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Abstract
Aims/hypothesis Self-antigen-specific T cell responses drive type 1 diabetes pathogenesis, but alterations in innate immune
responses are also critical and not as well understood. Innate immunity in human type 1 diabetes has primarily been assessed via
gene-expression analysis of unstimulated peripheral blood mononuclear cells, without the immune activation that could amplify
disease-associated signals. Increased responsiveness in each of the two main innate immune pathways, driven by either type 1
IFN (IFN-1) or IL-1, have been detected in type 1 diabetes, but the dominant innate pathway is still unclear. This study aimed to
determine the key innate pathway in type 1 diabetes and assess the whole blood immune stimulation assay as a tool to investigate
this.
Methods The TruCulture whole blood ex vivo stimulation assay, paired with gene expression and cytokine measurements, was
used to characterise changes in the stimulated innate immune response in type 1 diabetes. We applied specific cytokine-induced
signatures to our data, pre-defined from the same assays measured in a separate cohort of healthy individuals. In addition, NOD
mice were stimulated with CpG and monocyte gene expression was measured.
Results Monocytes from NOD mice showed lower baseline vs diabetes-resistant B6.g7 mice, but higher induced IFN-1-
associated gene expression. In human participants, ex vivo whole blood stimulation revealed higher induced IFN-1 responses
in type 1 diabetes, as compared with healthy control participants. In contrast, neither the IL-1-induced gene signature nor
response to the adaptive immune stimulant Staphylococcal enterotoxin B were significantly altered in type 1 diabetes samples
vs healthy control participants. Targeted gene-expression analysis showed that this enhanced IFN response was specific to IFN-1,
as IFN-γ-driven responses were not significantly different.
Conclusions/interpretation Our study identifies increased responsiveness to IFN-1 as a feature of both the NODmouse model of
autoimmune diabetes and human established type 1 diabetes. A stimulated IFN-1 gene signature may be a potential biomarker for
type 1 diabetes and used to evaluate the effects of therapies targeting this pathway.
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Data availability Mouse gene expression data are found in the gene expression omnibus (GEO) repository, accession
GSE146452 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452). Nanostring count data from the human
experiments were deposited in the GEO repository, accession GSE146338 (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE146338). Data files and R code for all analyses are available at https://github.com/rodriguesk/T1D_truculture_diabetologia.
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Abbreviations
BRI Benaroya Research Institute
cDC Conventional dendritic cell
CFB Complement factor B
IFNAR IFN-α receptor
ISG IFN-stimulated gene
LoD Limit of detection
LPS Lipopolysaccharide
MSigDB Molecular Signatures Database
PBMC Peripheral blood mononuclear cells
PolyIC Polyinosinic-polycytidylic acid
SEB Staphylococcal enterotoxin B
Th1 T helper 1

Introduction

Type 1 diabetes is an autoimmune disease that manifests in
adaptive immune responses targeting the insulin-producing
beta cells of the endocrine pancreas. However, alterations in

innate immune responses also drive autoimmune pathogene-
sis, with involvement in both the initial break in tolerance and
the later failure of regulation [1–4].Many known type 1 diabe-
tes genetic risk alleles encode genes expressed by antigen
presenting cells or other innate immune cells [5].
Understanding how innate immune responses are altered in
type 1 diabetes and other autoimmune diseases is important
for elucidating pathogenic pathways that could be targeted
with new treatments. Within the spectrum of innate immune
responses, inflammatory responses can generally be
categorised into type 1 IFN (IFN-1)- or IL-1 dominant
[6–10]. IL-1 and IFN-1 responses can counter-regulate each
other and are needed for responses to different types of path-
ogens: IFN-1 increases antigen presentation and is primarily
involved in viral responsiveness, whereas IL-1 stimulates
secretion of inflammatory cytokine, such as IL-6, and drives
responses to bacterial infection [6, 11]. Both types of
responses have been postulated to play a role in the pathogen-
esis of type 1 diabetes and other autoimmune diseases [12,
13].

Diabetologia  (2020) 63:1576–1587 1577

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146452
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146338
https://github.com/rodriguesk/T1D_truculture_diabetologia


Autoimmune diabetes-susceptible NODmice display alter-
ations in both IFN-1 and IL-1 responses. Higher IFN-1
responses are observed in young (2–4-week-old) NOD mice
and blocking the IFN-α receptor (IFNAR) at this age inhibits
diabetes [14, 15], suggesting that higher IFN-1 responsiveness
may contributes to the initial loss of self-tolerance. However,
we have shown that myeloid cells from older prediabetic
NOD mice display impaired expression of IFN-1-induced
genes but higher IL-1-associated gene expression [16].

Previous studies have not provided a clear picture of how
innate immune responses are altered in human type 1 diabetes.
Viral infections, and the associated IFN response, are a poten-
tial environmental trigger for type 1 diabetes in genetically
susceptible individuals [17], and individuals at risk for devel-
oping type 1 diabetes have shown higher expression of IFN-1
response genes (IFN-stimulated genes [ISGs]) in peripheral
blood mononuclear cells (PBMCs) without ex vivo stimula-
tion. This IFN signature has been shown to correlate with the
development of islet autoantibodies, but wanes before the
development of overt disease [18, 19]. Furthermore, pancre-
atic islets from individuals with type 1 diabetes may display
IFN hyper-responsiveness [20–22]. Increased IL-1 has also
been associated with type 1 diabetes [23]. For example, mono-
cytes from individuals with type 1 diabetes can makemore IL-
1 and IL-6 without stimulation [24]. Increased IL-1-associated
responses have been observed at the time of diagnosis; these
increases were extinguished with IL-1 receptor antagonist
treatment [25, 26]. Although blocking IL-1 signals leads to
clinical improvement in other autoimmune diseases, such as
rheumatoid arthritis, and in type 2 diabetes [27, 28], two type
1 diabetes trials that blocking IL-1 signals with either anakinra
or canakinumab failed to alter insulin secretion in individuals
with new-onset type 1 diabetes [29]. Together, these studies
show that, in different contexts, type 1 diabetes has been asso-
ciated with innate immune responses dominated by both IFN-
1 and IL-1. Less is known about innate immunity in individ-
uals with established type 1 diabetes.

One potential limitation of many previous studies on innate
immune changes associated with human autoimmunity is the
lack of relevant innate stimulation that can increase the
response range. Although some prior studies have assessed
cytokine responses after innate stimulation of either PBMCs
or purified cell populations, a mix of either increased IL-1- or
IFN-1-associated responses were associated with type 1
diabetes [23, 30]. However, the process of cellular isolation
can alter phenotypes and may eliminate the inter-cell crosstalk
that occurs in vivo. In contrast, a whole blood assay
(TruCulture) was used by the Milieu Intérieur project to stan-
dardise human immune stimulation directly, ex vivo; this has
facilitated measurements of individual response variation, and
categorisation of stimulus-specific immune responses [31,
32]. This assay has lower technical variation than PBMC-
based assays and includes innate immune cells not present in

PBMCs [33]. In this study, we compared monocyte gene
expression after CpG stimulation in NOD and control mice,
and measured gene expression and cytokine responses after
ex vivo innate immune stimulation in 17 individuals with
established type 1 diabetes and 17 age-matched control partic-
ipants. A better understanding of innate immune responses in
human type 1 diabetes and related mouse models could help
identify the innate pathways that could be targeted therapeu-
tically for successful disease modification.

Methods

Mouse CpG stimulation and monocyte gene
expression analysis

Female 8–10-week-old NOD and control B6.g7 mice
(Jackson Laboratories, Ellsworth, ME, USA), 3–4
mice/group, were injected intravenously with 170 μl PBS +
30 μl 1,2-Dioleoyloxy-3-trimethylammonium propane
(DOTAP; Roche, Indianapolis, IN, USA), with and without
5 μg CpG-A (2216; Invivogen, San Diego, CA, USA). After
6 h, spleen cells were harvested and Ly6C+ monocytes were
sorted. Extracted RNA was sequenced and analysed, as previ-
ously described [16, 34, 35]. Details and other analysis of the
unstimulated mouse samples used in this study were previous-
ly published [16]. The experiments were not replicated, with
each mouse acting as a biological replicate.

Human Study design

Samples from 17 individuals with type 1 diabetes and 17
healthy control participants matched for age ±1 year were
collected, concurrently, over 6 months, usually as age-
matched pairs that were collected within 1 week of each other
(Table 1 and electronic supplementary material [ESM]
Table 1). Individuals with type 1 diabetes had history of clin-
ical diagnosis and presence of type 1 diabetes-associated auto-
antibodies, were diagnosed 3 months to 8 years prior to blood
sample collection, and had good glucose control, as represent-
ed by HbA1c <63.9 mmol/mol (8%), although HbA1c at time
of collection was not an exclusion criterion. Healthy control
participants had no first-degree relatives with type 1 diabetes.
Groups were not sex-matched but gene expression changes
were not associated with sex (ESM Fig. 1). All participants
were enrolled in the Benaroya Research Institute (BRI)
Immune Mediated Disease Registry. All participants fasted
overnight prior to the blood draw. HbA1c was measured under
Clinical Laboratory Improvement Amendments (CLIA)-
approved protocols at the University of Washington’s
Northwest Lipid Metabolism and Diabetes Research
Laboratories. Each sample was only measured once; repeat
measurements were not taken from the same sample.
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TruCulture tube collection and quantification of
cytokine and gene expression

Peripheral blood was drawn directly into TruCulture tubes
(Myriad RBM, Austin, TX, USA) for stimulation following
manufacturer’s instructions, and as previously described [32].
Tubes were pre-loaded with one of the following immune
stimuli: Staphylococcal enterotoxin B (SEB; 0.4 μg/ml), IL-
1β (25 ng/ml or 1760 IU/ml), lipopolysaccharide (LPS;
1 ng/ml), IFN-β (1000 IU/ml), polyinosinic-polycytidylic
acid (polyIC; 20 μg/ml), with stimulus concentrations previ-
ously determined [31], or a no-stimulus null control. After
blood draw and incubation, the supernatant and cells were
separated for downstream assays of secreted proteins and
mRNA, respectively.

Cytokines were quantified in TruCulture tube supernatants
using the OptiMAP Luminex panel (Myriad RBM), following
manufacturer protocols. IFN-α and IFN-β were quantified
using Simoa assays (Quanterix, Billerica, MA, USA), as
described previously [36, 37]. The limit of detection (LoD)
was 0.6 fg/ml for IFN-α and 0.45 pg/ml for IFN-β.

Gene expression was quantified in stimulated whole blood
samples using the nCounter Human Immunology kit v2
(NanoString, Seattle, WA, USA). Total mRNA was extracted
from TruCulture cell pellets stabilised in Trizol LS (Sigma-
Aldrich, St Louis, MO, USA), using the NucleoSpin 96 RNA
tissue kit protocol (Macherey-Nagel, Düren, Germany), as
previously described [32]. For each sample, 100 ng of total
RNA was analysed.

Gene expression analysis

Data processing and normalisation Normalisation of
Nanostring nCounter data was performed as described previ-
ously [32], using nSolver (NanoString; v. 2.5) for analysis of
quality and negative and positive controls. Differences in
RNA input were normalised using six housekeeping genes
(EEF1G, RPL19, PPIA, TBP, G6PD, POLR2A), selected
using the geNorm method [38]. We estimated a lower LoD
of 4 counts [39], and retained 520 genes with expression
above this LoD in ≥1/3 of samples from any stimulation
condition in both participant groups. Multi-dimensional scal-
ing (MDS) of gene counts revealed batch differences associ-
ated with the sample quantification method; ComBat [40] in

the sva R package [41] was used to remove this batch effect
prior to downstream analyses.

Differential expression analysis Differential gene expression
was determined using limma-voom [42], accounting for non-
independence of samples from the same participant using
limma’s duplicateCorrelation. Between-group comparisons
of the stimulation effect used the interaction term between
disease status and stimulus. Multiple comparisons were
adjusted using the Benjamini–Hochberg false discovery rate
(FDR). Heatmaps were generated using ComplexHeatmap
[43].

Gene set and signature score analysesWe determined differ-
ential expression of pre-defined gene sets using ROAST [44].
For human samples, we used gene sets from two sources; first,
we used hallmark IFN response gene sets from the Molecular
Signatures Database (MSigDB) [45]. For more refined
stimulus-specific responses, we used genes that have
increased expression after TruCulture tube stimulation with
IFN-α, IFN-β, IFN-γ or IL-1β [32] and have an ortholog to
mouse ISGs. For mouse samples, we used genes that respond
to IFN-α stimulation in vivo in many different cell types [10]
and genes specifically induced by IFN-β [32]. ESM Table 2
shows details of gene sets. Signature scores for each gene set
are the sample-level means of the gene-level z scores of
expression or log-fold change.

Statistics, visualisations and code

Samples were not randomised and the experimenters were not
blinded. All statistical analyses were performed using R v.
3.5.2 [46], with visualisations using R base graphics and
ggplot2 [47]. t tests were two sided and data are expressed
as means (SEM), unless otherwise indicated. Specific tests
and significance thresholds are listed in the text; where not
noted, tests were two-tailed and p < 0.05 was considered
significant.

Study approval

Animals were housed in specific pathogen–free conditions
and handled according to guidelines provided by the Animal
Care and Use Committee of the National Institute of Diabetes

Table 1 Characteristics of human participants

Group Sex (male/female) Age (years) Disease duration (years) HbA1c (mmol/mol) HbA1c (%) Glucose (mmol/l)

Control 4/13 26.7 ± 2.8 – – – –

Type 1 diabetes 8/9 26.7 ± 2.8 4.3 ± 2.0 51.2 ± 13.7 6.8 ± 1.3 7.71 ± 2.26

Data are presented as mean±SD unless otherwise indicated
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and Digestive and Kidney Diseases (NIDDK) at the National
Institutes of Health (NIH). All human samples were prospec-
tively obtained under written informed consent. All study
protocols were approved by the BRI Institutional Review
Board (IRB).

Results

Higher CpG-stimulated IFN-1 responses in monocytes
from diabetes-susceptible NOD mice

To determine if the acute IFN-1 response is altered in NOD
mice, we analysed gene expression in monocytes from NOD
and B6.g7 mice 6 h after in vivo stimulation with CpG. Gene
set analysis showed that the expression of IFN-1-induced
genes was lower in unstimulated monocytes from NOD vs
diabetes-resistant B6.g7 mice, as we have shown previously
[16], but these same IFN-1-stimulated genes were more
strongly upregulated in NOD monocytes after stimulation
with CpG (Fig. 1a, b). A more restricted set of IFN-response
genes that are orthologs to human IFN-response genes also
showed this pattern of lower unstimulated but higher stimu-
lated expression in NODmice (Fig. 1c). Therefore, monocytes
from NOD mice with chronic autoimmunity display lower
baseline levels and higher induction of IFN-1 response genes
with CpG stimulation, as compared with those from control
B6.g7 mice.

Innate immune stimuli induce changes in gene
expression and upregulate inflammatory cytokine
levels in human whole blood samples

TruCulture ex vivo whole blood stimulation system was used
to measure immune response differences between individuals
with type 1 diabetes and healthy control participants. Five
stimuli were chosen: SEB to induce T cell responses; an
IFN-1 response induced directly via IFNAR with IFN-β; an
IFN-1 response induced indirectly via pattern recognition
receptors, Toll-like receptor 3 (TLR3) and retinoic acid-
inducible gene I (RIG-I), using polyIC; LPS to induce both
type 1 and type 2 IFN and IL-1 responses; IL-1β [31]. Blood
was incubated with the indicated stimuli, and cell pellets and
supernatants collected to measure gene expression and cyto-
kine protein levels, respectively, as previously described (Fig.
2a) [31, 32]. As expected, these innate stimuli induced cyto-
kine expression in samples from both type 1 diabetic and
healthy control participants, but no significant differences
were observed between the type 1 diabetes and healthy control
group in the analytes examined, after adjusting for multiple
tests (ESM Fig. 2). Five-hundred and twenty genes from the
Nanostring human immunology panel with measurable
expression in at least one condition were included. Gene

expression induced by distinct stimuli showed stimulus-
specific patterns (Fig. 2b) and clustered separately from each
other by principal component analysis (PCA; ESM Fig. 3). As
previously described, stimulation with IL-1β elicited fewer
gene expression changes as compared with other stimuli,
and samples stimulated with polyIC and IFN-β elicited simi-
lar gene expression changes as compared with other stimuli,
as captured by PC2 (Fig. 2 and ESM Fig. 3) [32]. Therefore,
the expected upregulation of cytokine and gene expression
with stimulation was observed.

Lower IFN-1 response gene expression in
unstimulated samples

Without specific immune stimulation (null stimulation), gene
expression in the type 1 diabetes and healthy control group
were similar, with only three genes showing significant differ-
ential expression (Fig. 3a, ESM Table 3). Specific modules of
gene expression that can separate responses to key cytokines,
including IFN-γ, IFN-β and IL-1β, were previously defined
by the Milieu Intérieur Consortium, who used the approach in
healthy donors [32]. The genes in these modules are the ones
that are most distinct from induction by other cytokine stimuli.
To better understand baseline, unstimulated human ISG
expression, we applied these cytokine-specific gene expres-
sion modules to the TruCulture null samples. Using this meth-
od, we found that, without specific stimulation, the IFN-1
gene score was significantly lower in type 1 diabetes (adjusted
p = 0.036), but this was not the case with the type 2 IFN or IL-
1 gene scores (adjusted p values: 0.93 and 0.12, respectively),
as compared with healthy control participants without stimu-
lation (Fig. 3b–d). Individual Milieu Intérieur-derived IFN-1
signature genes are shown in the heatmap in Fig. 3e. Although
the effect size without stimulation is small, this suggests that,
as observed in NOD mice (Fig. 1a, c) [16], individuals with
type 1 diabetes may have reduced tonic IFN-1 signalling.

SEB-driven and IFN-γ-specific gene expression does
not differ in type 1 diabetes

Adaptive immune responses, including IFN-γ-producing T
helper 1 (Th1) cells, have been shown to be critical for type
1 diabetes pathogenesis [48, 49]. Thus, we examined gene
expression changes after exposure to the adaptive stimulus
SEB and analysed IFN-γ-driven changes in gene expression.
Although SEB stimulation induced robust gene expression
changes (Fig. 2b), no significant differences in gene expres-
sion were observed between the type 1 diabetes and healthy
control group (Fig. 4a). The Milieu Intérieur-derived IFN-γ-
induced gene expression module was applied to the two most
relevant stimuli, namely SEB and LPS, but no significant
differences were observed between type 1 diabetes and
healthy control participants in this IFN-γ signature (Fig. 4b).
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Similarly, at the protein level, IFN-γ was not differentially
induced in type 1 diabetes vs healthy control participants
(Fig. 4c). Other cytokines strongly induced by SEB stimula-
tion (IL-17, granulocyte-macrophage colony-stimulating
factor [GM-CSF] and IL-2) were not differentially upregulat-
ed in type 1 diabetes as compared with healthy control partic-
ipants (ESM Fig. 2). Therefore, no significant type 1 diabetes-

associated differences were observed in the adaptive immune
responses when induced by SEB or IFN-γ.

IL-1 induced gene expression is not significantly
altered in type 1 diabetes

IL-1 is a key innate immune signal that may contribute to type
1 diabetes pathogenesis [16, 26, 50]. Surprisingly, IL-1β stim-
ulation resulted in only two genes being differentially induced
when comparing type 1 diabetes and the healthy control group
(Fig. 5a), though IL-1β stimulation overall induced smaller
changes in gene expression as compared with other stimuli
(Fig. 2b) [32].

LPS also induces IL-1-specific gene expression, and type 1
diabetes-associated changes in LPS-stimulated responses
were observed (LPS vs null), with ten genes being more
significantly induced by LPS in the type 1 diabetes vs healthy
control group, and two genes (NCF4 and S100A9) being less
induced (Fig. 5b, ESM Table 3). However, LPS also can
induce IFN-1 responses. For example, LPS-stimulated
complement factor B (CFB) is higher in individuals with type
1 diabetes, but stimulation with IFN-1 has been previously
shown to induce higher CFB expression than stimulation with
IL-1 or IFN-γ [51]. To further understand IL-1-driven chang-
es in gene expression and separate them from other innate
immune responses, the Milieu Intérieur-derived IL-1-specific
gene module was applied to both IL-1 and LPS stimuli. LPS
stimulation gave the highest level of IL-1-induced gene
expression (ESM Table 3) but no significant differences in
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the IL-1 signature were observed between the type 1 diabetes
and healthy control group (Fig. 5c). Together these data show
that the IL-1 response, induced either by LPS or IL-1 itself, is
not significantly altered in type 1 diabetes vs healthy partici-
pants. In addition, some of the LPS-induced changes in gene
expression in type 1 diabetes may be due to the effects of
increased IFN-1 signals.

Preferential induction of IFN-1 response genes in type
1 diabetes as compared with healthy control
participants

Next, we compared differences between individuals with type
1 diabetes and healthy control participants following stimula-
tion with polyIC and IFN-β, both strong inducers of the IFN-1
response. We found 21 genes that were more highly

upregulated in individuals with type 1 diabetes as compared
with control participants after IFN-β stimulation (Fig. 6a), and
14 genes after polyIC stimulation (Fig. 6b). No genes showed
significantly higher induction in healthy control participants
after either stimulus. Upon subsetting the analysis to genes in
the Milieu Intérieur-derived IFN-β module to assess IFN-1-
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dependent gene expression, we found a significant increase in
the IFN-1-driven gene signature in type 1 diabetes, as
compared with healthy control participants, with both IFN-β
and polyIC stimulation (Fig. 6c). A heatmap of the genes in
the Milieu Intérieur-derived IFN-β module after IFN-β stim-
ulation shows higher expression of IFN-1-induced genes in
individuals with type 1 diabetes (Fig. 6d, ESM Fig. 4a). A
heatmap showing the pattern of key signature scores in
healthy control and type 1 diabetic individuals from this
cohort is presented in ESM Fig. 4b. Enrichment of genes
differentially induced in type 1 diabetes after IFN-β or
polyIC stimulation was then tested using the broader
MSigDB hallmark set of IFN-1 response genes and a similar
pattern was observed, with upregulation of a significant
proportion of the IFN-response genes in individuals with type
1 diabetes, as compared with healthy control participants (Fig.
6e).

Differential cellular composition could contribute to the
cytokine levels or gene expression changes observed in whole
blood. We compared major cell populations from cell blood
counts (CBCs) between type 1 diabetes and healthy control
participants. In our cohort, monocyte levels were higher in
type 1 diabetes than in the healthy control group (ESM Fig.
5a); however, levels of monocytes did not significantly corre-
late with IFN responses (r2 = 0.025, p = 0.39), and the differ-
ences in IFN response gene expression were not explained by
cell levels (ESM Fig. 5b, c). Further, neither demographic nor
clinical variables were associated with stimulation-induced
IFN gene expression, either in individual genes (ESM Fig.
1) or gene signature scores (ESM Fig. 6).

Specific genes from the Milieu Intérieur-derived IFN-β
module may be relevant for type 1 diabetes pathogenesis.
For example, IFIH1, an ISG linked to type 1 diabetes, shows
higher expression after IFN-β, polyIC and LPS stimulation in
samples from individuals with type 1 diabetes (Fig. 6a).
XCR1, which specifically marks the cross-presenting

conventional type I dendritic cells (cDC1s) that are critical
for inducing both cytotoxic CD8 T cells and Th1 responses,
is upregulated after polyIC stimulation in type 1 diabetes vs
healthy control participants (ESM Fig. 7). In addition,
IL12RΒ1 is induced more in type 1 diabetes compared with
the healthy control group with all three IFN-1-inducing stim-
uli (LPS, polyIC and IFN-β). As IL-12 signalling is critical for
Th1 response induction, this may contribute to the Th1 bias
described in type 1 diabetes [48, 52].

To assess whether the observed alterations in the IFN-1
response were due to differential induction of IFN-1 proteins,
we measured IFN-α and IFN-β protein levels after polyIC
stimulation by digital ELISA [36]. No significant differences
in cytokine protein levels were observed between the type 1
diabetes and healthy control groups (Fig. 6f, g). Therefore, the
observed differences may instead be due to alterations in IFN-
1 signalling. Consistent with this hypothesis, several genes
downstream of the IFNAR showed higher IFN-β-induced
upregulation in type 1 diabetes, including JAK2, STAT1 and
STAT2 (Fig. 6a and ESMFig. 7). Together, these data show an
altered IFN-1 response in individuals with type 1 diabetes,
with a higher dynamic range than control participants due to
both lower baseline expression and higher stimulated expres-
sion of IFN-1 genes.

Discussion

In this study, we show that measuring gene expression after
whole blood ex vivo stimulation allows identification of
significant alterations in innate immune responsiveness in
type 1 diabetes that are not detected without stimulation.
Increased IFN-1 signalling, observed after IFN-β, polyIC
and LPS stimulation, was the response that was most strongly
associated with type 1 diabetes. Although gene expression
induced by type 1 and type 2 IFNs have considerable overlap,
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the underlying pathways that lead to induction of both types of
IFN and the downstream biological effects can differ greatly.
Therefore, separating the two types of IFN responses is impor-
tant for understanding the pathogenesis of autoimmune diabe-
tes. The increased IFN-1 responsiveness, together with a lack
of change in IFN-γ signalling, suggests that individuals with

type 1 diabetes are hyperresponsive to IFN-1, but not to type 2
IFN.

IL-1-induced responses after IL-1β or LPS stimulation
were similar in individuals with established type 1 diabetes
and healthy control participants. Although prior studies
showed an IL-1-associated signature at the onset of type 1
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diabetes, our study did not show significant differences in IL-
1-induced responses between type 1 diabetes and healthy
control participants. This may be due to differences in exper-
imental design or to unique phenotypic characteristics present
in the peri-diagnostic period [53, 54]. It is also possible that
there is, in fact, a difference in IL-1-induced responses, but
that our study was not sufficiently powered to detect them.
Indeed, some IL-1-induced differences were observed and,
although not significant, the effect was in the expected direc-
tion. It is noteworthy, however, that blocking IL-1 signals in
new-onset type 1 diabetes showed no clinical effect, suggest-
ing that this pathway may not be essential for diabetes patho-
genesis [29]. The adaptive immune responses tested here
using SEB were not significantly different between groups,
perhaps due to an absence of antigen-driven autoreactive
responses. Nevertheless, these results do show that individuals
with type 1 diabetes do not have a substantive difference in
responsiveness to global adaptive immune cell activation as
compared with control participants.

Some, but not all aspects of innate immune response alter-
ations in human type 1 diabetes are reflected in autoimmune
NOD mice. ISG expression is lower at baseline in monocytes
from prediabetic NOD mice with chronic autoimmunity, but
higher after acute IFN-inducing stimulation. Interestingly, this
phenotype of reduced tonic IFN-1 signals was stronger in
mouse monocytes and monocyte-derived dendritic cells
(moDCs) as compared with conventional dendritic cells
(cDCs) and plasmacytoid dendritic cells (pDCs), which are
in low numbers in the blood [16]. Our earlier work focusing
on gene expression in specific dendritic cell subsets after CpG
stimulation did not show increased ISG expression, but these
populations are rare in whole blood and may have differential
autoimmune-driven changes in IFN-1 responses [55]. Future
studies isolating specific cell populations may identify type 1
diabetes-associated alterations in human cDC IFN-1
responses. Although NOD mice may model type 1 diabetes-
associated IFN responses, our data suggest that IL-1 responses
may differ between mice and humans because prediabetic
NOD mice with ongoing autoimmunity displayed higher
baseline IL-1 responses [16]. Increased IL-1 may be transient,
being present at the time of onset but fading in human type 1
diabetes over time [23, 56]. The human participants in our
study had established type 1 diabetes, with time from diagno-
sis ranging from 2 to 8 years. Further work is needed to
resolve this discrepancy.

The ability to observe significant alterations with a relative-
ly small number of individuals illustrates the advantage of
using whole blood ex vivo stimulation with gene signature
analysis, but further data with an independent cohort would
help strengthen the conclusions of this study. Although the
study size limits conclusions regarding participant subsets,
heterogeneity in ISG responses was observed within both
the type 1 diabetes and healthy control group. Assessing gene

expression after ex vivo stimulation in larger participant
cohorts would allow the integration of genetic susceptibility
with induced gene expression phenotypes and may potentially
help to identify type 1 diabetes immune subtypes for differen-
tial therapeutic interventions. Including first-degree relatives
of individuals with type 1 diabetes in future studies could
further facilitate understanding of how genetic risk contributes
to altered innate immune response. Identification of the cell
types involved and the regulatory mechanisms contributing to
the differential IFN-1 response in type 1 diabetes could also
enable more precise therapeutic targeting of this pathway.
Because of the more robust gene expression changes occur-
ring with stimulation, its use in the context of current inter-
ventional trials could facilitate novel biomarker identification.

We propose a model incorporating what we now know
about the complex nature of IFN-1 responses in type 1 diabe-
tes. Early in disease pathogenesis (before onset or even auto-
antibody seroconversion), baseline IFN-1 response genes are
increased [18, 19], likely due to low-level increases in IFN-α
and IFN-β expression. This chronic IFN exposure over time
may suppress the tonic, unstimulated response, but prime a
stronger acute response, possibly via epigenetic changes [57].
This could explain why unstimulated ISG expression is high
in individuals at risk for type 1 diabetes [19, 26] and lower in
established type 1 diabetes [58]. However, with strong acute
stimulation, increased ISG expression is observed even after
disease onset [59]. Additional work is needed to validate and
better understand the changes in IFN response during the
course of human type 1 diabetes. Using the TruCulture system
at earlier disease stages, from before autoantibody seroconver-
sion through to diabetes onset, could be informative for defin-
ing IL-1 and IFN-1 responses. Overall, this work shows the
value in measuring both direct ex vivo and stimulated states
for characterising how innate immunity is altered in autoim-
mune diseases such as type 1 diabetes.
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