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Abstract
Aims/hypothesis Prevalence of type 2 diabetes differs among human ancestry groups, and many hypotheses invoke differential
natural selection to account for these differences. We sought to assess the potential role of differential natural selection across
major continental ancestry groups for diabetes and related traits, by comparison of genetic and phenotypic differences.
Methods This was a cross-sectional comparison among 734 individuals from an urban sample (none of whom was more closely
related to another than third-degree relatives), including 83 African Americans, 523 American Indians and 128 European
Americans. Participants were not recruited based on diabetes status or other traits. BMI was calculated, and diabetes was
diagnosed by a 75 g oral glucose tolerance test. In those with normal glucose tolerance (n = 434), fasting insulin and 30 min
post-load insulin, adjusted for 30 min glucose, were taken as measures of insulin resistance and secretion, respectively. Whole
exome sequencing was performed, resulting in 97,388 common (minor allele frequency ≥ 5%) variants; the coancestry coeffi-
cient (FST) was calculated across all markers as a measure of genetic divergence among ancestry groups. The phenotypic
divergence index (PST) was also calculated from the phenotypic differences and heritability (which was estimated from genetic
relatedness calculated empirically across all markers in 761 American Indian participants prior to the exclusion of close relatives).
Under evolutionary neutrality, the expectation is PST = FST, while for traits under differential selection PST is expected to be
significantly greater than FST. A bootstrap procedure was used to test the hypothesis PST = FST.
Results With adjustment for age and sex, prevalence of type 2 diabetes was 34.0% in American Indians, 12.4% in African
Americans and 10.4% in European Americans (p = 2.9 × 10−10 for difference among groups). Mean BMI was 36.3, 33.4 and
33.0 kg/m2, respectively (p = 1.9 × 10−7). Mean fasting insulin was 63.8, 48.4 and 45.2 pmol/l (p = 9.2 × 10−5), while mean
30 min insulin was 559.8, 553.5 and 358.8 pmol/l, respectively (p = 5.7 × 10−8). FST across all markers was 0.130, while PST for
liability to diabetes, adjusted for age and sex, was 0.149 (p = 0.35 for difference with FST). PST was 0.094 for BMI (p = 0.54),
0.095 for fasting insulin (p = 0.54) and 0.216 (p = 0.18) for 30 min insulin. For type 2 diabetes and BMI, the maximum
divergence between populations was observed between American Indians and European Americans (PST-MAX = 0.22, p = 0.37,
and PST-MAX = 0.14, p = 0.61), which suggests that a relatively modest 22% or 14% of the genetic variance, respectively, can
potentially be explained by differential selection (assuming the absence of neutral drift).

A list of Regeneron Genetics Center contributors is included in the
electronic supplementary material (ESM).

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00125-020-05272-8) contains supplementary
material, which is available to authorised users.

* Robert L. Hanson
rhanson@phx.niddk.nih.gov

1 Phoenix Epidemiology and Clinical Research Branch, National
Institute of Diabetes and Digestive and Kidney Diseases,
Phoenix, AZ, USA

2 Regeneron Genetics Center, Tarrytown, NY, USA

https://doi.org/10.1007/s00125-020-05272-8

/ Published online: 4 September 2020

Diabetologia (2020) 63:2616–2627

http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-020-05272-8&domain=pdf
https://orcid.org/0000-0002-4252-7068
https://doi.org/10.1007/s00125-020-05272-8
mailto:rhanson@phx.niddk.nih.gov


Conclusions/interpretation These analyses suggest that while type 2 diabetes and related traits differ significantly among conti-
nental ancestry groups, the differences are consistent with neutral expectations based on heritability and genetic distances. While
these analyses do not exclude a modest role for natural selection, they do not support the hypothesis that differential natural
selection is necessary to explain the phenotypic differences among these ancestry groups.
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Abbreviations
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Survey
PST Phenotypic divergence index
QST Quantitative genetic divergence index
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Introduction

Prevalence of type 2 diabetes varies among human continental
ancestry groups, as does obesity, which is a strong risk factor for
diabetes. In the USA, prevalence of diabetes and obesity is
particularly high in American Indians, whereas prevalence is
low in European Americans and intermediate in African

Americans [1, 2]. Both type 2 diabetes and obesity are highly
heritable [3, 4], and several hypotheses have invoked differences
in natural selection across ancestry groups to explain differences
in prevalence [5–13]. Recent genome-wide association studies
have identified many variants reproducibly associated with both
type 2 diabetes and obesity [14, 15]. Several investigators have
analysed these established susceptibility loci for evidence of
natural selection. Such studies have generally involved assess-
ment of genetic signatures of recent selection or comparison of
allele frequencies among ancestry groups [16–22]. Results of
these studies are largely equivocal; however, both approaches
are limited in their ability to detect selection on polygenic traits.
An alternative approach involves comparison of genetic compo-
nents of variance for the trait, among and within ancestry groups,
with corresponding genotypic variance components across repre-
sentative genomic markers [23, 24]. These variance components
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methods are well suited for detection of polygenic selection that
differs in magnitude across groups, and they do not require
knowledge of specific susceptibility variants. They do require
comparably measured phenotypic data, along with genotypic
data, across diverse ancestry groups. In the present study, we
compare phenotypic divergence for type 2 diabetes and related
traits with genotypic divergence in a cohort that includes African
American, American Indian and EuropeanAmerican individuals
who had undergone whole exome sequencing.

Methods

Participants and measures Participants were derived from a
multiethnic study, conducted in urban Phoenix, Arizona,
designed to identify determinants of diabetes and related traits;
the methods have been previously described [25]. In brief,
individuals were ≥18 years old, of any ethnicity, and partici-
pants were not recruited based on diabetes or other conditions.
A large proportion of participants were American Indian,
primarily from tribes of the Southwestern United States. The
study was approved by the institutional review boards of the
National Institute of Diabetes and Digestive and Kidney
Diseases and the Phoenix Area Indian Health Service, and
all participants gave informed consent. The present cross-
sectional sample was derived from 1389 participants, exam-
ined in 2011–2016, who had relevant phenotypic data avail-
able, and data from whole exome sequencing. After exclusion
of ten individuals who did not cluster with their primary self-
reported ancestry group in principal components analyses,
there were 88 individuals who were full-heritage African
American by self-report, 761 individuals who were full-
heritage American Indian and 129 individuals who were full-
heritage European American. Since some analyses may be influ-
enced by presence of closely related individuals, genetic related-
ness was calculated between pairs of individuals using PREST
(version 3.02) [26], and a set of ‘unrelated’ individuals was
selected by randomly excluding one member of each pair in
whom the observed proportion of alleles shared identical by
descent was >0.14. (This excludes individuals who are second-
degree relatives or closer to another individual in the sample.)
This resulted in 83 African Americans, 523 American Indians
and 128 European Americans. Characteristics of individuals are
shown in electronic supplementary material (ESM) Table 1, and
a principal components plot is shown in ESM Fig. 1.

Fasting plasma glucose and HbA1c were measured, and a
75 g oral glucose tolerance test was administered to those
without a previous diagnosis of diabetes, with glucose concen-
trations measured 30 min and 2 h after the oral glucose load.
Individuals were classified as having diabetes if they had a
previous diagnosis by self-report, fasting plasma glucose
≥7.0 mmol/l, 2 h plasma glucose ≥11.1 mmol/l or HbA1c ≥
6.5% (48 mmol/l) [27]. Serum insulin concentrations were

measured by immunoassay (Tosoh Bioscience, Tokyo,
Japan); fasting serum insulin and 30 min serum insulin,
adjusted for 30 min glucose level, were taken as measures of
insulin resistance and insulin secretion, respectively. Analyses of
insulin measures were restricted to those with normal glucose
tolerance (nondiabetic, and 2 h glucose <7.8 mmol/l), constitut-
ing 59 African Americans, 281 American Indians and 94
European Americans. Height and weight were measured for
calculation of BMI. Themaximumweight and contemporaneous
height were also obtained by self-report. Analyses of BMI are
generally shown based on self-reportedmaximumweight, as this
was more strongly associated with diabetes.

Genotypes Whole exome sequencing in DNA derived from
peripheral blood was conducted at Regeneron Genetics
Center, as previously described [28, 29]. Sequencing was
conducted using a Hi-Seq 2500 sequencer (Illumina, San
Diego, CA, USA). Sequencing was part of a larger project
involving 8137 individuals, 43 of whom were excluded for
low-quality sequence data. In 98% of samples, at least 90% of
the exome achieved at least 20x coverage. Analysis was
restricted to variants with <10% missing genotype calls, that
were within Hardy–Weinberg equilibrium (p > 0.0001 in full-
heritage American Indians), that had concordance rates
>97.5% in 100 duplicate samples and for which average
minor allele frequency across ancestry groups was ≥5%.
This resulted in 97,388 autosomal markers. Missing geno-
types were imputed from phased haplotypic data in each
ancestry group using BEAGLE (version 3.2.2) [30].

Measures of divergence The coancestry coefficient (FST) was
calculated as a measure of genotypic divergence among ancestry
groups. FST represents the proportion of variance in allele
frequency in the total population that is explained by group
membership. For each marker, we calculated FST by the method
ofmoments [31, 32]. Across r ancestry groups, themean squares
among and within groups for a given allele u are, respectively:

MSA ¼ 1

r−1
∑r

i¼12ni piu − pu
� �2

MSW ¼ 1

∑r
i¼1 2ni−1ð Þ ∑

r
i¼12nipiu 1 − piuð Þ

where 2ni is the total number of alleles measured in the ith
group (twice the number of individuals), piu is the frequency
of allele u in the ith group and pu is the mean frequency of the
u allele across groups. FST for a singlemarker withm alleles is:

FST−M ¼ ∑m
u¼1 MSAu−MSWuð Þ

∑m
u¼1 MSAu þ 2nc−1ð ÞMSWu½ �

where 2nc ¼ 1
r−1ð Þ ∑

r
i¼12nic, and 2nic ¼ 2ni − 4n2i =∑

r
i¼12ni.

The mean value of FST-M over all markers was taken as the
overall FST. This mean marker-wise FST is comparable to the
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phenotypic divergence measures described below and, thus,
represents the expected value under neutrality [24, 33].
However, it tends to modestly underestimate the evolutionary
distance, so we also report FST calculated by the ‘ratio of
averages’ method, which provides a better estimate of this
distance [34]. FST calculated from exome sequence data is
generally comparable to that calculated from whole genome
sequence data [35].

The quantitative genetic divergence index (QST) is a
measure of phenotypic divergence that is analogous to FST

[23, 24]. For diploid organisms QST is calculated as:

QST¼
σ2
Ga

σ2
Ga þ 2σ2

Gw

where σ2
Ga is the variance among ancestry groups attributable

to additive genetic effects and σ2
Gw is the genetic variance

within groups. Under evolutionary neutrality, the expectation
is that QST = FST, whereas with diversifying selection (when
differences in direction or magnitude of natural selection
across groups drive phenotypic divergence), the expectation
is QST > FST [24, 33]. With stabilising selection (when selec-
tion is of similar direction and magnitude across groups), then
QST < FST. Variance components for calculation of QST are
typically estimated by ‘common garden’ controlled breeding
experiments.

In humans and other natural populations where controlled
breeding experiments are not feasible,QST can be approximat-
ed by the phenotypic divergence index (PST). This uses the
total phenotypic components of variance among and within
ancestry groups, σ2

Pa and σ2
Pw, respectively, rather than the

genetic variance components. A general formula for PST is:

PST¼
cσ2

Pa

cσ2
Pa þ 2h2σ2

Pw

ð1Þ

where h2 represents the proportion of the within-group pheno-
typic variance due to additive genetic effects (i.e., heritability)
and c represents the proportion of the among-group variance
due to genetic factors [36]. When h2 and c are known from
representative populations, then PST, calculated from eq. 1, is
an unbiased estimate of QST.

In the present study we estimate h2 in genetically related
individuals (i.e., in pedigree data without exclusion of close
relatives), but c is unknown, as is often the case. In this situ-
ation, there are two widely used formulae for PST, which make
different assumptions about c. The formula of Leinonen et al.
is [37]:

PST¼
σ2
Pa

σ2
Pa þ 2h2σ2

Pw

ð2Þ

This assumes that c = 1, i.e., that all phenotypic differences
among ancestry groups are due to genetic factors, and this

estimate represents the maximum possible value of QST for a
given h2. This can be justified by the notion thatPST is a screen
for identifying traits potentially under differential natural
selection. Other investigators, however, consider it more
prudent to assume that c = h2 [38], and this leads to:

PST¼
σ2
Pa

σ2
Pa þ 2σ2

Pw
ð3Þ

This is more stringent in that it gives lower values of
PST than eq. 2 (unless h2 = 1). We calculate PST under
both equations, and we present analyses under eq. 2 as
the primary results with the recognition that these repre-
sent maximal estimates of PST. Results calculated under
eq. 3 are presented in ESM Tables 5 and 8, and we
conduct sensitivity analyses across a range of values
for h2 and c (including situations with c < h2) to evalu-
ate effects on the conclusions.

Statistical analyses Analyses were conducted in SAS (version
9.4; SAS Institute, Cary, NC, USA). Kernel density estimation
(PROC KDE in SAS) was used to estimate nonparametric
density functions. Phenotypic differences for continuous traits
among ancestry groups were assessed using linear regression
models with control for age and sex (and 30 min glucose, for
analyses of 30 min insulin). A logistic regression model was
used for analyses of diabetes. Heritability was assessed in the
761 American Indian participants (without exclusion of close
relatives) using a linear mixed model. The total phenotypic
variance was modelled as:

σ2
P ¼ Φσ2

G þ Іσ2
E

where σ2
G is the variance potentially attributable to genetic

factors, σ2
E is the variance attributable to individual-level envi-

ronmental factors,Φ is amatrix of the proportion of alleles shared
identical by descent between pairs of individuals (estimated by
PREST [26]) and І is an identity matrix. Heritability was calcu-

lated as h2 ¼ σ2
G/σ

2
P. These analyses were conducted in SOLAR

(version 8.1.1) with adjustment for age, sex and the first genetic
principal component in American Indians (to account for poten-
tial population stratification), and a probit model was used to
analyse liability to diabetes [39]. Confidence intervals were
calculated with a likelihood-based method [40].

For continuous traits, variance components for calcula-
tion of PST were taken from the mean squares among and
within ancestry groups, derived from the regression model
with ancestry group as a fixed effect [38, 41]. Thus,

σ2
Pw ¼ MSW ¼ SSE= ∑r

i¼1ni − r − 1ð Þ − 1
� �

σ2
Pa ¼

MSA−MSW
n0
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where SSE is the sums of squares error from the regression,
and ni is the number of individuals in the ith ancestry
group; if μi is the trait mean in the ith ancestry group,
predicted by the regression model, and μ is the total
sample mean:

n0 ¼ 1

r−1ð Þ ∑r
i¼1ni−

∑r
i¼1n

2
i

∑r
i¼1ni

� �

MSA ¼ 1

r−1ð Þ ∑
r
i¼1ni μi − μ

� �2

For liability to diabetes, parameters were inferred from
estimates of variance components derived from a probit mixed
model in which ancestry group was a random effect (fit with
PROC GLIMMIX in SAS). If s2grp is the variance attributed to

ancestry group and s2rsd is the residual variance (from the

Pearson χ2 fit of the model), then SSE ¼ s2rsd∑
r
i¼1ni and

MSA ¼ s2grp
r−1ð Þ∑

r
i¼1ni. Similar approaches have been used else-

where [42].
Parameters were estimated using a bootstrap procedure

with 1000 iterations; 90% CIs were generated from centiles
of the bootstrap distribution. Estimates of FST and PST

depend on sample sizes, and their interpretation as
measures of population divergence is most straightforward
if sample sizes are equal in each ancestry group [32].
Therefore, in each bootstrap iteration, a sample size equal
to that of the ancestry group with the smallest sample size
was selected for each group. Although the mean marker-
wise FST represents the expectation of PST under neutrality,
there is substantial biological variability; despite
polygenicity, the distribution is approximately that of FST

for individual markers [24, 33]. Thus, comparison of PST

with FST is most appropriately made across the single-
marker distribution. Following Guo et al. [43], we generat-
ed this comparison from the distribution of FST-M shown in
ESM Fig. 2. The proportion of markers for which the
difference with the mean (FST-M − FST) was greater than
the observed value of PST − FST was taken as the empirical
one-sided p value for the null hypothesis PST = FST against
the alternative PST > FST. The distribution of FST-M had a
thick lower tail, with ~5% of markers having a value
<0.01; thus, we did not test for the alternative PST < FST.

Diversifying selection may act primarily on one ancestry
group, and, in this situation, it may be most powerful to
consider the maximum divergence of PST from FST across
all pairwise comparisons; we report this value as PST-MAX

(and assess its p value with correction for three pairwise
comparisons). We also conduct a multivariable test of the
null hypothesis of PST = FST across any of the five major
traits (diabetes, BMI, height, fasting insulin, 30 min insulin)
using a method that combines p values with allowance for
the correlations between traits [44].

FST outlier analyses For primary analyses, we used the
‘robust’ approach of comparing PST with FST taken across
all available markers [45]. However, some of the markers
themselves may have been subject to natural selection, and,
to examine their potential influence, we conducted Bayesian
outlier analysis of the FST-M distribution using BAYESCAN2
(version 2.01) [46]. This models the allele frequency differ-
ences among groups as a function of a population-specific FST

component and a locus-specific FST component, subject to
selection. Markers for which the locus-specific component is
necessary are candidates for being under natural selection. As
results depend on the specified prior odds of selection vs
neutrality, we varied this parameter over a range of values
and designated markers for which posterior odds were >1:1
as potentially under selection. Then, p values were calculated
using the remaining, putatively neutral, markers.

Genetic admixture estimates We used ADMIXTURE
(version 1.3.0) to obtain estimates of genetic admixture
proportions for each individual, assuming three ancestral
populations [47]. In these analyses we included data from
individuals in the 1000 Genomes project to improve resolu-
tion (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20130502/); data from the HapMap Yoruba in Ibadan,
Niger ia , popula t ion and the Cent re d ’Etude du
Polymorphism Humain Utah population were used as
representative of African and European ancestry groups,
respectively. To reduce the influence of linkage
disequilibrium, we selected markers ~100 kb apart, after
exclusion of markers that did not have consistent reference
and alternative alleles between our exome sequence data and
the 1000 Genomes data (and excluding A/T and C/G
polymorphisms); this resulted in 14,672 markers.

Additional population data To assess applicability of our
results in more general population data, we obtained data for
individuals ≥18 years of age from a population-based study
from a high-risk southwest American Indian (SWAI) popula-
tion (4032 full-heritage American Indians) [48], and from the
oral glucose tolerance subset of the 2005–2010 National
Health and Nutrition Examination Survey (NHANES)
(https://wwwn.cdc.gov/nchs/nhanes/Default.aspx), which is
representative of the general US population. This included
1271 individuals of non-Hispanic black ancestry, taken as
representative of African Americans, and 2905 individuals
of non-Hispanic white ancestry, taken as representative of
European Americans. We calculated PST across these three
populations for diabetes and BMI. In these analyses, diabetes
was diagnosed based on self-report, fasting plasma glucose or
2 h plasma glucose (as HbA1c was not available in all partic-
ipants). Exome sequencing data were available from 3435
SWAI participants, but, as such data were not available for
NHANES participants, we could not directly compare PST
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with FST. For an indirect comparison, we used genotypic data
from the 1000 Genomes project, including the HapMap
African Americans from the American Southwest population,
as representative of African Americans, and the Centre
d’Etude du Polymorphism Humain Utah population, as repre-
sentative of European Americans. FST was calculated across
these populations for 81,700 markers that had alleles called
consistently between the exome sequence and the 1000
Genomes data.

Results

Phenotypic differences Phenotypic differences among ances-
try groups are shown in Fig. 1. Age- and sex-adjusted preva-
lence of diabetes was highest in American Indians (34.0%)
and lower in African Americans (12.4%) and European
Americans (10.4%, p = 2.9 × 10−10 for difference among
groups). Similarly, mean age- and sex-adjusted maximum
BMI was 36.3 kg/m2 in American Indians, 33.4 kg/m2 in
African Americans and 33.0 kg/m2 in European Americans
(p = 1.9 × 10−7). Height was also significantly different among

ancestry groups, with American Indians being shorter than
African Americans and European Americans (p = 1.9 ×
10−18, ESM Fig. 3). Among those with normal glucose toler-
ance, fasting serum insulin was higher in American Indians
(geometric mean = 63.8 pmol/l adjusted for age and sex) than
in African Americans (48.4 pmol/l) or European Americans
(45.2 pmol/l, p = 9.2 × 10−5). The 30 min insulin, adjusted for
age, sex and 30 min glucose, was lower in European
Americans (358.8 pmol/l) than in African Americans
(553.5 pmol/l) and American Indians (559.8 pmol/l, p =
5.7 × 10−8). With additional adjustment for BMI, differences
in fasting insulin were largely attenuated (p = 0.25), while
with additional adjustment for BMI and fasting insulin, differ-
ences in 30 min insulin remained statistically significant (p =
2.3 × 10−5).

Heritability In 761 American Indian participants, type 2 diabe-
tes was highly familial; 77% of the liability was potentially
due to genetic factors (h2 = 0.77; 90% CI 0.34, 1.00; p =
0.0017). Similarly, significant familial aggregation was
observed for maximum BMI (h2 = 0.36; 0.19, 0.53; p =
2.5 × 10−4) and height (h2 = 0.71; 0.54, 0.85; p = 4.4 ×
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Fig. 1 (a) Age- and sex-adjusted prevalence of diabetes by ancestry
group. Prevalence is adjusted to the mean age and sex distribution of
the total sample. Prevalence was 12.4% in African Americans (AA),
34.0% in American Indians (AI) and 10.4% in European Americans
(EA) (p = 2.9 × 10−10). (b) ‘Bean’ plot of the distribution of age- and
sex-adjusted BMI by ancestry group. Symmetrical lines represent a
nonparametric local density function, estimated with PROC KDE in
SAS. Thick black horizonal lines represent the mean value. Grey hori-
zontal lines represent individual data points, with the length of the line
indicating the number of observations at each level. Mean BMI was

33.4 kg/m2 in AA, 36.3 kg/m2 in AI and 33.0 kg/m2 in EA (p = 1.9 ×
10−7). (c) ‘Bean’ plot of the distribution of age- and sex-adjusted fasting
insulin level in individuals with normal glucose tolerance by ancestry
group. Geometric mean fasting insulin was 48.4 pmol/l in AA,
63.8 pmol/l in AI and 45.2 pmol/l in EA (p = 9.2 × 10−5). (d) ‘Bean’ plot
of the distribution of 30 min post-load insulin levels, adjusted for age, sex
and 30 min glucose, in individuals with normal glucose tolerance by
ancestry group. Geometric mean 30 min insulin was 553.5 pmol/l in
AA, 559.8 pmol/l in AI and 358.8 pmol/l in EA (p = 5.7 × 10−8)
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10−11). In 434 American Indian participants with normal
glucose tolerance, significant heritability was observed for
fasting insulin (h2 = 0.35; 0.04, 0.65; p = 0.035) and 30 min
insulin adjusted for 30 min glucose (h2 = 0.31; 0.03, 0.66; p =
0.035). These estimates were made with adjustment for the
first genetic principal component, which captures the major
source of stratification in this population; additional sources of
population stratification may be captured with additional prin-
cipal components, but, given the small number of relative
pairs, at the risk of model overspecification. To assess the
robustness of the h2 estimates, we repeated the analysis with
adjustment for the first five genetic principal components.
For most traits, the h2 estimates were only modestly atten-
uated (ESM Table 2). The exception was 30 min insulin,
for which h2 approached 0 (where PST is of questionable

meaning as a measure of selection), so the h2 estimate for
this trait is not robust.

Comparison of genotypic and phenotypic divergence Mean
FST-M among all three ancestry groups across all 97,388
markers was 0.130 (Table 1). Estimates ofPST for each pheno-
type are shown in Table 1; none of these were significantly
higher than FST. For type 2 diabetes PST = 0.149 (90% CI
0.038, 0.272; p = 0.35 for comparison with FST). For maxi-
mum BMI, PST = 0.094 (0.017, 0.184; p = 0.54), and for
height PST = 0.116 (0.053, 0.189; p = 0.46). Among those
with normal glucose tolerance, PST for fasting insulin was
0.095 (0.001, 0.214; p = 0.54), while for 30 min insulin
PST = 0.216 (0.082, 0.358; p = 0.18). The multivariable test
across all five traits was not significant (p = 0.46). The largest

Table 1 Genotypic divergence (FST) and phenotypic divergence (PST) for type 2 diabetes and related traits among ancestry groups

Genotype/phenoptype African American American Indian European American

Genotype FST = 0.1301 (0.1437)

African American – 0.1452 0.0949

American Indian (0.1838) – 0.1029

European American (0.1142) (0.1310) –

Type 2 diabetes [h2 = 0.77] PST = 0.1488 (0.3515), PST-MAX = 0.2164 (0.3685)

African American – 0.1472 0.0038

American Indian (0.4067) – 0.2164b

European American (0.8723) (0.1421) –

Maximum BMIa [h2 = 0.36] PST = 0.0937 (0.5442), PST-MAX = 0.1436 (0.6060)

African American – 0.1197 0.0078

American Indian (0.4743) – 0.1436b

European American (0.8146) (0.2669) –

Height [h2 = 0.71] PST = 0.1155 (0.4605), PST-MAX = 0.1886 (0.4516)

African American – 0.1541 0.0026

American Indian (0.3869) – 0.1886b

European American (0.8991) (0.1815) –

Fasting insulin [h2 = 0.35] PST = 0.0946 (0.5388), PST-MAX = 0.1305 (0.6556)

African American – 0.1285 0.0088

American Indian (0.4450) – 0.1305b

European American (0.8039) (0.2990) –

30 min insulin [h2 = 0.31] PST = 0.2156 (0.1754), PST-MAX = 0.2801 (0.2292)

African American – 0.0157 0.2698

American Indian (0.8146) – 0.2801b

European American (0.0730) (0.0831) –

Data represent FST or PST or p values for the null hypothesis PST = FST; data in each cell pertain to the comparisons between pairs of ancestry groups

For genotypes, values in parentheses represent FST calculated by the ‘ratio of averages’ method (see Methods/Measures of divergence)

For phenotypes, values in parentheses are p values for the null hypothesis PST = FST vs the alternative hypothesis PST >FST. In the title rows, FST/PST

values and p values pertain to the three-way comparisons. PSTwas calculated from eq. 2 (seeMethods/Measures of divergence) using the specified value
of h2 . PST-MAX represents the PST value with the largest deviation from expected for any pair of ancestry groups; the p value is corrected for multiple
comparisons
a From self-reported maximum weight
b The PST value corresponding to the maximum
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departures from neutral expectations for pairs of ancestry
groups generally occurred between American Indians and
European Americans, but were not statistically significant;
for diabetes PST-MAX = 0.22 (p = 0.37), while for BMI PST-

MAX = 0.14 (p = 0.61). Similar results were obtained with
directly measured BMI, with fasting insulin adjusted for
BMI and with 30 min insulin adjusted for BMI and fasting
insulin (ESM Table 3). Similar results were also obtained
when men and women were analysed separately (ESM Fig.
4, ESM Table 4). When PSTwas calculated according to eq. 3,

PST values tended to be lower than FST (ESM Table 5). A
summary of the primary analyses is shown in Fig. 2.

In Bayesian outlier analyses, the number of markers poten-
tially under selection ranged from 416 with prior odds for
selection vs neutrality of 1:10, to 61,195 with prior odds of
4:3. Statistical significance levels were similar when restricted
to putatively neutral markers regardless of prior odds (ESM
Table 6). By analysis of individual admixture proportions, we
estimated that, on average, 80% of the ancestry of African
American participants derived from African sources, 96% of
the ancestry of American Indian participants derived from
Amerindian sources and 99% of the ancestry of European
American participants derived from European sources. We
repeated the divergence analyses with restriction to those
whose genetic ancestry derived ≥85% from the continent
corresponding to their stated ancestry group, constituting 31
African Americans, 475 American Indians and 126 European
Americans. Similar results were obtained (ESM Table 7); for
diabetes PST = 0.143 (p = 0.41), and, for BMI, PST = 0.098
(p = 0.57), while FST = 0.144.

Sensitivity analyses Results of sensitivity analyses, which
calculate PST for different values of h2 and c, are shown in
Fig. 3. For diabetes, PST was generally less than the 95th
centile of marker-wise FST (0.340), except when h2 was low
and cwas high (e.g., h2 = 0.20 and c > 0.80). For BMI, fasting
insulin and 30 min insulin, PST did not exceed the critical
value of 0.340 for any value of c, for any h2 ≥ 0.20.

Analyses of additional population data Results of analyses
comparing African Americans and European Americans from
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Fig. 3 (a) Sensitivity analyses
showing values of PST for
maximum BMI for various levels
of h2 and c. (b) Sensitivity
analyses showing values of PST

for type 2 diabetes for various
levels of h2 and c. (c) Sensitivity
analyses showing values of PST

for fasting insulin level for
various levels of h2 and c. (d)
Sensitivity analyses showing
values of PST for 30min post-load
insulin level for various levels of
h2 and c. Results are shown for
h2 = 0.20, the estimated value of
h2, its upper confidence limit and
its lower confidence limit (if
>0.20). Points shown as triangles
are calculated under eq. 2, and are
the same as those shown in
Table 1, while points shown as
circles are calculated under eq. 3
(ESM Table 5)
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for each phenotype are indicated by arrows. Divergence levels above the
critical value of 0.340 (indicated by the vertical line) are considered
indicative of diversifying selection, while those below this value are more
consistent with neutrality
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NHANES, and SWAI, are shown in Fig. 4. Age- and sex-
adjusted prevalence of diabetes was highest in SWAI
(40.6%), and lower in African Americans (14.2%) and
European Americans (8.0%, p = 1.1 × 10−214); similarly,
mean BMI was highest in SWAI (35.1 kg/m2), and lower in
African Americans (30.5 kg/m2) and European Americans
(29.0 kg/m2, p = 2.1 × 10−286). FST comparing SWAI with
African Americans and European Americans from the
HapMap populations was 0.134; the 95th centile of marker-
wise FST was 0.354. Although PST values were modestly
higher among these three populations than among the
Phoenix cohort, they were well within the expected distribu-
tion of FST-M; for diabetes PST = 0.195 (90% CI 0.166, 0.224),
while for BMI PST = 0.252 (0.223, 0.282) (ESM Table 8).
When calculated by eq. 3, PST = 0.157 (0.133, 0.182) for
diabetes and PST = 0.109 (0.094, 0.124) for BMI.

Discussion

Prevalence of type 2 diabetes and obesity differs across human
continental ancestry groups, and there has been considerable

speculation about the role of natural selection in these differ-
ences. The ‘thrifty genotype’ hypothesis posits that greater
efficiency in using energy from food conferred a selective
advantage in time of famine but that this predisposes to diabe-
tes and obesity in modern environments [49, 50]. Differences
in exposure and response to famine could, thus, have resulted
in differences in prevalence of diabetes and obesity across
ancestry groups [5–7]. Alternatively, it has been proposed that
release from predation freed humans from selective pressure
against obesity, and that high prevalence of obesity in humans
is the result of neutral genetic drift [51]. Others have proposed
that agriculture introduced a high load of carbohydrate into
human diets, and that populations that adopted agriculture
early, such as Europeans, have experienced greater selection
for carbohydrate tolerance than other populations, resulting in
protection from diabetes [8, 9]. Others have hypothesised that
differences in diabetes and obesity across ancestry groups
reflect adaptation to different climates or to different infec-
tious diseases [10–13]. Such hypotheses have sometimes been
discussed on the basis of the differences among ancestry
groups, without consideration of whether these differences
could arise neutrally.
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Fig. 4 (a) Age- and sex-adjusted prevalence of diabetes in African
American (AA) and European American (EA) individuals from
NHANES, and the SWAI cohort. Prevalence is adjusted to a mean age
of 42.3 and a percentage of men of 54% for comparability with Fig. 1. For
comparability with the NHANES data, the diabetes diagnosis for the
SWAI cohort was based on data obtained at the last examination and
included self-reported current or previous use of diabetes medication, as
well as concurrent measures of glucose. Prevalence was 14.2% in AA,
40.6% in SWAI and 8.0% in EA (p = 1.1 × 10−214). (b) ‘Bean’ plot of the
distribution of age- and sex-adjusted BMI inAA and EA individuals from
NHANES, and the SWAI cohort. Mean BMI was 30.5 kg/m2 in AA,

35.1 kg/m2 in SWAI and 29.0 kg/m2 in EA (p = 2.1 × 10−286). (c)
Genetic divergence, measured by FST among AA and EA from the
HapMap samples 1000 Genomes project and the SWAI cohort. Values
for each pairwise comparison between groups are shown as bars, while
the overall divergence is indicated by the horizontal line. (d) Divergence
for diabetes prevalence, measured by PST, among AA and EA from
NHANES and the SWAI cohort. (e) Divergence in BMI, measured by
PST, among AA and EA from NHANES and the SWAI cohort.
Heritability estimates for PST calculations are the same as those used for
the Phoenix cohort in Table 1
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There are few empirical genetic data supporting hypotheses
that natural selection across ancestry groups contributes to risk
of diabetes or obesity. Some studies have analysed established
type 2 diabetes and obesity variants for molecular signatures
of recent natural selection, such as extended haplotypic homo-
zygosity. These studies have generally not found greater
evidence for selection at established variants in comparison
with suitably matched genomic variants [16–18], although
one study did find a modest excess of evidence for selection
at protective alleles for diabetes [22]. These methods are most
powerful for detecting classic ‘sweeps’ where a previously
rare allele at a single locus rapidly increases in frequency,
and they are not well suited for detecting selection on poly-
genic traits. Others have used established variants to estimate
a polygenic QST analogue, and they found little evidence for
differential selection for BMI or type 2 diabetes variants [52].
Other studies have compared allele frequencies for established
variants across ancestry groups. Although these have found
considerable differences in allele frequencies, the pattern of
differences has not corresponded to epidemiologic risk [2,
19–21]; type 2 diabetes risk allele frequencies for established
variants tend to be high in Africans but low in American
Indians. However, the causal variants that contribute to diabe-
tes and obesity are incompletely known and linkage disequi-
librium patterns vary across populations, and this can intro-
duce unpredictable biases into these comparisons [53]. The
variance components methods used in the present study are
designed to detect polygenic selection which differs across
ancestry groups, and they do not require knowledge of specif-
ic causal variants. Our analyses show that phenotypic differ-
ences for type 2 diabetes and related traits among African
Americans, American Indians and European Americans are
consistent with expectations based on heritability and genetic
divergence. Thus, strong diversifying selection is not neces-
sary to explain the phenotypic differences.

Recent genetic admixture among groups could attenuate
the phenotypic differences. However, we obtained similar
results when analyses were restricted to those whose genetic
ancestry derived ≥85% from the continent corresponding to
their stated ancestry, and this suggests that our results are not
unduly influenced by admixture. Phenotypic measures were
made identically across the ancestry groups in our cohort.
Although the Phoenix cohort is a relatively small convenience
sample, we observed significant differences in diabetes and
obesity risk among groups, which replicate known epidemio-
logic associations [1, 2]. Furthermore,PST estimates were only
modestly higher when calculated among NHANES samples
representative of the US African American and European
American populations and an SWAI population with high
prevalence of obesity and diabetes. Thus, results from these
larger population samples are generally consistent with those
from the Phoenix cohort.

Comparisons of phenotypic with genotypic divergence are
optimally made using genetic components of variance for the
trait (i.e., QST), while we have used the total phenotypic
components of variance (PST). The extent to which PST

approximatesQST depends on heritability (h
2) and the propor-

tion of the among-population phenotypic variance explained
by genetic factors (c). Our estimates of h2 are based on a
relatively small sample of related individuals, but they are
comparable to those reported in large meta-analyses of twin
studies for BMI and diabetes [3, 4]. Although our primary
analyses were conducted under the assumption that c = 1,
environmental differences in determinants of these traits
among populations would result in lower values of c, and
would tend toward lower values of PST. Our sensitivity anal-
yses suggest that our findings are consistent over a large range
of values of h2 and c. For BMI and diabetes, the largest
pairwise differences in phenotypic and genotypic divergence
were observed between American Indians and European
Americans, and these differences suggest that a relatively
modest 14% or 22% of the genetic variance in each trait,
respectively, is potentially attributable to differential selection
(this is under the assumption that there is no effect of neutral
genetic drift, although the genotypic divergence suggests
these values are well within neutral expectations).

With comparisons over only three ancestry groups
representing a large portion of modern human genetic history,
the present approach has limited power to detect modest
degrees of diversifying selection—fairly strong or sustained
selection is required for the phenotypic divergence of a single
trait to exceed expectations based on genotypic divergence.
We estimate by simulation that PST ≈ 0.40 is required to detect
p < 0.05 with 80% power (ESM Fig. 5; this corresponds to an
average difference in phenotypic mean of ~0.9 SD between
pairs of ancestry groups). This degree of divergence is some-
what less than observed for traits under established diversify-
ing selection, such as skin pigmentation or craniofacial
morphometry ([38, 43]; we did not directly measure skin
pigmentation in the present study, but, for skin pigmentation
predicted genetically [54],PST = [QST] = 0.831, p = 1.0 × 10−5,
ESM Fig. 6). The power of these variance component
methods to detect diversifying selection depends on the
number of ancestry groups included, as well as the number
of individuals in each ancestry group [45]. While we obtained
similar PST estimates among the larger population cohorts as
in the Phoenix cohort with the same three ancestry groups,
inclusion of additional ancestry groups may be required to
detect more subtle selection. The present results do not
exclude more complex models of selection, such as selection
on a suite of complex traits, including some diabetes-related
traits, with the overall differentiation constrained by pleiotro-
py, nor do they exclude modest diversifying selection on
diabetes-related traits too weak to be detected by the present
methods primarily affecting the American Indian group.
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However, our results were obtained in major continental
ancestry groups at diverse risk for diabetes and obesity, and
they suggest that differences in natural selection across these
groups are not necessary to explain the phenotypic differ-
ences. Investigations of the causes of differences in diabetes
risk across these groups would do well to consider alternative
explanations.
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