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Abstract
Aims/hypothesis Impaired insulin clearance is implicated in the pathogenesis of type 2 diabetes, but prospective evidence
remains limited. Therefore, we sought to identify factors associated with the metabolic clearance rate of insulin (MCRI) and
to investigate whether lower MCRI is associated with increased risk of incident type 2 diabetes.
Methods From a longitudinal cohort, 570 adult Native Americans without diabetes living in the Southwestern United States were
characterised at baseline and 448 participants were monitored over a median follow-up period of 7.9 years with 146 (32%)
incident cases of diabetes identified (fasting plasma glucose ≥7.0 mmol/l, 2 h plasma glucose [2-h PG] ≥11.1 mmol/l, or clinical
diagnosis). At baseline, participants underwent dual-energy x-ray absorptiometry or hydrodensitometry to assess body compo-
sition, a 75 g OGTT, an IVGTT to assess acute insulin response (AIR), and a hyperinsulinaemic–euglycaemic clamp to assess
MCRI and insulin action (M).
Results In adjusted linear models, MCRI was inversely associated with body fat percentage (r = −0.35), fasting plasma insulin
(r = −0.55) and AIR (r = −0.22), and positively associated with M (r = 0.17; all p < 0.0001). In multivariable Cox proportional
hazard models, lower MCRI was associated with an increased risk of diabetes after adjustment for age, sex, heritage, body fat
percentage, AIR,M, fasting plasma glucose, 2-h PG, and fasting plasma insulin (HR per one-SD difference in MCRI: 0.77; 95%
CI 0.61, 0.98; p = 0.03).
Conclusions/interpretation LowerMCRI is associated with an unfavourable metabolic phenotype and is associated with incident
type 2 diabetes independent of established risk factors.
Clinical trial registration numbers: ClinicalTrials.gov NCT00339482; NCT00340132

Keywords Acute insulin response . Hyperinsulinaemic–euglycaemic clamp . Insulin clearance . OGTT . Type 2 diabetes

Abbreviations
AIR Acute insulin response
ALT Alanine aminotransferase
EGP Endogenous glucose production
EMBS Estimated metabolic body size
2-h PG 2 h plasma glucose concentration
FPI Fasting plasma insulin concentration
IDE Insulin-degrading enzyme
M Insulin-stimulated glucose disposal
MCRI Metabolic clearance rate of insulin
SWNA Southwestern Native American

Introduction

Hyperinsulinaemia is a common characteristic of insulin-
resistant individuals and is a risk factor for type 2 diabetes
[1]. Peripheral insulin concentrations are determined by insu-
lin secretion from pancreatic beta cells and its removal
through metabolic clearance [2, 3]. Insulin clearance occurs
primarily in the liver and, to a lesser extent, in kidney, muscle,
and adipose tissue [4]. Impaired insulin clearance is an
understudied aspect of insulin metabolism and may make an
important contribution to the hyperinsulinaemia observed in
at-risk populations.

The roles of insulin secretory dysfunction and insulin resis-
tance are well-recognised in the pathogenesis of type 2 diabe-
tes [5, 6], and accumulating evidence has also implicated a
role for insulin clearance. Reduced insulin clearance may
represent a compensatory response mechanism to preserve
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beta cell function in response to insulin resistance [7–10].
Alternatively, reduced insulin clearance may be the primary
defect leading to hyperinsulinaemia-driven systemic insulin
resistance and subsequent beta cell failure [11, 12]. It is also
possible that elevated non-esterified fatty acids, especially in
the portal circulation, cause both impairment of insulin clear-
ance and hepatic insulin resistance [13]. Despite the pathogen-
ic importance of insulin clearance, prospective evidence
examining the association between lower insulin clearance
and incident type 2 diabetes remains limited. This association
has been established in a Hispanic and African American
study population [14] but not in Native Americans, a group
highly prone to developing diabetes [15] .

In the present study, to further elucidate the role of insulin
clearance in type 2 diabetes, we sought to examine the cross-
sectional relationships between the metabolic clearance rate of
insulin (MCRI), a measure of whole-body insulin clearance,
with demographics, body composition, fasting plasma insulin
(FPI), and reference measures of insulin action and early-
phase insulin secretion (assessed via hyperinsulinaemic–
euglycaemic clamp and IVGTT, respectively) in a large
cohort of Native Americans without diabetes from a commu-
nity in the Southwestern United States. Additionally, in a
subset of participants followed prospectively, we examined
the association of MCRI with risk of type 2 diabetes. We
hypothesised that individuals with lower MCRI would: (1)
have an unfavourable metabolic phenotype and (2) be at great-
er risk for developing type 2 diabetes independent of
established risk factors including insulin action and secretion.

Methods

Study population Individuals from a Southwestern Native
American (SWNA) community in Arizona, USA participated

in a longitudinal study of the pathogenesis of diabetes and its
complications [15]. The cohort for the current analysis was
selected from volunteers who also participated in detailed,
inpatient metabolic phenotyping to assess determinants of
type 2 diabetes, as previously described [16]. The inpatient
visit included measurement of body composition, an
IVGTT, a hyperinsulinaemic–euglycaemic clamp and an
OGTT to verify the absence of diabetes. These participants
were healthy adults (age ≥18 years) who were not taking any
medications known to affect glucose metabolism, did not have
type 2 diabetes at baseline, and identified as full or mixed
SWNA heritage (further defined below). Women were veri-
fied to be nonpregnant with a urine pregnancy test at baseline.
Following the inpatient visit, these adults were invited for
outpatient research visits approximately every two years
regardless of health status, at which timemedical records were
reviewed and an OGTT was performed to follow for progres-
sion to diabetes. To evaluate the association between MCRI
with insulin action (M) and acute insulin response (AIR), the
earliest study visit from which the first hyperinsulinaemic–
euglycaemic clamp and IVGTT were available was used for
cross-sectional analysis.

Type 2 diabetes and glucose regulation status were classi-
fied based on the 2003 ADA criteria [17]. The date of diag-
nosis was determined from research examinations or from a
review of clinical records if type 2 diabetes was diagnosed
during routine medical care. Written informed consent was
obta ined from al l par t ic ipants and both studies
(ClinicalTrials.gov NCT00339482; NCT00340132) were
approved by the Institutional Review Board of the National
Institute of Diabetes and Digestive and Kidney Diseases.

Anthropometrics and heritage Height and weight were
measured using standardised procedures and used for calcula-
tion of BMI. Heritage for this particular SWNA community
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was determined by self-report and classified into those with
full heritage (8/8 heritage) or those with mixed heritage (≤7/8
heritage) and included as a dichotomous covariate given that
SWNA heritage was previously associated with greater risk of
type 2 diabetes [18].

Body composition Body composition was assessed by under-
water weighingwith determination of residual lung volume by
helium dilution [19] or by total body dual-energy x-ray
absorptiometry (DPX-L; Lunar Radiation, Madison, WI).
The body composition measures were made comparable using
previously derived comparative equations [20] to calculate
body fat percentage.

OGTT and IVGTT Volunteers underwent a 75 g OGTT with
venous glucose measurements during baseline and follow-up
visits. AIR, an estimate of early-phase insulin secretion, was
measured in response to a 25 g IVGTT and calculated as the
mean incremental plasma insulin concentration from the 3rd
to 5th min [21, 22].

Hyperinsulinaemic–euglycaemic clamp Insulin action was
assessed during a hyperinsulinaemic–euglycaemic clamp, as
previously described [23, 24]. In brief, after an overnight fast,
a primed, continuous i.v. insulin infusion was administered
through an antecubital vein for 100 min at a rate of
40 mU m−2 body surface area × min with a variable infusion
of a 20% dextrose solution to maintain glucose concentrations
at approximately 5.6 mmol/l. The rate of glucose required to
maintain euglycaemia during hyperinsulinaemic infusion is a
measure of total insulin-mediated glucose disposal, or insulin
action (M), and was calculated for the last 40 min of the infu-
sion and corrected for steady-state plasma glucose level and
endogenous glucose production (EGP). EGP was determined
at baseline and at the end of the insulin infusion using a
primed continuous infusion (11.1 kBq) of [3-3H]-glucose,
calculated by the Steele equation [25]. As a measure of hepatic
insulin sensitivity, per cent suppression of EGPwas calculated
as the percentage of change from baseline.M and EGP values
were normalised to estimated metabolic body size (EMBS)
(fat-free mass + 17.7) [23]. MCRI was calculated as the ratio
of the insulin infusion rate to the mean steady-state plasma
insulin concentration and expressed as mm/m2 × min, as
previously described [24, 26–29]. The assumptions in this
calculation are as follows: (1) the hyperinsulinaemic infusion
suppresses endogenous insulin secretion [30] particularly in
insulin-resistant individuals [31] and (2) tissue clearance
mechanisms do not distinguish between endogenous and
infused insulin.

Analytical proceduresAll plasma glucose concentrations were
determined by the glucose oxidase method (Beckman
Instruments, Fullerton, CA) and plasma insulin concentrations

by the Herbert modification [32] of the Yalow and Berson
method [33] or automated analysers (Concept 4, ICN
Radiochemicals, Costa Mesa, CA; Access, Beckman
Instruments). Values from succeeding assays were regressed
to the original RIA using comparative equations. Plasma
alanine aminotransferase (ALT) was measured in the local
hospital laboratory (Monarch Chemistry analyser,
Instrumentation Laboratory, Lexington, MA; DADE
Behring-Dimension RxL Chemistry analyser, Siemens
Medical Solutions, Malvern, PA).

Statistical analysis Statistical analyses were performed using
SAS software (SAS Version 9.4; SAS Institute, Cary, North
Carolina). Data are presented as mean ± SD or median (IQR).
Variables with non-normal distributions were log10 trans-
formed to meet assumptions of parametric tests. The distribu-
tion of per cent suppression of EGP remained highly skewed
after transformation and was categorised into quartiles. For
group comparison of participant characteristics, unpaired t test
(Gaussian variables), Wilcoxon rank-sum (skewed variables),
or χ2 test (categorical variables) were used where appropriate.

Linear regression models were calculated to examine the
association between MCRI and selected anthropometric and
metabolic characteristics adjusted for potential confounders as
indicated. Regression model fit was assessed for normality
and leverage with studentised residuals. Associations between
MCRI and metabolic variables were expressed by the partial
Pearson's r.

Cox proportional hazards models were calculated to assess
the prospective relationship between baseline MCRI and risk
of incident type 2 diabetes. Participants with incomplete data
on covariates were excluded. HRs were expressed for a one-
SD difference in the distribution of all continuous independent
variables. Covariates were selected a priori as plausible
confounders based on previous studies [1, 6, 16, 18].
Progressively adjusted models were described: (1) univariate;
(2) adjusted for age, sex, SWNA heritage, and body fat
percentage; (3) further adjusted for M and AIR; (4) further
adjusted for fasting plasma glucose concentration and 2-h
PG; and (5) further adjusted for FPI. The proportionality of
hazards assumption was assessed for each covariate by the
cumulative sums of Martingale residuals [34]. Potential inter-
actions were tested between MCRI and each covariate in rela-
tion to incident diabetes by including a multiplicative term
into the Cox proportional hazards model. Mediation analysis
was performed to estimate the proportion of the association
between MCRI at baseline and type 2 diabetes risk that is
explained by ALT as described by Lin et al [35] based on
the change in regression coefficients after adding the mediator
to the final multivariate model. Sensitivity analysis was
restr icted to individuals of full SWNA heritage.
Furthermore, an additional analysis was performed using an
alternate calculation of MCRI, in which basal plasma insulin
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was subtracted from the mean steady-state level to test
assumptions regarding suppression of endogenous insulin
production during the hyperinsulinaemic–euglycaemic clamp.

For graphical visualisation of the relationship between
MCRI and the cumulative incidence of diabetes, predicted
cumulative incidence functions were created at the 10th and
90th percentiles of MCRI alongside their standard errors
assuming mean values for all covariates described in the fully
adjusted model. A two-sided p value of <0.05 was considered
statistically significant.

Results

The anthropometric and metabolic characteristics of the study
population for the cross-sectional and prospective analyses are
summarised in Table 1. The mean age of participants was
29.0 ± 6.6 years and 40.4% were female; 75.0% identified as
full SWNA heritage (i.e. 8/8). The mean BMI and body fat
percentage were 35 ± 8 kg/m2 and 33 ± 8%, respectively.
There was no statistical difference for the investigated vari-
ables between the cross-sectional and prospective study sets.

Cross-sectional analysis MCRI showed no association with
age (p > 0.10). Compared with women, men had greater

baseline MCRI (median [IQR]: 261 [222–317] and 280
[227–329] ml m−2 min−1, p = 0.02). These sex-differences
persisted after controlling for differences in age, heritage and
body fat percentage (p < 0.01). Participants of full SWNA
heritage had lower MCRI than those with mixed heritage
(270 [225–319] and 302 [250–370] ml m−2 min−1,
p < 0.0001). This difference remained significant after
controlling for age, sex, and body fat percentage (p = 0.04).
Additionally, MCRI was reduced in individuals with impaired
glucose regulation compared with those with normal glucose
regulation (260 [222–315] and 292 [237–351] ml m−2 min−1,
p < 0.0001). This difference was still observed after adjust-
ment for age, sex and heritage (p < 0.01) but was abolished
after further adjustment for body fat percentage (p > 0.10).
Cross-sectional group comparisons are shown in ESM
Table 1.

With adjustment for age, sex and heritage, MCRI was
inversely associated with body fat percentage (r = −0.35, p
< 0.0001, Fig. 1a). Similar associations were seen across
measures of adiposity including body weight (r = −0.33) and
BMI (r = −0.34; all p < 0.0001). After adjustment for age, sex,
heritage and body fat percentage, MCRI was inversely asso-
ciated with FPI (r = −0.55, p < 0.0001, Fig. 1b) and AIR (r =
−0.22, p < 0.0001, Fig. 1c), and positively associated withM
(r = 0.17, p < 0.0001, Fig. 1d). After previous adjustments,

Table 1 Baseline anthropometric
and metabolic characteristics of
the study populations in the cross-
sectional and prospective
analyses

Variable Cross-sectional analysis Prospective analysis

Non-progressors Progressors

n 570 302 146

Age (years) 29.0 ± 6.6 28.6 ± 6.6 29.2 ± 6.4

Sex (female), n (%) 230 (40.4) 118 (39.0) 78 (53.4) ‡

Full SWNA heritage, n (%) 428 (75.0) 214 (70.9) 121 (82.9) ‡

Body weight (kg) 97 ± 25 92 ± 22 105 ± 25 §

BMI (kg/m2) 35 ± 8 33 ± 7 38 ± 8 §

Body fat (%) 33 ± 8 32 ± 8 36 ± 7 §

Fasting plasma glucose (mmol/l) 5.0 ± 0.6 4.9 ± 0.5 5.2 ± 0.6 §

2-h PG (mmol/l) 7.0 ± 1.7 6.6 ± 1.6 7.7 ± 1.7 §

Glucose regulation (normal/impaired) 375 / 195 230 / 72 64 / 82 §

Fasting plasma insulin (pmol/l)a 245 (183–350) 230 (163–294) 312 (224–407) §

M (mg kg EMBS−1 min−1)a 2.68 (2.27–3.37) 2.84 (2.44–3.59) 2.36 (2.00–2.71) §

AIR (pmol/l)a 1319 (824–1965) 1462 (1026–2196) 1058 (658–1736) §

ALT (U/l)a 37 (23–58) 37 (24–56) 33.5 (21–64)

Basal EGP (mg kg EMBS−1 min−1) 1.93 (0.26) 1.93 (0.26) 1.91 (0.24)

Suppression EGP (%) a 85 (68–100) 88 (71–100) 79 (66–92) ‡

MCRI (ml m−2 min−1) a 273 (223–325) 282 (234–332) 254 (211–312) ‡

Values expressed are means ± SD or n (%) unless specified otherwise
aMedian (IQR)

Significant differences between progressors and non-progressors at baseline indicated by the following symbols:
‡ p < 0.01; § p < 0.001
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MCRI was inversely associated with ALT (r = −0.23, p
< 0.0001, Fig. 1e) and there was a significant linear increase
inMCRI across increasing quartiles of per cent suppression of
EGP, i.e. MCRI increased with increasing hepatic sensitivity
(all p < 0.02, Fig. 1f).

Prospective analysis Of the 570 participants in the cross-
sectional analysis, 448 had a median (IQR) of 2 (1–4) visits
with a median interval of 2.6 (1.9–3.9) years and median
follow-up time of 7.9 (4.8–11.7) years. Of the 448 participants
with follow-up, 146 (32%) incident cases of diabetes were
identified. As expected, progressors were more likely to have
full SWNA heritage and have greater measures of adiposity
and higher concentrations of fasting plasma glucose, 2-h PG,
and FPI at baseline (Table 1). MCRI was significantly lower
in progressors compared with non-progressors at baseline
(Table 1). In contrast, ALT levels did not differ between the
two groups. In Cox proportional hazard models, all

continuous variables were standardised to express their HR
per one-SD difference in the independent variable to facilitate
comparisons across variables. In univariate analysis, a lower
MCRI was associated with an increased risk of diabetes (HR
0.76; 95% CI 0.66, 0.88; p < 0.001). This association
remained independent of age, sex, heritage, body fat percent-
age, and established risk factors for diabetes including lower
M and AIR (Fig. 2 and ESM Table 2). In the final model,
which included FPI as an additional covariate, the association
between MCRI and diabetes risk remained significant (HR
0.77; 95% CI 0.61, 0.98; p = 0.035). After including ALT in
the previous model, the association of MCRI with diabetes
risk was not retained (p > 0.50) while M and AIR remained
independent risk factors (both p < 0.01). Frommediation anal-
ysis in the fully adjusted model, it was estimated that 47.3%
(95% CI 16.9, 79.9; p < 0.001) of the association between
MCRI and type 2 diabetes risk could be statistically explained
by ALT.
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No significant interaction between MCRI and any of the
covariates, including sex or heritage, on incident diabetes were
detected. In sensitivity analysis restricted to individuals with
full SWNA heritage, the results were preserved (HR 0.76;
95% CI 0.58, 0.98; p = 0.04). Furthermore, in an alternate
calculation ofMCRI in which basal plasma insulin is subtracted
from the mean steady-state level, the results remained
unchanged following adjustment for all confounders included
in the final model (HR 0.78; 95% CI 0.65, 0.94; p < 0.01).

As visualised in Fig. 3, participants with lower MCRI have
a higher predicted cumulative incidence of diabetes than those
with greater MCRI after final model adjustment.

Discussion

Cross-sectional and prospective analyses were conducted to
investigate the potential prognostic role of insulin clearance in

the development of type 2 diabetes. Our cross-sectional findings
indicate that lower MCRI, an estimate of whole-body insulin
clearance, was associated with greater body fat percentage,
elevated FPI, greater early-phase insulin secretion and lower
insulin action in a cohort of healthy Native American adults. In
prospective analyses, lower MCRI at baseline was associated
with greater risk of incident diabetes. This association was found
to be independent of established risk factors including adiposity,
insulin secretion and insulin action. Collectively, these findings
provide prospective evidence to support the hypothesis [11, 12]
that impaired insulin clearance has an independent pathogenic
role in the development of type 2 diabetes in humans.

In the setting of insulin resistance, individuals exhibit
hyperinsulinaemia to overcome reduced insulin action and
maintain normal glucose tolerance. This compensatory
response involves not only increasing insulin secretion from
the pancreas but also reducing the metabolic clearance of insu-
lin. Lower insulin clearance has been observed in insulin resis-
tance related disorders including the metabolic syndrome [36],
polycystic ovary syndrome [37], fatty liver disease [38], and
obesity [28]. Furthermore, differences in insulin clearance
may account for the fasting and postprandial hyperinsulinaemia
commonly observed among ethnic groups at increased risk for
type 2 diabetes [11, 39, 40]. In agreement with these findings,
we demonstrated that increased insulin resistance (indicated by
elevated FPI and lowerM) and greater insulin secretion (higher
AIR) are independently associated with lower MCRI.

Our findings of higher whole-body insulin clearance in
men relative to women contrast with previous reports of an
opposite relationship [41] or no sex-differences [14, 42, 43].
In the former study, insulin was infused based upon fat-free
mass, so differences in clamp study design may account for
this discrepancy.

Previous work in animal models [10] and humans [7, 8]
suggests that, during the insulin-resistant state, insulin clearance
is reduced before insulin secretion is changed to relieve physi-
ological demand on β cells and minimise insulin secretory
dysfunction. It is also possible that a primary defect in insulin
clearance may lead to peripheral hyperinsulinaemia and ensu-
ing insulin resistance thereby increasing risk for diabetes. In the
present study, we observed that elevated ALT (a biomarker of
fatty liver) and lower hepatic insulin sensitivity are associated
with lower MCRI. Recent studies have recognised various
markers that are associated with insulin clearance including uric
acid [44], ALT [14, 43], andHDL-cholesterol [36]. Others have
shown increased intrahepatic fat assessed via magnetic reso-
nance spectroscopy is associated with lower insulin clearance
[29] and that lower insulin clearance can induce isolated hepatic
insulin resistance leading to steatosis through upregulated de
novo lipogenesis [45]. It has also been demonstrated that elevat-
ed plasma non-esterified fatty acids, as might be seen in indi-
viduals with obesity, can reduce insulin clearance without
increasing insulin secretion [46].
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Insulin clearance involves receptor-mediated uptake of insulin
and degradation by insulin-degrading enzyme (IDE) and lyso-
somal enzymes in hepatocytes or insulin-sensitive peripheral
cells [3].While underlying cellular mechanisms are unclear from
our study, lower hepatic IDE activity but not concentrations of
IDE or carcinoembryonic antigen-related cell adhesion molecule
1 (a transmembrane glycoprotein which mediates insulin endo-
cytosis) may partially explain the reduced insulin clearance in
ethnic groups at greater risk for diabetes [39].

Earlier studies conducted in this cohort of Native
Americans have demonstrated the important contributions of
declining insulin action and insulin secretory dysfunction in
the pathophysiology of type 2 diabetes [6, 16]. In the current
study, prospective analyses revealed that lower MCRI at base-
line was associated with incident type 2 diabetes; moreover,
this finding was independent of these established abnormali-
ties. These observations are in agreement with Lee et al [14],
wherein insulin clearance, estimated using the frequently
sampled IVGTT, was demonstrated to be a risk factor for type
2 diabetes. In further analysis, we assessed the role of ALT, a
previously identified risk factor for type 2 diabetes in this
population [47], as a link between lower insulin clearance
and progression to diabetes. ALT mediated the MCRI-
diabetes association, suggesting differences in the extent of
fatty liver as a metabolic factor affecting insulin clearance.

The strengths of this study include a well-characterised
prospective cohort of Native Americans, a group at high risk
of developing diabetes. Moreover, there was sufficient follow-
up for cases of incident diabetes to permit adjustment for impor-
tant confounders including insulin action and insulin secretion,
which were measured using reference methods. Nevertheless,
the findings should be considered in the context of some limita-
tions. First, the clamp-derived estimate of MCRI assumes
complete suppression of endogenous insulin secretion during
the insulin infusion period. Unfortunately, we did not have C-
peptide concentrations to assess the degree of residual insulin
secretion and there may be considerable interindividual variabil-
ity in suppression. To address this limitation, an analysis with an
alternate calculation of MCRI assuming the opposite extreme
(i.e. insulin was not suppressed at all) was conducted and yielded
similar results. While this may be an overestimation of true
MCRI values, these findings make it less likely that the avail-
ability of C-peptide concentrations would have affected the asso-
ciation of lower MCRI and type 2 diabetes. Second, the MCRI
estimates represent whole-body insulin clearance and, although
the majority of insulin is believed to be cleared by the liver
during the hyperinsulinaemic–euglycaemic clamp, first-pass
hepatic insulin extraction could not be specifically estimated,
so it is unknown whether reduced first-pass extraction is more
important than reduced whole-body clearance. Third, while
different methods can estimate insulin clearance [48], these
approaches could not be applied in this cohort because measure-
ments were lacking. Fourth, given that most volunteers did not

have repeat measurements of insulin clearance at a regular inter-
val prior to diabetes progression, longitudinal changes were not
assessed in the current study so it is unclear how insulin clear-
ance might have changed before diabetes was diagnosed. Lastly,
though the pathophysiology of type 2 diabetes in this Native
American cohort mirrors that of other populations, it is unclear
if this estimate of whole-body insulin clearance would be asso-
ciated with incident type 2 diabetes in other populations.

In summary, lower insulin clearance in Native Americans
without diabetes was associated with an unfavourable metabolic
phenotype including greater body fat percentage, impaired
glucose regulation, increased FPI and lower insulin action.
Insulin clearance and secretion were inversely related, suggest-
ing these two processes coordinate to maintain normal glucose
tolerance. Importantly, lower insulin clearance can be regarded
as a risk factor for development of type 2 diabetes independent
of established metabolic abnormalities. Interventional strategies
aimed at improving insulin clearance may be useful for diabetes
prevention in at-risk populations.
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