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Abstract

NAD™" has gone in and out of fashion within the scientific community a number of times since its discovery in the early 1900s.
Over the last decade, NAD* has emerged as a potential target for combatting metabolic disturbances and the mitochondrial
dysfunction that is mediated through sirtuin (SIRT) enzymes. The beneficial metabolic effects of the NAD*/SIRT axis have
triggered an increased interest in NAD" as an enhancer of energy metabolism. As a result, a myriad of publications have focused
on NAD" metabolism, with the majority of the work having been performed using in vitro models, and in vivo work largely
consisting of interventions in Caenorhabditis elegans and rodents. Human intervention trials, on the other hand, are scarce. The
aim of this review is to provide an overview of the state-of-the-art on influencing NAD* metabolism in humans and to set the

stage for what the future of this exciting field may hold.
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Abbreviations

AMPK  AMP-activated protein kinase

HFD High-fat diet

NAMPT Nicotinamide phosphoribosyltransferase

NMN Nicotinamide mononucleotide

PARP-1  Poly(ADP-ribose) polymerase-1

PBMC  Peripheral blood mononuclear cell

PGC-1ax  Peroxisome proliferator-activated receptor gamma
coactivator 1

SIRT Sirtuin

Trp L-Tryptophan
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Introduction

In recent years, a tremendous effort has been made to identify
approaches for combatting metabolic disturbances and mito-
chondrial dysfunction, such as those seen in ageing [1] and
type 2 diabetes mellitus [2, 3] by specifically targeting the
sirtuin (SIRT) enzyme family [4]. SIRTs are NAD*-dependent
deacetylating enzymes that regulate cellular metabolism [5].
To date, seven mammalian SIRT enzymes (SIRT1-7) have
been identified, each having its own characteristic tissue and
subcellular compartment expression, enzyme activity and tar-
gets. We kindly refer readers to Houtkooper et al [6] for a
comprehensive review on SIRTs.

Several SIRT-targeting strategies have been deployed, dem-
onstrating the metabolic benefits of SIRT activation. In mice, a
SIRT1 gain-of-function mutation evoked a metabolic profile that
protected against insulin-resistant diabetes by increasing hepatic
insulin sensitivity, hepatic glucose tolerance and overall metabol-
ic efficiency [7, 8]. Moreover, a proposed SIRT1 activator,
SRT1720, increased mitochondrial respiration and improved in-
sulin sensitivity [9], mimicking the signalling profile observed
with caloric restriction [10] in high-fat-diet (HFD)-challenged
mice. Resveratrol, an AMP-activated protein kinase (AMPK)-
activating polyphenol that activates SIRT1, improved skeletal
muscle mitochondrial function in healthy obese men, in individ-
uals with type 2 diabetes and in first-degree relatives of those
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with type 2 diabetes, although the observed metabolic health
effects are inconsistent [11, 12]. Together, these studies indicate
that SIRT activation promotes metabolic health.

Why NAD*?

The concept of influencing NAD" bioavailability to activate the
SIRTs was recently proposed for combatting metabolic distur-
bances and mitochondrial dysfunction in humans [13, 14]. This
is supported by reports that decreased NAD™ bioavailability con-
tributes to metabolic disturbances in ageing mice [15, 16] and
humans [17, 18], and also in a rodent model of type 2 diabetes
mellitus [16]. SIRTs are important consumers of NAD" and de-
pend on this rate-limiting substrate to act as metabolic sensors,
responding to the level of available NAD".

Considering the limited scope of this review, we will not
digress into detail of the NAD" metabolism and refer the read-
er to more comprehensive reviews on this topic [5, 19-21].
Briefly, however, as NADH is the predominant electron donor
to the electron transport chain, NADH/NAD™ redox potential
is an important indicator of the bioenergetic status of the cell
and is tightly regulated [21]. The cytosolic and mitochondrial
NADH/NAD* and NADPH/NADP" redox states are strongly
connected. These states depend on the formation of NAD™"
from NADH through cellular processes, such as the glycolytic
enzyme activity, the citric acid cycle and the electron transport
chain [20], thereby exemplifying the essentiality of NAD™ and
its redox potential within cellular metabolism. The NAD*
pool is maintained through a continuous process of biosynthe-
sis and breakdown, stemming from the salvage and the Preiss—
Handler pathways or from de novo biosynthesis at one end,
and enzymatic consumption at the other [20] (Fig. 1). When
NAD™ levels rise, SIRTs activate and deac(et)ylate or mono-
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Fig. 1 Summary of NAD"* metabolism. NAD" can be synthesised from
Trp through the de novo biosynthesis pathway in the liver and kidneys.
Nicotinic acid (more commonly known as vitamin Bs) enters the NAD*
pool through the Preiss—Handler pathway, whereas nicotinamide, nicotin-
amide riboside and NMN (re-)enter the NAD™ pool through the salvage
pathway. NAD" is consumed by SIRTs, CD38, and PARP enzymes,

Synthesis

ADP-ribosylate a variety of metabolic substrates, such as per-
oxisome proliferator-activated receptor gamma coactivator 1o
(PGC-1) and forkhead box protein O1 (FOXO1). This elicits
an array of metabolic adaptations, including mitochondrial
biogenesis in skeletal muscle [19] and enhanced oxidative
metabolism in skeletal muscle, brown adipose tissue and the
liver [22, 23]. On a physiological level, this may lead to im-
proved insulin sensitivity [24, 25], improved metabolic flexi-
bility [26] and increased mitochondrial function [26, 27].

NAD™" boosting strategies: preclinical
evidence

Exercise and caloric restriction induce nicotinamide
phosphoribosyltransferase expression through AMPK

Exercise and caloric restriction share a common denomina-
tor in that they affect AMPK activity, which can modulate
NAD™* bioavailability (Fig. 2). To support this, AMPK acti-
vation in C2C12 myotubes increases cellular NAD™ levels
and, in turn, activates SIRT1 and the subsequent PGC-1x-
dependent upregulation of mitochondrial and lipid metabo-
lism [28]. An increased demand for energy by the cell, such
as during exercise, activates AMPK. With this in mind, it
was shown that exercise induces the expression of nicotin-
amide phosphoribosyltransferase (NAMPT), the rate-
limiting enzyme that converts nicotinamide into NAD* [29],
thereby increasing NAD* bioavailability [30, 31]. The induc-
tion of NAMPT expression through AMPK has been sug-
gested to be a mechanistic adaptation to the metabolic stress
derived from both exercise and caloric restriction [32—34].
Moreover, exercise in rats has been demonstrated to induce

NAD™ pool

Redox potential

J

producing nicotinamide, which enters the pool of NAD* precursors for
resynthesis into NAD". Dashed arrow, movement of NAD" within the
NAD" pool. NA, nicotinic acid; NAAD, nicotinic acid adenine dinucle-
otide; NAM, nicotinamide; NR, nicotinamide riboside. This figure is
available as part of a downloadable slideset
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Fig. 2 Effect of activating the NAD*/SIRT axis by increasing NAD"*
bioavailability. Several approaches may be used to increase NAD* bio-
availability, including exercise, caloric restriction, dietary supplementa-
tion and inhibition of NAD* consumption. These changes positively af-
fect SIRT activation and subsequent PGC-1x and FOXO1 expression,

de novo biosynthesis of NAD™ from L-tryptophan (Trp), ulti-
mately increasing NAD" bioavailability [35].

NAD™ precursors increase NAD™ bioavailability
and activate SIRTs

Various research groups have pursued sustained SIRT activa-
tion through an increase in endogenous NAD™ bioavailability.
Preclinical research in ageing or HFD-challenged mice has
shown that boosting NAD" levels by supplementation with
NAD™ precursors, such as nicotinamide mononucleotide
(NMN) or nicotinamide riboside, attenuates age-related de-
cline of muscle strength [1, 36], increases lifespan and
healthspan [36]. In addition, oxidative metabolism and activa-
tion of SIRT1 and SIRT3 are enhanced in HFD-fed mice sup-
plemented with NAD™ precursors [26]. In aged mice, NAD"
precursor supplementation also restored arterial SIRT1 activ-
ity, which was associated with improved vascular function and
decreased aortic stiffness [37]. These findings demonstrate the
feasibility of altering NAD™ bioavailability and subsequent
SIRT activation.

More specifically, in HFD-fed mice, exogenous adminis-
tration of the NAD* precursor NMN was demonstrated to be a
viable method of increasing endogenous NAD" bioavailabil-
ity and inducing SIRT activity, thereby attenuating the effects
of the HFD and improving glucose tolerance and hepatic in-
sulin sensitivity [16]. Long-term administration of NMN was
also found to mitigate the age-associated decline in energy
metabolism, insulin sensitivity and lipid metabolism [36].
Similarly, supplementation of HFD-challenged mice with nic-
otinamide riboside (another NAD* precursor), also improved
hepatic insulin sensitivity [26]. Additionally, an improved glu-
cose tolerance and lipid profile were observed in mouse
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resulting in mitochondrial changes and, as a consequence, metabolic ad-
aptations. CD38i, CD38 inhibitor; FOXO1, forkhead box protein O1;
NAM, nicotinamide; PARPi, PARP inhibitor. This figure is available as
part of a downloadable slideset

models of age-induced type 2 diabetes upon NMN supple-
mentation [16].

The NAD* precursors nicotinic acid and nicotinamide have
also been used to supplement HFD-challenged mice, increas-
ing hepatic NAD™ levels and improving glucose tolerance. In
one study, nicotinamide proved to be a more potent booster of
NAD™ than nicotinic acid as it was also found to specifically
alter the expression of SIRT1, SIRT2 and SIRT6 [38]. Lastly,
Acipimox, a synthetic nicotinic acid analogue, has been
shown to elevate NAD* in C2C12 myotubes [39].

Together, these preclinical data suggest that dietary supple-
mentation of NAD™ precursors can increase NAD™ levels and
beneficially affect metabolic health.

Inhibition of NADases increases NAD™ bioavailability
and SIRT1 activity

Preclinical research has explored compounds that can inhibit
the NADases CD38 [40] and poly(ADP-ribose) polymerase-1
(PARP-1), reducing the enzymatic competition for their
shared substrate, for example by reducing their NAD*-bind-
ing capacity, and thus enhancing SIRT1 activity (Fig. 2).
Following this line of thought, a decrease in PARP-1 activity
coincides with a rise in SIRT activity and NAD™ levels in
worms [41] and mice [27], with PARP-I""" mice displaying
a leaner phenotype with higher energy expenditure compared
with PARP-I*"* mice. In line with this, in skeletal muscle,
PARP-1 inhibitor-induced increases in SIRT1 activity were
accompanied by improved mitochondrial function, enhanced
energy expenditure and endurance performance [42]. In endo-
thelial progenitor cells, PARP-1 inhibition also preserved cel-
lular NAD™ content [43]. Similarly, Cd38 knockout mice have
elevated NAD" levels and are protected against HFD-induced
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metabolic inflexibility [44]. Moreover, the compounds
apigenin, quercetin [45] and 78c [46] have all been demon-
strated to enhance NAD™ levels and SIRT1 activity by
inhibiting CD38.

How to boost NAD* in humans?

Increasing NAD" bioavailability through exercise
and caloric restriction

Regular exercise and caloric restriction are well known to im-
prove metabolic health in humans [47]. Alongside improving
insulin sensitivity, metabolic flexibility and mitochondrial func-
tion, exercise also upregulates the expression of NAMPT in hu-
man skeletal muscle [48] (Fig. 2). Endurance-trained athletes
have a twofold higher expression of NAMPT in skeletal muscle
compared with baseline levels in sedentary obese, non-obese and
type 2 diabetic individuals. After completing a 3 week training
intervention, the non-obese group displayed increased NAMPT
expression over baseline. NAMPT levels correlated positively
with PGC-1a expression, mitochondrial content, maximal mito-
chondrial ATP synthesis in skeletal muscle and overall maximal
aerobic capacity [48]. Concordantly, increased skeletal muscle
SIRT3 content and PGC-1x expression were reported in men
who were sedentary obese at baseline after a 12 week aerobic
exercise intervention [49]. In a 6 week one-leg endurance exer-
cise intervention, NAMPT protein levels only increased in the
trained leg as compared with the untrained leg [34], further
supporting the paradigm of activating the NAD"/SIRT axis
through exercise and NAMPT induction.

Continuing, during a caloric restriction-induced weight-
loss intervention, NAMPT and subsequent SIRT1 expression
were found to be increased in adipose tissue of healthy obese
participants [50] when compared with healthy lean partici-
pants. The participants were studied prior to, and after
5 months and 12 months, of the intervention, with the inter-
vention resulting in a loss of 17.1% of body weight in the
obese group. At baseline, gene expression of SIRT, SIRT3,
SIRT7 and NAMPT were significantly lower and PARP-1 ac-
tivity significantly higher in the obese participants when com-
pared with the lean group, indicating a state of low NAD*
bioavailability in obese individuals. With weight loss, SIRT
expression increased, whereas PARP-1 activity declined in the
subcutaneous adipose tissue of the obese group [50]. Evidence
that a state of obesity or overnutrition indeed lowers NAD*
levels also comes from studies of longer-term overfeeding
using an HFD for 8 weeks in young, healthy men. This result-
ed in reduced NAD" levels and SIRT activity in skeletal mus-
cle when compared with baseline [51]. This was further sup-
ported by PGC-1« hyperacetylation in the same skeletal mus-
cle biopsies. Concurring with these findings, a study in young
adult monozygotic twins (n = 26 obesity-discordant pairs and

n = 14 obesity-concordant pairs) reported that obesity was as-
sociated with lower NAD™/SIRT axis activation in subcutane-
ous adipose tissue [14]. Together, these findings suggest that a
state of energy abundance is prone to reduce the activity of the
NAD™/SIRT axis and that inducing a state of energy demand
may aid to restore NAD" levels.

Supplementation of NAD* precursors

From a human dietary perspective, Trp, nicotinic acid, nico-
tinamide, and nicotinamide riboside are the predominant
NAD" precursors currently used in intervention trials, with
nicotinamide riboside being the latest addition to the array of
dietary NAD™ precursors (Fig. 1). The efficacy and safety of
treatment with each of these NAD™ precursors are discussed in
more detail below.

Nicotinamide Phase 0 and phase 1 trials have demonstrated
tolerance and safety of nicotinamide in daily pharmacological
doses up to 3.5 g [52-56] and single doses of up to 6 g
[57-59]. However, at doses above this, nicotinamide can be-
come hepatotoxic [60].

Nicotinic acid and Acipimox Nicotinic acid is the most effec-
tive pharmacological drug available for elevating HDL-
cholesterol and lowering total cholesterol, LDL-cholesterol
and triacylglycerol levels, thereby reducing the overall cardio-
vascular risk profile of the user [61]. However, nicotinic acid
can elevate plasma glucose levels by inducing insulin resis-
tance following a rebound increase in circulating NEFAs [62].
This poses a challenge when using nicotinic acid as (add-on to
statin) therapy for dyslipidaemia in individuals with impaired
glucose tolerance, impaired fasted glucose or type 2 diabetes,
with the reduction in overall cardiovascular disease risk on
one hand and compromised glycaemic control on the other.
The worsening of hyperglycaemia with nicotinic acid use
would possibly require additional therapeutic fine tuning to
be implemented on an individual level to maintain glycaemic
control. Alternatively, a reduction in the dose of nicotinic acid
could improve glycaemic control, however, this may require
acceptance of reciprocal compromise of the lipid profile or
additional therapy to be initiated.

A large clinical trial evaluated the efficacy of nicotinic acid
as a treatment for hypercholesterolaemia, with a daily dose of
1-3 g, for a duration of 96 weeks [63]. Overall, nicotinic acid
was well tolerated. However, flushing was reported as a major
adverse event. In contrast to nicotinamide, nicotinic acid is a
vasoactive compound [64] and activates the G protein-
coupled receptor, GPR109A, thereby inducing flushing [65].
In an attempt to reduce the occurrence of flushing and improve
adherence, synthetic and extended- and sustained-release for-
mulations of nicotinic acid were developed. Acipimox is a
synthetic nicotinic acid analogue and, thereby, an NAD*
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precursor that can be utilised by the Preiss—Handler pathway
(Fig. 1). Although Acipimox displays the vasoactive proper-
ties that lead to flushing, we previously showed that treating
individuals with type 2 diabetes with Acipimox for 2 weeks
resulted in an improvement in skeletal muscle mitochondrial
function [39]. In two other trials, Acipimox therapy improved
insulin sensitivity [66, 67]. However, Acipimox is mainly
used for lowering circulating NEFA levels and these human
experiments do not allow us to conclude whether the benefi-
cial effects observed were due to NAD* boosting actions
alone, although, in the first trial [39], the improved mitochon-
drial function with Acipimox therapy was accompanied with
elevated (as opposed to lower) NEFA levels due to a known
rebound effect. Unfortunately, the newer formulations of nicotin-
ic acid have been associated with a higher occurrence of gastro-
intestinal complaints, hepatotoxicity and hyperglycaemia, and a
decreased HDL-cholesterol-raising efficacy compared with reg-
ular nicotinic acid [61]. Together, the side effects limit the use of
nicotinic acid for further clinical exploration and implementation.

NADH NADH supplementation has also been used to boost
NAD" levels in humans. In a small study, 80 adults with
chronic fatigue syndrome received daily doses of 20 mg of
NADH combined with 200 mg of coenzyme Q;( and were
compared with placebo-treated individuals [68, 69]. The in-
tervention improved reported fatigue [68] and increased max-
imal heart rate after 8 weeks of treatment [69] but did not alter
body weight or blood pressure. Additionally, in peripheral
blood mononuclear cells (PBMCs), the intervention signifi-
cantly reduced NAD™ levels and increased NADH levels,
thus, significantly lowering the NAD*/NADH ratio over base-
line. Furthermore, ATP content and citrate synthase activity
were significantly increased in PBMCs [68]. Unfortunately, it
cannot be distinguished whether the observed results were
solely attributed to NADH supplementation considering the
co-administration of coenzyme Q) in this study.

Nicotinamide riboside In contrast to nicotinic acid, nicotin-
amide riboside is not vasoactive and does not cause flushing
[70], thereby overcoming one of the adverse effects of nico-
tinic acid supplementation. In a recently published placebo-
controlled, double-blind, randomised, phase 1 crossover trial,
a daily dose of 1000 mg of nicotinamide riboside for 6 weeks
was demonstrated to be well tolerated and adverse events were
no more frequent than in the placebo arm [71]. These findings
are confirmatory of the preceding phase 1 trials [72-74].
Additionally, nicotinic acid adenine dinucleotide (NAAD)
has been confirmed as a reliable and sensitive biomarker for
assessing changes in NAD" levels following nicotinamide
riboside supplementation [72].

Daily nicotinamide riboside supplementation of up to
2000 mg can effectively enhance blood NAD™ levels, achieving
higher steady-state concentrations over baseline [73].

Concordantly, a more recent study demonstrated that nicotin-
amide riboside supplementation increased NAAD and NAD"
levels by ~60% in PBMCs. In this study, the effect of 6 weeks
of nicotinamide riboside supplementation vs placebo was tested
in healthy middle-aged and older adults. It was also found that
6 weeks of nicotinamide riboside supplementation tended to im-
prove systolic blood pressure and pulse-wave velocity, both of
which are markers of cardiovascular health [71]. However, no
effect of nicotinamide riboside supplementation was found on
physical performance outcomes, such as the 4 metre or 6 minute
walk test, handgrip strength or maximum torque. Moreover, met-
abolic variables, such as VO, during a treadmill exhaustion
test, respiratory exchange ratio, and insulin sensitivity assessed
by an IVGTT, did not differ between the groups. From these
findings, it was concluded that long-term nicotinamide riboside
supplementation is a viable strategy for enhancing NAD" in
humans and potentially has cardiovascular benefits that require
further exploration in larger trials.

Most recently, an RCT of daily treatment with 2000 mg of
nicotinamide riboside for 12 weeks was reported, evaluating
safety, insulin sensitivity and other metabolic variables in 40
healthy, obese, middle-aged men [75]. Overall, nicotinamide
riboside was well tolerated and only four adverse events were
reported: pruritus, excessive sweating, bloating and transient
changes in stools. Nicotinamide riboside supplementation in-
creased NAD* metabolism, as was seen by an increase in uri-
nary metabolites. Using the hyperinsulinaemic—euglycaemic
clamp technique, insulin sensitivity was found to be un-
changed before and after supplementation and when compared
with the placebo condition. In addition, resting energy expen-
diture and respiratory exchange ratio were not affected by nic-
otinamide riboside supplementation. Also, intrahepatic lipid
content and body composition remained unchanged in the
treatment group vs baseline and compared with the placebo
group. Finally, a significant but modest increase in serum tri-
acylglycerol levels was detected after nicotinamide riboside
supplementation when compared with baseline values. The
authors concluded that this study was underpowered and future
studies should be larger and focus on other variables of meta-
bolic health, such as intrahepatic lipid content, which showed
significant changes in rodents [76, 77] treated with nicotin-
amide riboside and approached significance in this study.

Tryptophan Another dietary NAD" precursor, Trp, is an es-
sential amino acid and is metabolised into NAD* through de
novo biosynthesis in the liver and kidneys [20]. This route is
critical for maintaining the NAD™ pool, even though the con-
version ratio of Trp to NAD™ is low in humans, averaging 60:1
[78]. Nonetheless, Trp is deemed capable of meeting the met-
abolic demands of NAD" metabolism in nicotinic acid- and
nicotinamide-deficient diets, and is well tolerated at high
doses, between 30 and 50 mg/kg bodyweight, apart from
drowsiness/sleepiness [79].
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Recently, higher circulating Trp levels were identified as a
predictive marker for the development of type 2 diabetes in a
large prospective Chinese cohort [80]. However, to date, no
dietary supplementation studies are available that directly as-
sess whether boosting NAD" through Trp might be metabol-
ically beneficial in humans.

Inhibition of NAD" consumers

The drawback of pharmacological strategies involving CD38
and PARP-1 inhibition is the original intended therapeutic use
in malignancies [81, 82]. As such, no clinical trials with
PARP-1 or CD38 inhibitors that focus on improving metabol-
ic variables have been conducted in humans. This, however,
does not imply that this strategy must be abandoned altogeth-
er, as a viable work-around to exploit the theoretical metabolic
benefit of inhibition of NAD" consumers may present itself in
due time, allowing us to assess their efficacy in clinical trials.

Future perspective

The current evidence base from preclinical research on NAD*
is setting the stage for trials in humans by identifying the
points at which intervening in the NAD" metabolism process
seems to be clinically and physiologically relevant (see
Summary text box). Even though many results have not been
replicated in humans at this point in time, phase 0 and phase 1
trials have proven the feasibility and safety of NAD* boosting
in humans. As most evidence that increased NAD" levels may
be beneficial to human metabolism comes from indirect ob-
servations, such as exercise and weight loss interventions, the
assessment of efficacy in well-powered phase 2 and phase 3
trials is urgently awaited in order to draw clear conclusions.

Summary of NAD*-boosting
strategies in humans

Exercise and caloric restriction enhance NAMPT ex-
pression and, thereby, NAD* levels

NAD* precursors can elevate NAD* levels and are
generally well tolerated, especially nicotinamide ribo-
side

Human clinical trials investigating the impact of CD38
and PARP-1 inhibitors or Trp on NAD* availability are
lacking

Conclusive evidence that increasing NAD* levels at-
tenuates metabolic disturbances in humans is also
still eagerly awaited

@ Springer

Recommendations for future
NAD*-boosting strategies

Combining NAD*-boosting strategies may be more
effective at increasing NAD™* bioavailability than fo-
cusing on a single strategy alone

Future clinical trials should focus on individuals with
metabolic disturbances, such as those with type 2
diabetes or the elderly

Additionally, studies in metabolically disturbed individuals
must be considered as these are more in line with the preclin-
ical models used. To date, generally healthy populations have
been included in studies in this area, in which the range of
improvement may be too small to detect significant changes.
The combination of strategies to increase NAD™, such as ex-
ercise, caloric restriction, or CD38 and PARP-1 inhibitors,
with NAD* precursor supplementation may also be consid-
ered, to evaluate added efficacy of such approaches, as seen in
mice [15] (see Recommendations text box).

Currently, a number of clinical trials (Table 1) are underway
in which NAD" precursor supplementation is being used to
improve (often disturbed) metabolic health variables. The
coming years will prove whether the promising results ob-
served in preclinical studies can indeed find human translation.
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