a recent meta-
analysis in which poor sleep quality was associated with poor
glycaemic control in individuals with type 2 diabetes [12].
Moreover, since SE can be viewed as a proxy for sleep quality,
and because we found a significant association between SE and
glucose regulation, but not between SPT and glucose regulation,
our findings suggest that sleep quality is more important than
sleep duration with respect to glycaemic control. However, sleep
apnoea is known to affect SE, and sleep apnoea was not
measured in the PREDICT1 study.

Sleep midpoint

The presence of significant effects in both between-person and
within-person sleep midpoint models adjusted for sleep dura-
tion suggests a novel finding that later sleep midpoint, such as
that caused by going to bed later, is associated with impaired
postprandial glucose response to breakfast the following
morning. This concurs with the proposition that human meta-
bolic health is determined to a considerable extent by chrono-
biology [31]. Alternatively, later sleep midpoint may reflect
alteration of sleep stages caused by going to bed later. Thus,
the significance of later sleep midpoint may also be indicative
of the role of specific sleep stages, such as slow-wave sleep,
on glucose metabolism, supporting the view that treating
slow-wave sleep disorders may help improve glycaemic
control [32].

The 2 h glucose iAUC response to an OGTT breakfast is
roughly twice that following a high-fat breakfast, indicating
that a high-fat breakfast might help to mitigate the detrimental
effects of poor sleep on postprandial glycaemia. Although
comparing areas may have its drawbacks, for those whose
sleep is often compromised, these effects may be cumulative.

Thus, over time, there may be a meaningful clinical impact on
glycaemic health. Nevertheless, because of the short duration
of the current study, we are not able to assess this hypothesis.

Much of the research linking poor sleep with altered
glucose metabolism is based upon observational studies,
meaning that the pathophysiological mechanisms behind the
associations reported here are not well understood [33].
However, poor sleep quality (measured by sleep fragmenta-
tion in healthy volunteers) appears to alter glucose responses
through shifting sympathovagal balance and morning cortisol
levels, which could in turn lead to decreased insulin sensitiv-
ity, increased hepatic glucogenesis and decreased insulin
secretion [33]. In addition to cortisol levels, growth hormone,
the secretion of which is sleep-dependent and which is essen-
tial for metabolic regulation, could also be at play [34–36].
Moreover, the glucose intolerance observed elsewhere in
sleep-deprived individuals may derive from dysregulation of
sympathetic and parasympathetic control of pancreatic func-
tion [37].

Strengths and limitations

This study significantly extends our understanding of the
interplay between sleep and metabolic health. First, the fairly
limited literature on sleep and postprandial blood glucose
regulation is dominated by small studies that focus on popu-
lations with comorbid conditions (e.g. diabetes and obstruc-
tive sleep apnoea). In the few larger published studies, sleep
has typically been assessed through self-report, which may be
prone to bias. Moreover, most studies are cross-sectional and
based in highly controlled environments. By contrast, our
study is set within a large prospective cohort of generally
healthy individuals, in whom high-resolution objectively
assessed time-series sleep and glucose data were obtained.
These design features made it possible to look at both intra-
and inter-individual variation during the analyses, have
generalisable results and shed light on cause and effect. The
risk of non-compliance due to a non-clinical setting was
addressed by high levels of staff support and all data points
were checked for compliance and validity. We also examined
the effects of within-person sleep measures, thus broadening
the scope of previous studies that up to now only included
between-person differences. In addition, instead of relying
on fasting blood assays, the study focused on postprandial
glucose, which is more relevant to everyday life scenarios
because most people find themselvesmost often in a postpran-
dial state during waking hours [26].

Notwithstanding the strengths of the study, it is limited in
that no screening was performed for sleep disorders (e.g. sleep
apnoea and insomnia), meaning that we could not control for
disorders that have been shown to be associated with impaired
glucose tolerance [38, 39]. In addition, while actigraphy over-
comes many limitations of self-report measures, it is not as
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accurate as polysomnography in estimating sleep duration and
efficiency and does not offer insight into individual sleep
stages. The distribution of meal types was imbalanced, with
high-fat and high-carbohydrate standardised meals having the
highest number of entries. Thus, it is possible that analyses
focused on the non-high-carbohydrate and non-high-fat meals
may have lacked statistical power. An additional limitation is
that owing to the free-living nature of the trial, physical activ-
ity levels varied within and between individuals, which may
have interacted with sleep and meal type to affect blood
glucose concentrations, a hypothesis that our study was not
powered to examine.

Future studies assessing the impact of sleep stages on post-
prandial blood glucose levels are likely to extend the findings
of the current analysis, as would exploration of these effects in
individuals who are sleep-deprived owing to shift work or
endogenous sleep disorders such as sleep apnoea.

Conclusion

Overall, this study suggests that sleep duration, quality and
midpoint are important modifiable lifestyle features for
improving postprandial glucose metabolism in healthy adults.
As a consequence, this study’s findings may inform lifestyle
strategies to improve postprandial blood glucose levels, focus-
ing on earlier bedtime routines and maximising high-quality
uninterrupted sleep. A combination of both generalised and
more personalised sleep guidelines is likely required to ensure
optimal metabolic health per se and maximise the effective-
ness of guidelines for diabetes prevention.
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