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Abstract
The incidence of type 1 diabetes has increased since the mid-twentieth century at a rate that is too rapid to be attributed to genetic
predisposition alone. While the disease can occur at any age, mounting evidence from longitudinal cohort studies of at-risk
children indicate that type 1 diabetes associated autoantibodies can be present from the first year of life, and that those who
develop type 1 diabetes at a young age have a more aggressive form of the disease. This corroborates the hypothesis that
environmental exposures in early life contribute to type 1 diabetes risk, whether related to maternal influences on the fetus
during pregnancy, neonatal factors or later effects during infancy and early childhood. Studies to date show a range of environ-
mental triggers acting at different time points, suggesting a multifactorial model of genetic and environmental factors in the
pathogenesis of type 1 diabetes, which integrally involves a dialogue between the immune system and pancreatic beta cells. For
example, breastfeeding may have a weak protective effect on type 1 diabetes risk, while use of an extensively hydrolysed formula
does not. Additionally, exposure to being overweight pre-conception, both in utero and postnatally, is associated with increased
risk of type 1 diabetes. Epidemiological, clinical and pathological studies in humans support a role for viral infections, partic-
ularly enteroviruses, in type 1 diabetes, but definitive proof is lacking. The role of the early microbiome and its perturbations in
islet autoimmunity and type 1 diabetes is the subject of investigation in ongoing cohort studies. Understanding the interactions
between environmental exposures and the human genome and metagenome, particularly across ethnically diverse populations,
will be critical for the development of future strategies for primary prevention of type 1 diabetes.
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FDR First-degree relative
GRS Genetic risk score
IA Islet autoimmunity
rRNA Ribosomal RNA
SCFA Short-chain fatty acid
TEDDY The Environmental Determinants of Diabetes in

the Young
TRIGR Trial to Reduce Insulin-Dependent Diabetes

Mellitus in the Genetically at Risk
VIGR Viruses In the Genetically at Risk

Introduction

The accepted model that type 1 diabetes develops in an
individual due to the interplay between genetic predispo-
sition and environmental determinants has been chal-
lenged by the observation that the rising incidence of
type 1 diabetes in individuals over 50 years of age is
primarily associated with people who are not at in-
creased genetic risk [1–3]. Hence, environmental

determinants now appear to exert a greater influence on
the risk of islet autoimmunity (IA) and type 1 diabetes
than in the past. The large body of evidence to support
this hypothesis is based on in vitro models, animal
models, cohort studies, epidemiological analyses and
in vivo observations. However, inconsistencies regarding
the relative contribution of genes vs environment remain,
which may be explained by the heterogeneity of type 1
diabetes across the lifespan and the globe, methodologi-
cal differences in studies from which conclusions have
been derived and the changing impact of factors over
time. Moreover, there is a paucity of information on
how the in utero milieu influences type 1 diabetes risk
in the offspring. In the context of a changing permissive
environment, we review the contribution of candidate
early-life factors, from pregnancy through to early child-
hood, to the development of IA and progression to type
1 diabetes. The major cohort studies and trials refer-
enced in this review are shown in Table 1 and factors
associated with initiation of or protection from IA and
progression to type 1 diabetes are summarised in the
Text box.
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Genetics

The risk of type 1 diabetes is tenfold higher in children with an
affected first-degree relative (FDR) compared with the general
population. A substantial component of this risk (~50%) can
be explained by specific HLA alleles [37]. The highest risk
haplotypes are DRB1*03:01-DQA1*05:01-DQB1*02:01
(known as ‘DR3 ’ ) and DRB1*04-DQA1*03:01-
DQB1*03:02 (known as ‘DR4’). In a pooled analysis of
5196 individuals with type 1 diabetes and 6359 control par-
ticipants, individuals who were heterozygous for DR3/4 had
an OR >16 for type 1 diabetes, while DR3/3 and DR4/4 ho-
mozygotes had ORs ~6 [37]. However, <10% of individuals
with HLA-conferred susceptibility develop type 1 diabetes.

Genome-wide association studies elucidated a putative role
for multiple non-HLA type 1 diabetes risk loci [38].
Incorporation of multiple loci into a genetic risk score
(GRS) can predict >10% of risk for pre-symptomatic type 1
diabetes in children without an affected FDR [39]. In an eth-
nically diverse population from South-Eastern USA, younger
age at type 1 diabetes diagnosis was associated with a higher
prevalence of the DR3/4 diplotype and a higher GRS [40].
This suggests that the relative contribution of the environment
may be greater in those who develop type 1 diabetes at an
older age. Recently, the combination of 67 single nucleotide
polymorphisms,HLADR-DQ loci and their interactions into a
revised GRS (GRS2) was highly discriminative for type 1

diabetes, particularly early-onset disease, with an area under
the curve of 0.96 [41]. In the context of population screening
for type 1 diabetes, which is now being undertaken through
multiple programmes [42, 43], the GRS has substantial poten-
tial for prediction of type 1 diabetes in early life.

The application of a GRS has also provided further insights
into the risk of IA and type 1 diabetes in childhood in familial
vs non-familial type 1 diabetes. The Environmental
Determinants of Diabetes in the Young (TEDDY) study
screened infants for multiple type 1 diabetes-associated alleles
and stratified genetic susceptibility into four groups based on
presence of ‘high-risk’ DR4 allele subtypes and quartiles of
GRS [27]. On comparing children with or without an FDR
with type 1 diabetes, those in the highest risk group (high-risk
DR4 allele subtypes and first quartile GRS) had similar rates
of multiple islet autoantibodies (14.3% vs 12.7%, respective-
ly) and type 1 diabetes (4.8% vs 4.1%, respectively). In con-
trast, for children in the lowest genetic susceptibility group
(low-risk DR4 allele subtypes and GRS <50th percentile),
the risks of multiple autoantibodies in those with or without
an FDR differed almost sixfold (9.2% vs 1.6%, respectively),
suggesting that additional factors were enriched within fami-
lies where more than one individual developed type 1 diabetes
compared with the general population. The findings support
the hypothesis that the contribution of genetic and environ-
mental factors to the development of type 1 diabetes varies
according to family history.

Table 1 Cohort studies and clinical trials investigating the relationship between early-life factors and IA and/or type 1 diabetes

Cohort study/trial Country/region Study population References

Australian BABYDIAB Australia Birth cohort: FDR with T1D [4, 5]

BABYDIAB Germany Birth cohort: offspring of parents with T1D [6]

BABYDIET Germany RCT: at least two FDRs with T1D, or one FDR with T1D
and a high-risk HLA genotype

[7–9]

DAISY CO, USA Birth cohort: high-risk HLA genotypes or FDR with T1D [10, 11]

DIABIMMUNE Finland, Estonia,
Russian Karelia

Birth cohort: high-risk HLA genotypes [12, 13]

DIPP Finland Birth cohort: high-risk HLA genotypes [14–18]

DNBC Denmark Birth cohort [19, 20]

ENDIA Australia Pregnancy/birth cohort: FDR with T1D [21, 22]

KVB claims data Bavaria, Germany Birth cohort [23]

MIDIA Norway Birth cohort: high-risk HLA genotypes [24]

MoBa Norway Birth cohort [19, 20]

National Health Insurance
Research database

Taiwan Birth cohort [25]

Tasmanian Infant Health Survey TAS, Australia Birth cohort [26]

TEDDY USA, Europe Birth cohort: high-risk HLA genotypes or FDR with T1D [27–33]

TRIGR Europe, USA,
Canada, Australia

Primary prevention RCT from birth: FDR and high-risk HLA
genotypes

[34, 35]

VIGR Australia Birth cohort: FDR with T1D [36]

DNBC, Danish National Birth Cohort; KVB, Kassenärztliche Vereinigung Bayern; MIDIA, Environmental Triggers of Type 1 Diabetes; MoBa,
Norwegian Mother and Child Cohort Study; T1D, type 1 diabetes
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Dietary factors

Dietary factors, including early introduction of cow’s milk
protein [14], overall dairy intake and early or late introduction
of gluten [28], have long been implicated in the development
of IA and type 1 diabetes, potentially through a mechanistic
role; these dietary factors may act as antigenic triggers of
autoimmunity or as co-factors in the context of gut infection
and/or inflammation.

Maternal diet

The impact of maternal diet on the risk of type 1 diabetes has
not been extensively assessed. In the Danish National Birth
Cohort study, offspring of women with high gluten intake
(>20 g/day) had double the risk of type 1 diabetes vs offspring
of women with low gluten intake (<7 g/day) [44]. In the
Diabetes Autoimmunity Study in the Young (DAISY), mater-
nal intake of vitamin D via food (but not via supplements) was
associated with a 63% decreased risk of IA in offspring [45].
Higher maternal vitamin D-binding protein levels and higher
cord blood 25-hydroxyvitamin D [25(OH)D] was associated
with a lower risk of type 1 diabetes in the offspring, with a
vitamin D receptor–genotype interaction [46]. In contrast, av-
erage maternal vitamin D plasma concentration during preg-
nancy was not associated with an increased risk of type 1 dia-
betes in cohorts from Norway and Denmark [19]. Further data
from prospective studies commencing in pregnancy, such as the
Environmental Determinants of Islet Autoimmunity (ENDIA)
study (anzctr.org.au registration no. ACTRN12613000794707)
[21], will provide more comprehensive data on the role of
perinatal vitamin D supplementation in IA and type 1 diabetes.

Cow’s milk protein

DAISY demonstrated that greater intake of cow’s milk
protein was associated with increased IA risk in children
with low/moderate risk HLA-DR genotypes (adjusted HR
1.41 [95% CI 1.08, 1.84]), but not in children with high-
risk HLA-DR genotypes [10]. The Trial to Reduce Insulin-
Dependent Diabetes Mellitus in the Genetically at Risk
(TRIGR), an RCT that only recruited children with high-
risk HLA genotypes, demonstrated that cow’s milk inges-
tion during infancy did not reduce the incidence of IA [34]
or type 1 diabetes [35], as compared with hydrolysed for-
mula. In the Diabetes Prediction and Prevention (DIPP)
study, exposure to cow’s milk protein formula before
3 months of age was not associated with IA or type 1
diabetes, but the interaction between enterovirus infection
and cow’s milk exposure before the age of 3 months was
associated with IA [15]. If cow’s milk protein has a role in
the pathogenesis of type 1 diabetes, the relationship may
result from an interplay between genetic predisposition to

aberrant mucosal immunity to dietary and other proteins
[11], along with increased intestinal permeability (‘leaky
gut’) and exposure to intestinal microbiota [47].

Breastfeeding

A meta-analysis of 43 studies, including 9874 cases of type 1
diabetes, demonstrated a weak protective effect of
breastfeeding on type 1 diabetes risk: for exclusive
breastfeeding ≥2 weeks vs <2 weeks, the OR was 0.75 (95%
CI 0.64, 0.88) and for exclusive breastfeeding ≥3 months vs
<3 months, the OR was 0.87 (95%CI 0.75, 1.00). The authors
concluded that their findings were difficult to interpret due to
marked heterogeneity and possible biases, particularly recall
bias [48]. For ethical reasons, it will not be possible to address
the question of exclusive breastfeeding in an RCT; however
breastfeeding should be encouraged in children at risk of type
1 diabetes, as for the general population, due to other
established benefits [49].

Gluten

Both early and delayed introduction of gluten have been im-
plicated in the risk of IA and type 1 diabetes [6, 28]. In
TEDDY (which included ~700 children with IA), early intro-
duction of gluten before the age of 4 months reduced IA risk
(adjusted HR 0.67 [95% CI 0.54, 0.98]), while late introduc-
tion of gluten (after 9 months of age) was not associated with
increased IA risk [28]. Similarly, the BABYDIET study
showed that delaying gluten exposure until 12 months of
age in at-risk children was not associated with reduced IA risk
[7]. The modest HRs in TEDDY and small sample size in
BABYDIET suggest that further investigation into the effects
of timing of gluten introduction on IA/type 1 diabetes risk is
warranted in other cohorts, as well as studies into the interac-
tion of gluten intake with other IA/type 1 diabetes risk vari-
ables, such as breastfeeding and infection.

Specific foods and micro- and macro-nutrients

Additional dietary factors that have been variably associated
with risk of IA and type 1 diabetes, such as root vegetables
[16, 17] or berries and fruit [16], were not shown to have
significant associations with these conditions in the TEDDY
dietary analyses [28]. Only the introduction of egg before
9 months of age was associated with a reduced IA risk (ad-
justed HR 0.8 [95% CI 0.72, 0.99]; p = 0.035). While the
number of individuals in TEDDY [28] is much larger than
the earlier studies in this area (highlighting the potential for
small-study effects [50]), the discrepant findings between
these studies may be related to chance findings in any of the
studies, particularly given the large number of dietary vari-
ables measured and the lack of adjustment for multiple
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comparisons [16, 28]. Other possible explanations include
geographic differences in study populations, methodological
differences between studies, changes in dietary practices over
time and interaction between diet and other associated biolog-
ical systems, such as the metabolome and gut microbiome.

Overweight/obesity

The rising incidence of type 1 diabetes largely parallels popu-
lation rates of overweight/obesity over time. Using combined
data from two large birth cohort studies in Norway and
Denmark, type 1 diabetes risk in the offspring was modestly
associated with maternal pre-pregnancy obesity (adjusted HR
1.41) and paternal obesity (adjusted HR 1.51) [20]. A meta-
analysis of 29 predominantly European studies demonstrated
that birthweight >3.5 kg was associated with an increased risk
of type 1 diabetes, after adjustment for potential confounders
[51]. In the Australian BABYDIAB study, weight and BMI z
scores during infancy were continuous predictors of IA risk,
with a weight z score >0 conferring a more than twofold risk of
IA (HR 2.6) [4]. The effect of exposure to being overweight
pre-conception, in utero and postnatally may be mediated by
accompanying insulin resistance [52, 53].

Infections

An infectious aetiology for type 1 diabetes has been postulated
for almost a century [54]. Multiple prospective cohort studies
have investigated the role of early-life infections in type 1
diabetes, using prospective clinical data, as well as specific
microbial and virological testing [23–26, 29, 55]. Recently,
our understanding of the role of infections has been enhanced
by the use of ‘omics’ technologies to determine the relation-
ship between the microbiome (including bacteria, bacterio-
phages and viruses), transcriptome and proteome in the devel-
opment of IA/type 1 diabetes.

Maternal virus infection

Pregnancy represents a complex immunological state in which
bias towards helper T lymphocyte-associated cytokines (Th2
bias) diminishes cell-mediated immunity and increases vulnera-
bility to intracellular infections, including viruses [56, 57]. Acute
perinatal infections, such as rubella and infection with cytomeg-
alovirus, can cause significant perinatal morbidity, with resulting
clinical syndromes including diabetes; although most cases of
congenital rubella syndrome have an atypical form of diabetes
without evidence of IA [58]. In our systematic review and meta-
analysis of 2039 mothers and 953 offspring, we found a signif-
icant association between virus infection during pregnancy and
childhood type 1 diabetes (OR2.2) but not IA [55]. The TEDDY

study showed that retrospectively reported maternal respiratory
infections during pregnancy were associated with a reduced risk
of developing insulin autoantibodies in children with the CTLA4
G allele polymorphism (HR 0.64 [95% CI 0.45, 0.91]), suggest-
ing a protective role for this allele [30]. Our systematic review
highlighted the need for data from prospective cohorts com-
mencing in pregnancy, with frequently obtained clinical samples
to document infection, along with pathogenesis studies, to estab-
lish an aetiological link between in utero infections and type 1
diabetes in the offspring. The ongoingENDIA studywill address
these questions, with a strong focus on ‘omics’ [21].

Childhood infections

Infections in early life increase the risk of IA and type 1 diabetes
in at-risk and unselected population cohorts [23, 24, 26, 29]. In
TEDDY, prospectively collected parent-reported history of re-
cent respiratory infections in children before 4 years of age was
associated with a modestly increased (5.6%) IA risk. The inci-
dence of both IA and respiratory infections peaked at 6–
9 months of age (Fig. 1) and a higher rate of respiratory infec-
tions was observed in the 9 months prior to seroconversion to
IA [29]. In a population-based cohort from Germany, type 1
diabetes risk was significantly increased in children who expe-
rienced respiratory tract infections before 6 months of age [23].
Similarly, in an Australian birth cohort study of healthy chil-
dren, type 1 diabetes risk was increased in association with an
early upper respiratory tract infection before the age of 5 weeks
(adjusted OR 2.7) or ear infection by the age of 12 weeks (ad-
justed OR 3.4) [26]. Since these studies were based on parental

Fig. 1 Incidence of IA per 100 person-years (dashed line) in TEDDY
peaked between 6 and 9 months of age and declined thereafter. Incidence
of respiratory infectious episode (RIE) per person-years (solid line) also
peaked between 6 and 9months and declined thereafter. Age-specific RIE
rates were strongly correlated with the decline in IA incidence
(Spearman’s correlation = 0.71; p = 0.003). Adapted from [29] by permis-
sion from Springer Nature. This figure is available as part of a download-
able slideset
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reporting of infection, causative agents were not identified. In
contrast, a large population-based study of >1 million cases and
controls from Taiwan demonstrated that enterovirus infection
before 18 years of age was associated with an increased risk of
subsequent type 1 diabetes (adjusted HR 1.5) [25].

Such studies cannot determine whether the associations
between early infections and IA or type 1 diabetes reflect
increased exposure to viruses or an underlying susceptibility
to virus infection due to a dysregulated immune response [59].
This may have a genetic basis, as antiviral response genes,
such as IFIH1 CD69, and IL2RA, are among the loci linked
to type 1 diabetes susceptibility [60]. In support of this hy-
pothesis, a type I interferon-inducible transcriptional signature
was increased in the peripheral blood of children from the
BABYDIET study before seroconversion to IA and correlated
with recent self-reported respiratory infections [8]. Also, it is
possible that treatment with antibiotics in early life [61], which
alter the gut microbiome, may explain the relationship be-
tween infection and IA/type 1 diabetes; although, antibiotic
treatment likely serves as a confounder. Infections may con-
tribute to IA and type 1 diabetes in young children through
activation of interferon signalling pathways and pattern rec-
ognition receptors following bacterial, viral and, possibly, oth-
er infections [59]. This may result in beta cell inflammation,
activation of autoreactive and bystander CD8+ T cells and
progressive autoimmune-mediated beta cell destruction. The
detection of IFN-α and increased HLA class I expression in
beta cells of individuals with type 1 diabetes is consistent with
this model [62].

Viruses

Numerous clinical, epidemiological and experimental studies
have reported associations between IA or type 1 diabetes and
viruses, particularly enteroviruses [63], but also herpesviruses
(cytomegalovirus, Epstein–Barr virus) [64, 65], rotavirus [5],
rubivirus (rubella) [66], rubulavirus (mumps) [66] and
parechoviruses [67] during infancy and childhood. Potential
mechanisms by which viruses interact with genetic predispo-
sition to induce an autoimmune assault on pancreatic beta
cells have been comprehensively reviewed elsewhere [59, 63].

Enteroviruses In our systematic review and meta-analysis of
26 studies involving over 4400 participants, we found a sig-
nificant association between enterovirus infection, IA and
type 1 diabetes; for newly diagnosed type 1 diabetes, the OR
was 12.7 (95% CI 6.4, 25.0) [68]. There was significant het-
erogeneity by geographical region, but we could not stratify
the analysis by enterovirus genotype because the majority of
studies did not provide this information.

DIPP demonstrated a temporal association between the ap-
pearance of the first diabetes-associated autoantibodies and en-
terovirus infection, based on both serology and PCR for

enterovirus genes [69–71]. In particular, neutralising antibodies
to coxsackievirus group B (CVB)1 increased the risk of IA,
which was attenuated by the presence of maternal antibodies
to the virus. In contrast, antibodies to CVB3 and CVB6 were
associated with lower IA risk, which may be due to immuno-
logical cross protection against CVB1. These associations were
also present in children who progressed to type 1 diabetes [70].

Rotaviruses Recent reports from Australia and the USA have
demonstrated a reduced incidence of type 1 diabetes in young
children following the introduction of rotavirus vaccination
[72, 73].

ViromeAlthough strong evidence supports a predominant role
for enteroviruses in the pathogenesis of type 1 diabetes [68],
the use of targeted detection methods (PCR, serology, etc.)
raises significant concern for investigation bias towards en-
teroviruses. With the advent of high-throughput sequencing
technologies, it is now possible to screen for all viruses (the
‘virome’) simultaneously, eliminating such bias. However,
early application of virome sequencing in TEDDY [31] and
DIPP [18] proved difficult due to the limited sensitivity caused
by the overwhelming background of non-viral nucleic acid in
clinical specimens [74].

To significantly improve the sensitivity of virome detection
by up to 10,000-fold [74], we and others applied a novel viral
enrichment strategy (VirCapSeq-VERT) to characterise the
virome of children with IA in the Viruses In the Genetically
at Risk (VIGR) study [36] and BABYDIET [9]. The sensitiv-
ity and specificity for virus detection using this method is on
par with targeted PCR, unlike other virome-sequencing
methods that use physical enrichment, which are less sensitive
[36, 74]. In our analysis of the gut and plasma virome of 45
individuals with IA and 48 matched control participants, we
detected 28 genera of viruses and 62% of children were pos-
itive for ≥1 vertebrate-infecting virus [36]. This represents a
more than threefold higher positivity than previously reported
in the DIPP virome analysis [18]. We identified 129 viruses as
differentially abundant in the gut of individuals with IA vs
control participants, including five enterovirus A genotypes,
which were significantly more abundant in those with IA.
While the sample size is small, these findings further sup-
port the contribution of enteroviruses to the development of
IA and corroborate the proposal that viral load may influ-
ence IA risk [36].

In our analysis of the longitudinal gut virome of 61 preg-
nant women (35 with type 1 diabetes and 26 without) in
ENDIA, using VirCapSeq-VERT [22], 63% of samples tested
positive for at least one virus and 29 genera of eukaryotic
viruses were detected (Fig. 2). Moreover, there was more than
a twofold difference in the abundance of 77 viruses between
the two maternal groups, including eight enterovirus B types,
which were present at a higher abundance in women with type
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1 diabetes. These findings provide novel insight into the di-
versity and dynamics of the gut virome during pregnancy and
demonstrate a distinct profile of viruses during pregnancy in
women with type 1 diabetes. It will be important to determine
whether these differences remain significant in the full
ENDIA cohort, and whether they translate to altered risk for
IA and type 1 diabetes in the offspring. These findings may be
informative for prevention strategies, such as enterovirus vac-
cination [63].

PhageomeGut bacteriophages are relatively unexplored in the
pathogenesis of type 1 diabetes. Compared with eukaryotic
viruses, they are far more ubiquitous, constituting the vast
majority of viral sequences in the gut [18]. Analysis of the
gut phageome in children with IA in the DIABIMMUNE
study revealed significantly lower richness and Shannon di-
versity of bacteriophages in individuals with IA vs matched
control participants [12]. Furthermore, a subset of bacterio-
phage sequences was directly or inversely associated with
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seroconversion to IA and highly predictive for discriminating
between cases and controls. Interestingly, these differences in
bacteriophage populations before seroconversion were ob-
served despite the lack of distinguishing bacterial signatures
from the same samples [75]. This suggests that changes in the
phageome prior to seroconversion may contribute to changes
in bacterial diversity after seroconversion.

Bacterial microbiome

Dysbiosis of the gut microbiota has been associated with IA
and type 1 diabetes, yet the functional consequences to the
host of this dysbiosis are still being unravelled. The composi-
tion of the gut microbiome is strongly affected by the maternal
environment, diet (particularly breastfeeding in early life) and
use of antibiotics and probiotics. The microbiome interacts
closely with the host immune system, making it a strong con-
tender for providing a mechanistic link between multiple en-
vironmental modifiers and IA.

Maternal microbiome

A landmark study of the gut microbiome in healthy human
pregnancy showed marked changes from the first to the third
trimester, to a more proinflammatory microbiome [76]. Such
changes could be considered adaptive to support the growing
fetus and weight gain of pregnancy; however, these changes
were not replicated in subsequent studies of pregnancy, with
reports of a stable gestational microbiome across different
body sites [77]. Maternal and, potentially, paternal factors in-
fluence the infant’s microbiome after rapid changes during the
first year of life. Maternal weight, pregnancy weight gain and
complications of pregnancy, such as diabetes and pre-eclamp-
sia, all influence the composition and functional capacity of
the gut microbiome, as followed through preschool years [32].
Antibiotic use in pregnancy can affect the maternal and infant
microbiome, but overall exposure, number of courses or anti-
biotic type (narrow vs broad) in utero were not associated with
type 1 diabetes risk [78].

Infant microbiome

The gut microbiome has a critical role in the early develop-
ment of immune regulation in the infant [79]. The early
microbiome, and its perturbations in association with IA and
type 1 diabetes, is the subject of investigation within multiple
cohorts. Whilst most studies used 16S ribosomal RNA
(rRNA) sequencing to assess community composition, mod-
ern metagenomic methods more accurately identify functional
and strain-specific differences in the microbiome [13] and
other approaches, such as faecal metaproteomics, can identify
host–microbiota interactions [80].

Microbial composition during early life is influenced by
mode of birth, breastfeeding, introduction of formula milk
and solid foods, antibiotic and probiotic use, and bacterial
and viral infections. A decrease in diversity and stability of
case microbiomes over time, as well as a reduction in short-
chain fatty acid (SCFA) production and gut integrity-
associated bacterial genes, were associated with IA and type
1 diabetes [33, 75]. In DIABIMMUNE, alpha diversity de-
creased after seroconversion in individuals who progressed
from IA to type 1 diabetes, with the onset of type 1 diabetes
being preceded by inflammation-associated microbes and
functional pathways [75].

The recent longitudinal analysis of stool microbiomes in
TEDDY (mainly white non-Hispanic children), using 16S
rRNA and metagenomic sequencing, is the largest study to
examine the infant microbiome [32, 33]. Three phases were
described: (1) a developmental phase (3–14 months); (2) a
transitional phase (15–30 months); and (3) a stable phase
(31–46 months). Partial or exclusive breastfeeding was the
most significant factor associated with microbial composition,
resulting in increased Bifidobacterium species. Weaning led to
faster maturation of the gut microbiome, driven by the breast
milk cessation, heralding the appearance of bacteria belonging
to the phylum Firmicutes. Other factors that significantly asso-
ciated, but to a lesser degree, with infant microbiota composi-
tion were geographical location, antibiotic use, probiotic use,
household siblings, furry pets and vitamin D supplementation
[32].

Further, breast milk feeding between 3 and 14 months was
solely associated with bacterial metabolic potential. Pathways
involving metabolic functions associated with the adult
microbiome were increased in non-breastfed infants up to
14 months of age [32]. A reduction in gene families involved
in the degradation of human milk oligosaccharides to SCFA
and an increase in mucin-degrading genes after weaning indi-
cated a strain-shift, whereby new microbiota, including
Enterococcus species, were increasingly responsible for these
functions [78].

Relatively modest alterations in the microbial composition
were associated with IA or type 1 diabetes in both the
amplicon sequencing [32] and metagenomic sequencing [33]
arms of TEDDY. Control participants had higher levels of
Lactococcus and Streptococcus, both of which are common
in dairy products. Gut microbiomes of children in the TEDDY
study who did or did not develop IA or type 1 diabetes, there-
fore, did not reveal clear taxonomic differences and there was
considerable geographical heterogeneity across the study
sites. However, importantly, on metagenomic analysis, the
microbiomes of progressors to IA or type 1 diabetes contained
significantly higher numbers of genes involved in pathways
involved in fermentation and production of SCFA byproducts.
SCFA bacterial products regulate host metabolism and immu-
nity. Butyrate, in particular, maintains gut epithelial integrity,
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supports differentiation of regulatory T cells and promotes
anti-inflammatory responses, and both butyrate and acetate
have been shown to prevent diabetes in the NOD mouse.
The TEDDY study findings, therefore, extend experimental
data in the NOD mouse [81] and smaller human studies [82]
that support a protective effect of SCFA on the development of
type 1 diabetes. Interestingly, there was geographical variabil-
ity as to which SCFA pathways (acetate, butyrate or propio-
nate) were altered in children with IA/type 1 diabetes in the
TEDDY study, and the taxa with which these were associated.
This suggests that changes in the overall molecular functions
of the microbiota may be more uniformly associated with type
1 diabetes and IA, rather than specific taxa. A recent study
utilising metaproteomic analysis of stool samples sheds light
on the functional impact of altered microbiota on the host; the
abundance of proteins from the mucous barrier and epithelial
adhesion molecules were positively associated with taxa that
were abundant in control participants compared with individ-
uals with IA or type 1 diabetes [80]. These findings further
support gut epithelial integrity as a key characteristic of the
microbiome in healthy individuals.

Despite TEDDY’s large sample size, most associations
were modest in effect size, which may be attributed to differ-
ing type 1 diabetes endotypes, high geographical heterogene-
ity and a lack of samples from early life (prior to 3 months of
age) [33]. The impact of the microbiome and its products may
be different with different genetic risk alleles and in different
disease phenotypes. The role of other co-inhabitants, such as
the mycobiome, is unknown, as is the impact of the dramatic
changes in biological systems before and after birth. Studies
investigating pregnancy to early-life cohorts, such as ENDIA
[21] and DIPP Novum, will address these unknowns.

Crosstalk between early-life factors
and pancreatic beta cells

While a diverse spectrum of early-life factors putatively influ-
ence the development of IA and type 1 diabetes, the mecha-
nisms underlying their contribution to the autoimmune assault
that specifically targets pancreatic beta cells are yet to be fully
elucidated [59]. One potential route is the induction of stress in
the endoplasmic reticulum (ER), where the synthesis/folding
of proinsulin takes place [83]. During insulitis, proinflamma-
tory cytokines released by infiltrating immune cells disrupt
ER homeostasis, triggering the unfolded protein response.
This adaptive phase is believed to play a critical role in the
development of IA by promoting the generation of
neoantigens and activating inflammatory responses [84].
Furthermore, ER stress induces translational errors, giving rise
to defective ribosomal products of insulin that are highly im-
munogenic and targeted by T cell autoreactivity in type 1
diabetes [85].

Research gaps and future directions

The discrepant findings from studies investigating the multi-
tude of putative aetiological determinants of IA and type 1
diabetes, with largely modest associations observed, highlight
the importance of adequately powered studies, consistent def-
initions of exposure and outcome measures, multifactorial
modelling of pathogenesis and meta-analyses, which can also
explore publication bias and study heterogeneity. Findings
from small or pilot studies may be chance associations, partic-
ularly when not replicated in larger cohorts or trials, as may be
the case for TRIGR [35]. However, large studies and ‘big data’
are not immune from bias or chance findings [86]. Key to
unravelling the heterogeneous nature of type 1 diabetes is the
exploration of genetic susceptibility and validation of GRSs in
diverse populations. Studies need to take account of the inter-
play between development of islet autoimmunity and/or type 1
diabetes and environmental factors, stratified by genetic, ethnic
and global variation, particularly in early life. While incidence
rates for type 1 diabetes are highest in Scandinavia/Northern
Europe [87], the caseload of type 1 diabetes globally includes
regions that have not been comprehensively studied, such as
the Middle East, Africa, Asia and South America. For inter-
ventions aimed at primary, secondary and tertiary prevention
of type 1 diabetes to be successful, understanding the hetero-
geneity of type 1 diabetes is essential. In the era of ‘omics’, the
future potential to elucidate the interaction between multiple
biological systems in IA/type 1 diabetes is immense.
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