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Abstract
Aims/hypothesis Diabetic retinopathy is a common complication of diabetes and a leading cause of visual impairment and blindness.
Despite recent advances, our understanding of its pathophysiology remains incomplete. The aim of this study was to provide deeper
insight into the complex network of molecular and cellular changes that underlie diabetic retinopathy by systematically mapping the
transcriptional changes that occur in the different cellular compartments of the degenerating diabetic mouse retina.
Methods Single-cell RNA sequencing was performed on retinal tissue from 12-week-old wild-type and Akimba (Ins2Akita×Vegfa+/–)
mice, which are known to replicate features of clinical diabetic retinopathy. This resulted in transcriptome data for 9474 retinal cells,
which could be annotated to eight distinct retinal cell types. Using STRING analysis, we studied differentially expressed gene networks
in neuronal, glial and immune cell compartments to create a comprehensive view on the pathological changes that occur in the Akimba
retina. Using subclustering analysis, we further characterised macroglial and inflammatory cell subpopulations. Prominent findings
were confirmed at the protein level using immunohistochemistry, western blotting and ELISA.
Results At 12 weeks, the Akimba retina was found to display degeneration of rod photoreceptors and presence of inflammatory
cells, identified by subclustering analysis as monocyte, macrophage and microglial populations. Analysis of differentially
expressed genes in the rod, cone, bipolar cell and macroglial compartments indicated changes in cell metabolism and ribosomal
gene expression, gliosis, activation of immune system pathways and redox and metal ion dyshomeostasis. Experiments at the
protein level supported a metabolic shift from glycolysis to oxidative phosphorylation (glyceraldehyde 3-phosphate dehydroge-
nase), activation of microglia/macrophages (isolectin-B4), metal ion and oxidative stress response (metallothionein and haem
oxygenase-1) and reactive macroglia (glial fibrillary acidic protein and S100) in the Akimba retina, compared with wild-type
mice. Our single-cell approach also indicates macroglial subpopulations with distinct fibrotic, inflammatory and gliotic profiles.
Conclusions/interpretation Our study identifies molecular pathways underlying inflammatory, metabolic and oxidative stress-
mediated changes in the Akimba mouse model of diabetic retinopathy and distinguishes distinct functional subtypes of inflam-
matory and macroglial cells.
Data availability RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI (www.ebi.ac.uk/arrayexpress)
under accession number E-MTAB-9061.
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Abbreviations
BMP Bone morphogenetic protein
CC Canonical correlation
CNS Central nervous system
ECM Extracellular matrix
GAPDH Glyceraldehyde 3-phosphate dehydrogenase
GFAP Glial fibrillary acidic protein
GO Gene Ontology
HO-1 Haem oxygenase-1
IGFBP IGF binding proteins
KEGG Kyoto Encyclopedia of Genes and Genomes
MT Metallothionein
OXPHOS Oxidative phosphorylation
RPE Retinal pigment epithelium
scRNAseq Single-cell RNA sequencing
STZ Streptozotocin
t-SNE t-Distributed Stochastic Neighbor Embedding
VEGF Vascular endothelial growth factor

Introduction

Diabetic retinopathy is a commonmicrovascular complication
of diabetes and the leading cause of sight loss in the working-
age population [1, 2]. Based on the extent of microvascular

degeneration and ischaemic damage, it is staged into non-
proliferative diabetic retinopathy or advanced, proliferative
diabetic retinopathy. Diabetic retinopathy progression goes
hand in hand with increasing abnormalities of the vasculature,
including microaneurysms, haemorrhages, capillary occlu-
sion, blood–retinal barrier dysfunction, thickening of vascular
basement membrane and neovascularisation [1–3]. These
complications may lead to diabetic macular oedema, which
is characterised by vascular leakage and concomitant macular
swelling and is the most common cause of blindness in diabet-
ic retinopathy patients [1, 2].

It has become clear that diabetic retinopathy comprises
neurodegenerative [4, 5] and neuroinflammatory [6, 7] disease
components, with glial, neuronal and endothelial dysfunction
being interdependent and essential for disease development.
However, a lot remains unknown about which changes occur
in these individual cellular compartments and how they inter-
play. The advent of single-cell RNA sequencing (scRNAseq)
technology now provides the opportunity to dissect complex
biological systems, such as the retina, at single-cell resolution.

The Akimba mouse model is an attractive animal model to
study the pathological processes that underlie diabetic retinop-
athy. Akimba mice are generated by crossbreeding Akita
(Ins2Akita) mice, carrying a mutation in the Ins2 gene, with
Kimba (trVEGF029) mice, which have transient

2236 Diabetologia (2020) 63:2235–2248



photoreceptor-specific overexpression of Vegfa, encoding
human vascular endothelial growth factor (VEGF) [8]. The
Akimba mouse displays several pathogenic characteristics of
clinical diabetic retinopathy, including ischaemia, angiogene-
sis, oedema, neurodegeneration, inflammation and fibrosis. In
addition, thesemice exhibit vascular complications comparable
to clinical diabetic retinopathy, such as microaneurysms, capil-
lary nonperfusion, vessel constriction, venous beading, tortu-
ous vessels, neovascularisation and leaky capillaries [8, 9].

Employing the Akimba mouse as a model of diabetic reti-
nopathy and making use of scRNAseq technology, the goal of
this study was to obtain a systematic and comprehensive view
on the cell-type-specific changes that occur in retina affected
by diabetic retinopathy.

Methods

Animals Animal procedures were approved by the
Institutional Ethical Committee of KU Leuven, according to
the 2010/63/EU Directive. Twelve-week-old male Akimba
and wild-type (C57Bl/6 J) were obtained from Charles River
Laboratories (France) as previously described [10] and housed
under standard laboratory conditions. Animals with blood
glucose levels >13.87 mmol/l were considered diabetic.
Optical coherence tomography and fluorescein angiography
(Spectralis, Heidelberg Engineering, Germany) were
performed to evaluate retinopathy and retinal vascular leak-
age. Mice were anaesthetised with ketamine (Anesketin,
75 mg/kg, Eurovet, the Netherlands) and medetomidine
(Domitor, 1 mg/kg, Orion Pharma, Finland). Pupils were
dilated with tropicamide (Tropicol, 5 mg/ml, Théa Pharma,
Belgium). Fluorescein angiography scans were taken after
subcutaneous injection of 100 μl sodium fluorescein (5%
wt/vol.). Anaesthesia was reversed with atipamezole
(Ant i sedan , 1 mg/kg , Or ion Pharma , F in land) .
Randomisation and blinding were not performed during the
course of the study, except during immunohistochemical
analysis.

Retina dissociation, single-cell preparation and sequencing
Retinas (n = 4 for Akimba, n = 2 for wild-type) were isolated
in ice-cold DMEM. After rinsing with Dulbecco’s PBS
containing 2% FBS, each retina was incubated with 1 ml
digestion buffer (2 mg/ml collagenase-P, 200 U/ml DNAse-
I, Sigma-Aldrich, Belgium) in M199 medium (Life
Technologies, Belgium) at 37°C for 10 min. Retinal tissue
was further dissociated by trituration and the suspension was
filtered through a 40μm cell strainer and centrifuged for 5 min
at 300 g (4°C). Pooled retinal single-cell suspensions from
wild-type and Akimba mice were counted on a Luna-FL
Cell Counter (Logos Biosystems, France) and libraries were
prepared with the Chromium Single-cell 3’ V2 Chemistry

Library Kit, Gel Bead & Multiplex Kit and Chip Kit (10x
Genomics, the Netherlands) aiming for 5000 cells per library.
Barcoded libraries were sequenced on an Illumina (Illumina,
USA) HiSeq4000 in 25-8-98 paired-end configuration.

Single-cell analysis Raw sequencing data were demultiplexed
to generate fastq-files, which were aligned to the mouse refer-
ence genome build mm10, using STAR, which is implement-
ed in Cell Ranger (version 2.0, 10x Genomics, USA). A
single-cell expression matrix was generated by Cell Ranger.
Further calculations were performed in R (version 3.6.0;
https://cran.r-project.org/bin/windows/base/old/3.6.0/) using
Seurat (version 2.2; https://github.com/satijalab/seurat). The
gene expression matrices of both samples were further
filtered, and we retained the cells with >200 genes and
<8000 genes; >400 unique molecular identifiers (UMIs) and
<20% mitochondrial RNA (mtRNA). These criteria resulted
in a total set of 9474 cells, of which 5738 were Akimba and
3736 wild-type. We detected 2797 and 2677 variable genes in
the wild-type and the Akimba sample, respectively. The union
of these genes was used to perform canonical correlation (CC)
a n a l y s i s . We r e t a i n e d 2 0 CC s b a s e d o n t h e
MetageneBicorPlot. We visualised our data using t-
Distributed Stochastic Neighbor Embedding (t-SNE) tech-
nique and clustered on a resolution of 1.4. The model-based
analysis of single-cell transcriptomics (MAST) algorithm was
used to identify differentially expressed genes between clus-
ters. Clusters were annotated based on cell-specific markers
(electronic supplementary material [ESM] Table 1). Immune
cells and macroglia were further clustered using the same
approach: 22 CCs based on 2777 and 2808 variable genes
from wild-type and Akimba mice, respectively, and a resolu-
tion of 1.25 for the immune cells; 22 CCs based on 2710
(wild-type) and 2728 (Akimba) variable genes at a resolution
of 0.5 for macroglia. Differentially expressed genes between
wild-type and Akimba cells were first selected based on p
value (adjusted p < 0.05) and next sorted according to log2
fold change. Contaminating rod-specific genes [11, 12] were
filtered out where necessary. Analogous, artefactual genes, as
described by van den Brink et al [13], were excluded from
analysis in cell-type-specific datasets. The top 100 differen-
tially expressed genes were analysed for statistically enriched
pathways (Gene Ontology [GO], Kyoto Encyclopedia of
Genes and Genomes [KEGG] and Reactome) and functional
association networks were constructed and annotated using
STRING version 11.0 (https://string-db.org/). The Mus
musculus genome was used as background genome.
Unsupervised clustering based on k-means was used to build
related gene networks.

Immunohistochemistry and histological analysis Paraffin
sections were incubated overnight with primary antibodies
for S100 (rabbit monoclonal, 1/200, 52642, Abcam, UK),
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haem oxygenase-1 (HO-1, rabbit polyclonal, 1/100, ADI-
SPA-896, Enzo Life Sciences, Belgium), glial fibrillary acidic
protein (GFAP, mouse monoclonal, 1/400, G3893, Sigma-
Aldrich, Belgium) and metallothionein (MT, mouse monoclo-
nal, 1/100, ab12228, Abcam, UK), all diluted in TNB
blocking buffer (0.1 mmol/l Tris-HCl, pH 7.5, 0.15 mmol/l
NaCl, 0.5% blocking reagent). S100 was visualised using an
Alexa Fluor-conjugated secondary antibody (1/200, A-11008,
ThermoFisher Scientific, Belgium). GFAP and MT were
labelled via MOM biotinylated anti-mouse IgG (VEC.BMK-
2202, Labconsult, Belgium) and HO-1 via biotin-conjugated
secondary antibodies (1/300, 111-065-144, Jackson
ImmunoResearch, UK). Secondary antibodies were all diluted
in TNB blocking buffer. Next, the signal was developed by
the TSA Cy3 system (NEL704A001KT, Perkin-Elmer,
Belgium). All antibodies were first validated on samples from
diabetic animal models.

Representative high-resolution images were made with an
Olympus FV1000 confocal microscope (Belgium).
Morphometric analyses on images of the entire neuroretina
(taken using a Zeiss Axiocam MrC5 microscope) were
performed using Zen 2012 software (Zeiss, Germany). The
immunopositive area of S100, HO-1, GFAP and MT was
analysed on six sections (three sections anterior and posterior
of the optic nerve) and normalised to the total retinal area.
These measurements were averaged for each individual eye.

Whole-mount retinas were incubated overnight with
biotinylated isolectin-B4 (Bandeiraea simplicifolia, 1/25,
L-2140, Sigma-Aldrich, Belgium), followed by incubation
with a streptavidin-conjugated Alexa Fluor secondary anti-
body (1/100, S32355, ThermoFisher Scientific, Belgium).
Mosaic pictures of entire retinal whole-mounts were made
using a Zeiss Axiocam MrC5 microscope and analysis of
the isolectin-B4 positive area was performed using
Metamorph software 2.2.0 (Leica MM AF Offline Analysis,
Leica, Germany) and normalised to the total retinal area.
Statistically significant differences were determined using a
two-tailed unpaired Student’s t test via GraphPad Prism 8
software (USA).

ELISA and western blotting

Pooled retinas from both eyes were homogenised in lysis
buffer (1% NP-40, 20 mmol/l Tris, 137 mmol/l NaCl, 10%
glycerol, 1 mmol/l EDTA, 1 mmol/l activated sodium
orthovanadate, 10 μg/ml leupeptin, 10 μg/ml aprotinin,
complete protease inhibitor). Protein concentrations were
determined using bicinchoninic acid (BCA) protein assay
(23225, ThermoFisher Scientific, Belgium). For ELISA,
samples were run on the glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) ELISA (ab176642, Abcam, UK)
following the manufacturer’s instructions. For western

blotting, samples were run on 4–12% gradient gel in MES
SDS buffer and blot ted us ing the iBlo t sys tem
(ThermoFisher Scientific). After blocking, membranes were
probed with anti-MT (1/1000, Abcam, ab12228) or anti-β-
tubulin (1/500, ab6046, Abcam, UK) antibodies, followed
by secondary antibody (1/2000, 170-6515 & 170-6516, Bio-
Rad, Belgium) diluted in 5% milk in TBST (0.1% Tween 20
in 19.8 mmol/l Tris base, 150.7 mmol/l NaCl, pH 7.6).
Detections were performed on an Azure Biosystems device
and data were analysed in ImageJ. ELISA and western blot
antibodies were first validated on Kimba samples. Statistically
significant differences were determined using a two-tailed
unpaired Student’s t test via GraphPad Prism 8 software
(USA).

Results

Single-cell RNA sequencing analysis yields 15 clusters corre-
sponding to eight retinal cell types Single-cell transcriptome
analysis was performed on retinal tissue of 12-week-old wild-
type and Akimba mice. Characteristic features of diabetic reti-
nopathy were confirmed in Akimba mice at this age (Fig. 1a-
f). The analysis pipeline of this study is depicted in Fig. 1g. A
total of 9474 cells were analysed, with on average 1280 genes
and 3068 unique molecular identifiers detected per cell. Of
these, 5738 cells (61%) originated from Akimba retinas and
3736 cells (39%) from wild-type retinas. Based on expression
of the most variable genes, 15 cell clusters were generated
(Fig. 2a-e), which were annotated as follows (Fig. 2f, ESM
Table 1): rod photoreceptors (clusters 0, 1, 3, 13), cone photo-
receptors (cluster 9), bipolar cells (clusters 4 and 5; containing,
respectively, mainly cone and rod subtypes), amacrine cells
(clusters 7 and 12; containing, respectively, mainly
GABAergic and glycinergic subtypes), macroglia (Müller glia
and astrocytes; clusters 2, 10, 14), immune cells (cluster 6),
endothelial cells (cluster 11), and a composite cluster contain-
ing pericytes and fibroblasts (cluster 8). Müller glia and astro-
cytes could not be resolved as separate clusters, probably due
to the low relative number of astrocytes in the total retinal cell
population. The abundance of wild-type vs Akimba cells per
cluster is depicted in Fig. 2c-d, the relative abundance of cell
types for each genotype is depicted in Fig. 2e. Clusters corre-
sponding to horizontal and retinal ganglion cells were not
detected in this study. For rod, cone, bipolar, macroglial and
immune cells, the data allowed further differential gene
expression and/or subclustering analysis, as we report below.

Differential gene expression analysis in Akimba vs wild-type
retinal neurons Differential gene expression analysis was
performed on rod photoreceptors (ESM Fig. 1, ESM
Table 2, ESM Table 3), cone photoreceptors (ESM Fig. 2,
ESM Table 4 and ESM Table 5) and bipolar cells (ESM Fig.
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3, ESM Table 6 and ESM Table 7). Functional gene networks
and pathways related to oxidative stress response and inflam-
mation (antigen processing and presentation and/or interferon
response) were found to be commonly upregulated in Akimba
rods, cones and bipolar cells. Increase of oxidative phosphory-
lation (OXPHOS) transcripts was identified in cones and bipo-
lar cells. In addition, increase of transcripts related to ATPase-
mediated proton transport was observed in cones and pathways
related to neuronal development in rods and bipolar cells.
Functional networks that were commonly downregulated in
Akimba rods, cones and bipolar cells were phototransduction,
visual perception, ribosomes and glycolysis.

Differential gene expression analysis in Akimba vs wild-type
macrogliaBased on differentially expressed genes, the follow-
ing functional networks were found to be upregulated in
Akimba macroglia (Fig. 3a, ESM Table 8): ribosome, cyto-
skeleton, immune system processes (antigen processing and
presentation, interferon response), S100 proteins, glutathione
metabolism, iron ion homeostasis, cell cycle regulation/
apoptosis and OXPHOS. Notably, we observed several
markers of reactive gliosis, including Gfap, Lcn2,
Serpina3n, Serping1 and C4b [14]. Downregulated genes in
Akimba macroglia associated into glycolysis, central nervous

system (CNS) development and OXPHOS (Fig. 3b, ESM
Table 9). Although OXPHOS-related transcripts were
observed in both datasets, data indicating upregulation of
these transcripts in Akimba mice was most prominent.

Subcluster analysis of macroglia Next, we evaluated whether
the macroglial cells in our dataset could be subdivided in
subpopulations hallmarked by different activation states/
biological pathways and identified four subclusters (0, 1, 2
and 4) with a macroglial transcriptional profile (Fig. 4).
Analysis of the gene signature of these subclusters led us to
identify different macroglia phenotypes characterised by tran-
scripts related to cytoskeleton organisation, Rho GTPase
signalling and S100 proteins (subcluster 0); antigen presenta-
tion (class I MHC), immune system, and endoplasmic reticu-
lum (subcluster 1); metabolism and ribosomal proteins
(subcluster 2) and extracellular matrix (ECM) deposition,
collagens, (ion) transporters, glutathione metabolism and
specific growth factor signalling pathways such as IGF bind-
ing proteins (IGFBPs) and TGFβ/bone morphogenetic
protein (BMP) signalling (subcluster 4) (Table 1, ESM
Table 10). Of note, in addition to macroglia, subcluster four
was found to contain a small percentage of cells expressing
retinal pigment epithelium (RPE) markers.
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haematoxylin and eosin-stained retinal cross-section of 12-week-old
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layers (OPL, ONL, PRL) are highly disorganised or absent in Akimba
eyes, as a result of photoreceptor degeneration. Scale bars (b, e), 600 μm;
scale bars (bʹ, eʹ), 100 μm; scale bars (c, f), 20 μm. (g) Schematic over-
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Subcluster analysis of immune cells Differential gene expres-
sion analysis of the global Akimba retina vs wild-type retina
was also evaluated. Although this analysis compares different
cell populations, for which relative abundances differ per
genotype (Fig. 2e), results indicated an increase in inflamma-
tory pathways including antigen processing and presentation,
complement and a heterogenous network comprising immune

system and regulation of endocytosis in the Akimba retina
(ESMFig. 4, ESMTable 11 and ESMTable 12). In agreement
with this, 196 out of 219 immune cells in our dataset were
derived from Akimba retina. To obtain a better view on their
diversity, immune cells were further subclustered. Based on
the genes with greatest specificity for each subcluster (ESM
Table 1), we identified three high quality immune cell subpop-
ulations (Fig. 5): (1) Ccr2low non-inflammatory monocytes,
(2) resting and activated microglia and (3) inflammatory
monocyte-derived macrophages. The latter population was
exclusively present in Akimba retinas.

Protein markers of metabolic switch, gliosis, inflammation,
metal ion and oxidative stress response confirm single-cell
transcriptome findings To confirm the observations from the
scRNAseq analysis, expression of several key markers was
verified at the protein level. Immunohistochemistry confirmed
an increase of S100 proteins and GFAP in the 12-week-old
Akimba retinas, localised in the macroglia (Fig. 6a–f).
Second, confirming activation of immune responses, we
observed an increase of the isolectin-B4+ signal (i.e. microglia
activation and inflammatory cell influx) in the Akimba retina
(Fig. 6g–i). Third, both in the global and cell-type-specific
differential gene expression analyses we found an increase
in transcripts related to metal ion and oxidative stress
response. Therefore, we evaluated MT and HO-1 expression
via western blot and immunohistochemistry. A significant
increase of these proteins was observed in Akimba retinas,
confirming the upregulation of these cellular processes, with
MT and HO-1 localising mainly to neurons in the outer and
inner retina (Fig. 7a–f). Finally, the apparent metabolic switch
from glycolysis to OXPHOS was evaluated with an ELISA
for the glycolytic enzyme GAPDH on retinal lysates of 6-, 8-,
10- and 12-week-old wild-type and Akimba mice. Our results
confirmed a significant reduction of retinal GAPDH protein
levels in Akimba mice at all time points evaluated, with no
significant changes in the Akimba retina over this 6-week time
frame (Fig. 7g).

Discussion

Our results confirm that at 12 weeks of age, the Akimba retina
is dysfunctional, with loss of rod photoreceptors and gliosis,
as well as influx and activation of immune cells. In addition,
we observe alterations of metabolism, ribosomal proteins,
metal ion and redox homeostasis, and cytoskeletal compo-
nents. Our findings are in line with previous bulk transcripto-
mics studies in streptozotocin (STZ)-induced diabetic retinop-
athy models [15–17]. In addition, enrichment of immune
processes such as interferon signalling and antigen presenta-
tion have also been observed in models of retinal degeneration
[15–17]. Our observations identify cell-type-specific changes
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and shed more light on subtypes of inflammatory and
macroglial cells that are present in this diabetic retinopathy
model. Below we discuss prominent observations in our
dataset.

Reactive gliosis in Akimba macroglia As a universal response
to CNS injury, macroglia (Müller cells and astrocytes) under-
go morphological and functional alterations that modulate,
among others, neuron and synapse function, endothelial barri-
er integrity, and ECM and immune cell function. In line with
published reports, our data in Akimba macroglia confirm

upregulation of reactive gliosis markers associated with cyto-
skeleton, cell cycle, peptidase regulation and S100 proteins
[14, 18, 19]. Upregulation of these functional networks has
also been observed in other animal models of diabetic retinop-
athy and in human diabetic retina [20–23]. For S100 proteins
and GFAP, results were confirmed on the protein level, and
correspond to previous findings in Akimba retinas [9, 24].
Specifically for S100 proteins, upregulation has been reported
in the retina of rodent diabetic retinopathy models, including
Akimba mice, and in the vitreous and plasma of diabetic reti-
nopathy patients, where it was found to be a marker for
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proliferative diabetic retinopathy [25–27]. Their pleiotropic
role links S100 proteins to inflammation, angiogenesis and
fibrosis—3 key processes in diabetic retinopathy.
Furthermore, our findings underscore that macroglia contrib-
ute to the inflammatory response via antigen processing and
presentation as well as interferon signalling, which enhance
attraction/activation of immune cells [19, 28]. Together, these
transcriptional changes may compromise Müller glia support
functions andmay contribute to the imbalanced retinal ion and
water homeostasis, oedema, production of reactive oxygen
species, proinflammatory molecules and neurodegeneration
that have been observed in the Akimba retina.

Maladaptive metabolic changes in Akimba retina Analysis of
the transcriptional changes in the Akimba retina as a whole, as
well as in individual neuronal and macroglial cell types, indi-
cates a reduction of transcripts related to glycolysis and
concomitant increase of transcripts related to OXPHOS. On
the one hand, photoreceptors mainly take up glucose from the
choroidal vasculature and metabolise it via aerobic glycolysis
[29]. Given the high metabolic demand of phototransduction,
the downregulation of glycolysis genes observed in rods and
cones in this study may reflect the intimate connection
between metabolism and function/survival in these cells and
the loss of functional photoreceptors. Macroglia, on the other
hand, mediate neuron–glia metabolic coupling. According to
the lactate shuttle hypothesis, astrocytes take up glucose,
metabolise it to lactate via glycolysis and transport this lactate
to neighbouring neurons, where it serves as the primary

metabolite [30, 31]. Given that in astrocytes, insulin signalling
is required for efficient glucose uptake into the brain [32], it is
likely that intracellular glucose availability is reduced in
Akimba macroglia. Sustained glucose deprivation has been
described to induce a metabolic shift in Müller cells from
glycolysis to OXPHOS [33]. As a consequence, less lactate
can be shuttled to neurons, leading to increased oxidative
stress and energy depletion [30]. Given the intricate relation-
ship of inner retinal neurons with Müller glia, this hypothesis
may explain the loss of retinal ganglion cells and inner nuclear
layer thinning reported in Akimba retinas [8]. Notably, west-
ern blotting confirmed that hyperglycaemia leads to decreased
levels of the glycolysis checkpoint protein GAPDH, which
may in turn result in the diversion of upstream glycolytic
intermediates to alternative pathways, Müller glia dysfunction
and cell death [34]. Accordingly, GAPDH was found to be
reduced in the retina of diabetic rodents, and remains compro-
mised even after glycaemic control is reinstituted, suggesting
that it plays a key role in diabetic retinopathy progression
[35–37].

Differential activation states illustrate macroglial diversity in
the retina In line with reported astrocyte and Müller glia
heterogeneity [14, 18, 19, 38, 39], subcluster analysis of
macroglia suggests the presence of distinct macroglial
subpopulations. One subpopulation was characterised by
immune processes such as antigen presentation (class I
MHC). Elevated MHC transcripts have been reported in reti-
nal Müller cells from STZ-induced diabetic rats [40]. A
second macroglial subtype displayed a profibrotic profile
related to ECM deposition, collagen synthesis and processing,
cell-ECM interactions as well as growth factor signalling
pathways such as IGFBPs and BMPs. BMPs have been
described as important regulators of macroglia differentiation
and reactive gliosis in retinal macroglia [41]. IGFBPs on the
other hand have been demonstrated to be expressed by specif-
ic Müller cell phenotypes relating to fibrotic retinal disease
in vitro [42]. It was interesting to observe that in this subclus-
ter, macroglial cells clustered together with a small percentage
of cells carrying RPE markers, another cell type which has
been reported to undergo transition into a fibrotic phenotype
and to be involved in retinal fibrotic processes. Taken togeth-
er, these data are in line with prior reports identifying Müller
cells in diabetic epiretinal membranes and describing their
ability to transdifferentiate into myofibroblast-like cells asso-
ciated with proliferative diabetic retinopathy. The third and
fourth subpopulations were characterised by cytoskeleton
organisation, S100 proteins and metabolic/ribosomal proteins
respectively, connecting to our findings on gliosis and metab-
olism in Akimba macroglia.

Inflammatory processes in the Akimba retina A recurring
observation in this study, supported by the differential gene
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Fig. 4 Subclustering of macroglial cells. t-SNE plot depicting macroglial
cell subclusters. Subcluster 3 could not be confidently annotated as
macroglia and was excluded from further analysis
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expression analysis of the global retina and macroglia,
subclustering of inflammatory cells, and confirmatory staining
for isolectin-B4, is the increase of immune system-related
pathways in the Akimba retina. Our data indicate a prominent
increase and activation of resident and invading immune cells
in the Akimba retina, as previously observed in Akimba mice
[8, 9], animal models of photoreceptor degeneration [43–45]
and human diabetic retinopathy [46]. Microglia, macrophage,
leucocyte and (although we did not detect these cells as an
individual immune subcluster) lymphocyte activation, as well
as monocyte and leucocyte differentiation, were identified as
significantly enriched pathways, and are believed to contrib-
ute to diabetic retinopathy progression [47]. Inversely, the
prominent photoreceptor cell death in the Akimba retinamight
also trigger microglia/macrophage migration in order to
remove debris and dying cells. We found that Akimba retinas
exhibit features of advanced diabetic retinopathy, with high
expression of complement genes. Dysregulation of the

complement system has previously been described in diabetic
retinopathy patients and animal models [48, 49]. Furthermore,
a role for the NLR family pyrin domain containing 3 (NLRP3)
inflammasome during pathological neovascularisation in the
Akimba mouse model was previously reported. Activation/
upregulation of this inflammatory complex was only recently
described in the vitreous humour of diabetic retinopathy
patients [50, 51]. Although the NLRP3 inflammasome was
not identified in the top 100 genes of our differential expres-
sion analysis, NLRP3 inflammasome-related genes, including
Casp1, Pycard, Il1b and Il18, were significantly upregulated
in Akimba retinas, confirming the findings by Chaurasia et al
[9].

Metal ion and redox dyshomeostasis in the Akimba retina
Metal ions such as iron, copper and zinc, play vital roles in
the structure and function of proteins involved in metabolism,
homeostasis and oxidative stress response pathways [52]. In

Table 1 Prominent signature gene networks in macroglia subclusters based on GO, KEGG, REACTOME and/or UNIPROT enrichment analysis of
top 200 differentially expressed genes in STRING

Grouping/pathway Genes

Subcluster 0

Cytoskeleton organisation Actb, Anxa1, Brk1, Cav1, Chp1, Cnn3, Cryab, Dpysl2, Espn, Gfap, Gng5, Nckap1, Nde1, Pak3,
Pfn1, Rab11a, Sox9, Sptbn1, Spc25, Ssx2ip, Stmn1, Tubb2b, Vim, Wdr1

Rho GTPase effectors Actb, Brk1, Kif5b, Mapre1, Nckap1, Nde1, Pak3, Pfn1, Rhoc, Spc25, Tubb2b

S100 proteins S100a1, S100a4, S100a6, S100a10, S100a11, S100a13, S100a16

Subcluster 1

Antigen presentation: folding, assembly and
peptide loading of class I MHC

Bcap31, H2-D1, H2-K1, H2-T23, Pdia3, Tap2

Immune system Bcap31, C4b, Cd63, Cd81, Clu, Cntfr, Csf2ra, Ctsh, Ctsl, Fuca1, Ggh, H2-D1, H2-K1, H2-T23,
Il15, Irf3, Jun, Nfkbia, Pdia3, Serping1, Tap2, Tnfrsf1a, Ubc, Vcam1

Endoplasmic reticulum Acsl3, Atp6ap1, Bcap31, Clu, Cspg5, Cyp26a1, Derl1, Derl2, Fkbp10, Gpr37, Manf, Pdia3,
Pdia4, Pdia6, Ppap2b, Prkcsh, Ptplad1, Rdh10, Reep5, Rtn3, Rtn4, Scara3, Sec62, Srebf1,
Tap2, Tmco1, Tmed2, Tmed4, Vimp, Vkorc1, Vmp1, Yipf5

Subcluster 2

OXPHOS Atp5a1, Atp5c1, Atp5f1, Atp5g3, Atp5h, Atp5j, Atp5k, Atp5o, Atp6v0d1, Atp6v1b2, Cox4i1, Cox5a,
mt-Atp6, mt-Co2, mt-Co3, mt-Cytb, mt-Nd1, mt-Nd2, mt-Nd3, mt-Nd4, mt-Nd4l, mt-Nd5,
Ndufa10, Ndufa4, Ndufb10, Ndufv2, Uqcrh

Ribosome Fau, Mrpl23, Rpl14, Rpl18a, Rpl29, Rpl7, Rpl9, Rplp1, Rps10, Rps13, Rps14, Rps21, Rps24,
Rps25, Rps27, Rps28, Rps29, Rps6, Rps7, Rpsa

Glycolysis Aldoa, Aldoc, Gpi1, Hk1, Ldha, Ldhb, Pfkp, Pgam1, Pkm

Subcluster 4

Extracellular matrix Anxa2, Bgn, Bmp4, Col18a1, Col1a2, Col8a1, Col9a1, Col9a2, Efemp1, Fbln1, Fbln5, Fbn1,
Fmod, Lgals1, Ltbp1, Ltbp2, Mfap4, Ogn, Optc, Podn, Reln, Spock1, Tgfbr3, Thbs1, Timp3,
Vcan

Collagen Col18a1, Col1a2, Col8a1, Col9a1, Col9a2, Col9a3

Regulation of IGF transport/uptake by IGFBPs App, Bmp4, C3, Cst3, Fbn1, Fstl1, Gas6, Igfbp4, Igfbp5, Igfbp6, Lgals1, Ltbp1, Mxra8, Penk, Trf

Solute carrier (SLC)-mediated transmembrane
transport

Slc13a4, Slc16a8, Slc20a2, Slc26a4, Slc26a7, Slc2a1, Slc4a4, Slc4a5, Slc6a13, Slc6a20a, Slc6a6,
Slc6a9, Slc7a11

TGF-β signalling pathway Bambi, Bmp2, Bmp4, Bmp7, Ltbp1, Thbs1

Glutathione metabolism Gpx3, Gsta3, Gsta4, Gstm1, Mgst1

More detailed gene lists and STRING permalinks are available in ESM Table 10
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our dataset, transport, redox homeostasis (such as glutathione)
and metal ion response pathways were upregulated in
macroglia and all cell differential expression analyses, which
was further confirmed on the protein level for the metal stor-
age, transport and detoxification protein MT. Abnormal iron
accumulation, increased levels of transferrin and ferritin and
decreased zinc levels have been observed in the vitreous
humour and/or retina of diabetic retinopathy, age-related
macular degeneration, glaucoma, retinal vein occlusion and
aged patients [52–55] and are believed to predispose the retina
to oxidative stress [52, 53]. Furthermore, it has been described
that iron toxicity activates the NLRP3 inflammasome [56].
Although reducing unbound free metal ions and serving anti-
oxidant functions [52], our data suggest that this upregulation

is insufficient to restore homeostasis. Indeed, we found oxida-
tive stress response gene networks (e.g. Gpx1, Gpx3, Gpx4,
Prdx1 and Prdx6) to be highly upregulated in Akimba total
retina, cones and macroglia. These transcriptional observations
were supported by immunostaining indicating increased levels
of the oxidative stress marker HO-1 in Akimba vs wild-type
retinas. Interestingly, ‘ferroptosis’ was found to be an enriched
cellular pathway in several clusters. This form of regulated cell
death is triggered by cellular iron overload and generation of
lipid peroxidation products and has been associated with neuro-
degenerative pathologies such as age-related macular degener-
ation, Alzheimer’s disease and Parkinson’s disease [57].
Indeed, several pathway analyses in this study pointed out
commonalities with these neurodegenerative diseases.
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expression of the top 10 genes
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Limitations of the study Despite the Akimba mouse being a
translational model of diabetic retinopathy, it has certain
limitations: Akimba mice lack pre-retinal neovascularisa-
tion and, whereas 12-week-old Akimba mice display
mainly photoreceptor loss, diabetic retinopathy patients
additionally display loss of retinal ganglion cells and
amacrine cells [58]. In agreement with clinical diabetic
retinopathy, the combination of hyperglycaemia and
elevated VEGF levels drives progression into proliferative
diabetic retinopathy. In Akimba mice, transient overex-
pression of human VEGF165 is localised in photorecep-
tors, but augmented endogenous mouse VEGF levels have
also been observed in Akimba mice [8, 9, 59, 60].
Importantly, we confirmed that 12-week-old Akimba mice
display features of diabetic retinopathy such as
microaneurysms, vascular leakage, neurodegeneration
and oedema. In addition, our choice of this age was based

on the fact that in vivo efficacy of therapeutic intervention
has been shown in 12-week-old Akimba mice [10, 61 and
Hu TT, De Vriese A, Vanheukelom V, Feyen J (unpub-
lished results)]. In terms of analysis, it was not possible to
evaluate variability between individuals as retinal cells
from individual mice have been pooled in this study. In
addition, our approach did not have the resolution to sepa-
rate clusters of Müller cells and astrocytes and could not
identify horizontal or retinal ganglion cell clusters. Some
resolution may have been lost due to the presence of rod-
specific transcripts in all clusters, a widely acknowledged
issue with retinal scRNAseq [11, 12]. We were unable to
filter out this contamination in the earliest stages of anal-
ysis, but took great care in excluding these transcripts in
downstream analyses. Nevertheless, using this approach it
cannot be excluded that less known or less specific rod
transcripts are retained in the analysis or vice versa.

50

40

30

20

10

0
Wild-type Akimba

Wild-type Akimba

Wild-type Akimba

R
el

at
iv

e 
G

FA
P

-p
os

iti
ve

 a
re

a

50

40

30

20

10

0

R
el

at
iv

e 
IB

-4
-p

os
iti

ve
 a

re
a

25

20

15

10

5

0R
el

at
iv

e 
S

10
0-

po
si

tiv
e 

ar
ea

***

**

*

GFAP  DAPI  

S100   DAPI

Wild-type Akimbaa

d Wild-type Akimba

b

e

RNFL/GCL
IPL

INL

OPL

ONL

PRL

IB-4

g ihWild-type Akimba

RNFL/GCL

IPL

INL

OPL

ONL

PRL

RNFL/GCL
IPL

INL

f
RNFL/GCL

IPL

INL

c
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Conclusion Taken together, using single-cell RNA sequencing,
we obtained a more in-depth view of the transcriptional signa-
tures and diversity of neuronal, glial and inflammatory cell
populations in the Akimba model of diabetic retinopathy. We
observed: (1) shifts in retinal cell population abundance, most
prominently rod photoreceptors and specific inflammatory cell
populations; (2) metabolic and functional alterations of
macroglia, which may compromise their support functions;
(3) activation of immune system pathways, redox and metal
ion dyshomeostasis; and (4) heterogeneity in macroglia pheno-
types, including distinct profibrotic and proinflammatory popu-
lations. Our findings support the emerging idea that macroglia
play a key role in retinal neurodegenerative diseases. The find-
ings presented in this manuscript should be confirmed in addi-
tional early/intermediate stage diabetic retinopathy models and,
to confirm their relevance in humans, in patient samples.

Additionally, differentially expressed pathways need to be eval-
uated in functional experiments to evaluate whether they play a
detrimental or protective role in diabetic retinopathy.
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