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Abstract
Aims/hypothesis To understand the complex metabolic changes that occur long before the diagnosis of type 2 diabetes, we
investigated differences in metabolomic profiles in plasma between prediabetic and normoglycaemic individuals for subtypes of
prediabetes defined by fasting glucose, 2 h glucose and HbA1c measures.
Methods Untargeted metabolomics data were obtained from 155 plasma samples from 127 Mexican American individuals from
Starr County, TX, USA. None had type 2 diabetes at the time of sample collection and 69 had prediabetes by at least one criterion.
We tested statistical associations of amino acids and other metabolites with each subtype of prediabetes.
Results We identified distinctive differences in amino acid profiles between prediabetic and normoglycaemic individuals, with
further differences in amino acid levels among subtypes of prediabetes. When testing all named metabolites, several fatty acids
were also significantly associatedwith 2 h glucose levels. Multivariate discriminative analyses show that untargeted metabolomic
data have considerable potential for identifying metabolic differences among subtypes of prediabetes.
Conclusions/interpretation People with each subtype of prediabetes have a distinctive metabolomic signature, beyond the well-
known differences in branched-chain amino acids.
Data availability Metabolomics data are available through the NCBI database of Genotypes and Phenotypes (dbGaP, accession
number phs001166; www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001166.v1.p1).
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BCAA Branched-chain amino acid
LASSO Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
LOO Leave-one-out
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SVM Support vector machine

Introduction

The diagnosis of type 2 diabetes is often made long after under-
lying metabolic changes have occurred. Individuals with predia-
betes already experience a host of changes and are likely to
develop overt diabetes [1]. Prediabetes is currently defined by
three different but relevant tests: fasting glucose of 5.6–
7.0 mmol/l, 2 h post-load glucose of 7.8–11 mmol/l from an
OGTT and HbA1c of 39–46 mmol/mol (5.7–6.5%) [2].
Although all three tests predict diabetes, they differ somewhat
in their biological underpinnings. For example, fasting and 2 h
glucose differ in muscle insulin resistance, hepatic insulin sensi-
tivity and first- and second-phase insulin responses [3].
Furthermore, only 12.3% of those with prediabetes in Starr
County, TX, USA are so identified on all three criteria [1].

It has long been known that branched-chain amino acids
(BCAAs) play an important role in insulin regulation and glucose
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metabolism [4, 5] and are associated with type 2 diabetes [6, 7]
and/or prediabetes [8, 9]. A 2016 systematic review identified
more than 20 studies testing cross-sectional associations between
amino acids and (pre)diabetes and 33 studies testing prospective
associations between metabolites and (pre)diabetes progression
[10].Meta-analyses of these studies showed that BCAAs (valine,
leucine and isoleucine) and aromatic acids (tyrosine and phenyl-
alanine) are positively associated with relative risks for type 2
diabetes, while glycine and glutamine are negatively associated.
Most of the studies included in the review were targeted
metabolomic studies, but two studies employed untargeted
approaches [11, 12] and identified multiple metabolites associat-
ed with type 2 diabetes in addition to BCAAs. Interestingly, an
untargeted metabolomics study in Mexican Americans from the
San Antonio Family Heart Study suggested that future diabetes
risk can be predicted from plasma lipidomic profiles [13]. These
results show that metabolomic data provide important informa-
tion about diabetes and its progression. It is also evident that most
knowledge is still largely based on targetedmetabolomics, with a
need for and considerable potential in evaluating the untargeted
metabolome in the context of (pre)diabetes development and
progression.

Methods

To begin to investigate the metabolic underpinnings associat-
ed with progression to and subtypes of prediabetes, we

conducted untargeted metabolomic and targeted lipidomic
assays on 155 samples from 127 womenwithout type 2 diabe-
tes from Starr County, TX, USA. Participants for the present
study were selected from the representative population of
Mexican Americans from Starr County described in Hanis
et al. [1]. Briefly, in a survey conducted from March 2002 to
January 2006, we performed OGTTs on 1345 individuals
aged 20–77 years. We were able to follow up a total of 768
of the 1345 individuals between December 2010 and January
2014, with a mean of 8.6 years between examinations. From
these participants, we investigated all 127 unrelated women
who did not have diabetes in either the original or the follow-
up examination and who had exome sequencing data and
Staphylococcus aureus carriage status available. A total of
28 of the 127 women were profiled using plasma samples
collected approximately 10 years apart. These 28 individuals
were selected based on their BMI profiles: the 14 who showed
the greatest increases in BMI, and 14 individuals who showed
no changes in BMI over the 10 years. Overall, 69 of the 127
women had prediabetes defined by at least one category: 38
by fasting glucose, 41 by 2 h glucose and 31 by HbA1c levels.
Only seven individuals had prediabetes according to all three
definitions. All study participants gave informed consent and
the study was approved by the institutional review board at the
University of Texas Health Science Center at Houston.

The Michigan Regional Comprehensive Metabolomics
Resource Core (Ann Arbor, MI, USA) performed untargeted
metabolomic and lipidomic assays. EDTA plasma aliquots
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had been stored at −80°C since their collection date.
Individuals were aged 35–62 years at the time of sample
collection. Lipids were extracted using a modified Bligh–
Dyer method [14]. The lipid extract was then subjected to
LC-MS lipidomic profiling using an Agilent (Santa Clara,
CA, USA) 6520 qTOF operating in positive and negative
ion modes using data-dependent MS/MS with dynamic mass
exclusion. Lipidswere identified using the LipidBlast package
[15], resulting in 707 identified lipid species. To perform
untargeted metabolomic profiling, a 1290 Infinity Binary LC
system from Agilent was used for LC with a Waters Acquity
(Milford, MA, USA) UPLC HSS T3 column. MS was
performed using an Agilent 6530 qTOF system. Raw process-
ing was conducted with Agilent MassHunter Qual (v.
B.08.00) and Profinder (v. B.08.00) software, followed by
data analysis with the Agilent Mass Profiler Pro package (v.
B.14.9.1). A total of 7661 raw features with at least one
measurement were obtained.

To reduce peak intensity drift, daily sample processing was
accompanied by analysis of six pooled plasma samples along
with process blanks. To perform normalisation, compounds
present in the pooled samples were used to estimate ranks
within each batch through inverse probability weighting. We
further used the properly transformed and densely selected
ranks to match observations of each batch to a targeted distri-
bution through a local smoothing technique that is based on
the concept behind quantile normalisation [16, 17]. As we
observed some metabolites with measurements far exceeding
others, we removed outliers to avoid results driven by only a
few observations. Rather than setting an arbitrary threshold for
deviation, we used Grubbs’ test to systematically set the
threshold according to the number of available measures
[18]. We also used the mean absolute difference statistic
instead of SDs [19]. Outlier removal processing was applied
for every metabolite with at least 30 measurements.

To test for statistical associations of amino acid levels with
prediabetes, we standardised each amino acid level and
applied linear regression tests, including age and BMI as
covariates, by dichotomising individuals as normoglycaemic
or having prediabetes using the three different definitions of
prediabetes. For associations between all known metabolites
and fasting glucose, 2 h glucose and HbA1c levels, we treated
these three phenotypes as quantitative traits and performed
linear regression between each and the metabolites while
adjusting for age and BMI. Only metabolites with fewer than
50% missing rates were tested for associations. To assess the
association of known metabolites with future changes, we
looked at the 28 individuals with metabolomic profiles at
two points in time. We used changes in fasting glucose, 2 h
glucose and BMI levels between the measurements as depen-
dent variables in the linear regression. We used BMI and age
at baseline as covariates, together with each quantitative trait’s
baseline measures.

With so many measures, even very low rates of missing data
result in few samples with entirely complete data. Missingness
is less problematic when analysing individual metabolites, but it
restricts many multidimensional methods such as principal
component analysis for multivariate analysis. We employed
the ‘impute’ package from R Bioconductor (v. 3.8, www.
bioconductor.org), which implements K-nearest-neighbour
imputation [20], to avoid the missing data problem for our
multivariate analyses. We imputed every metabolite with less
than 30%missing rates, resulting in 3560 metabolites including
151 named metabolites. We used the MASS package (v. 7.3–
50, https://cran.r-project.org/web/packages/MASS) for linear
discriminant analyses (LDAs) and the glmnet package (v. 2.
0–18, https://cran.r-project.org/web/packages/glmnet) for
LASSO regression analysis. The cv.glmnet function was used
to select the best parameter for least absolute shrinkage and
selection operator (LASSO) regression employing leave-one-
out (LOO) cross-validation. We chose to use the lambda.min
value because it yields the most optimised model. Because our
prediabetes definitions overlap, we chose the multiresponse
Gaussian family provided by glmnet, which allows assigning
multiple response variables in each instance. This method is
useful when there are multiple correlated response variables,
as the correlation structure is maintained such that the set of
selected variables is shared across all target variables. To test
classification performances, we performed another set of LOO
cross-validation experiments by using LASSO and support
vector machine (SVM) in conjunction, where in each LOO
experiment we used 126 training samples to choose metabolites
by LASSO (with tenfold cross-validation within 126 samples),
and then used those metabolites to train an SVM classifier to
classify each subtype of diabetes vs the rest. The LOO sample
was used to measure classification accuracies and Matthews
correlation coefficients (MCCs) of predictions. The MCC
provides better insights on classification performances than
accuracies when class distributions are imbalanced. For base-
line comparisons, we also calculated SVM predictions using
traditional risk factors (i.e. BMI, age, HDL-cholesterol, triacyl-
glycerol, systolic BP and diastolic BP) as features. SVM was
trained using the radial basis function kernel with C = (number
of features), gamma = 1/(number of features). We used the
e1071 package (v. 1.7–2, https://cran.r-project.org/web/
packages/e1071/) for SVM analyses. We used R version 3.5.1
(R Foundation for Statistical Computing, Vienna, Austria) for
all statistical analyses.

Results

Amino acids and prediabetes subtypesWe investigated differ-
ences in mean amino acid levels between individuals with
prediabetes and those with normoglycaemia for 12 amino
acids (Fig. 1) using the metabolomic profiles of 127
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individuals. The results showed distinctive amino acid signa-
tures for normoglycaemic and prediabetic individuals. We
also determined the statistical significance of differences in
amino acid distributions between normoglycaemic and predia-
betic individuals (Table 1). Isoleucine, tryptophan and lysine
levels were differentially distributed among individuals with
overall prediabetes (by any criteria) and individuals with
normoglycaemia at p < 0.05. Among the subcategories of
prediabetes, valine, isoleucine, tryptophan, lysine and arginine
were associated at p < 0.05 for prediabetes defined by fasting
glucose, while isoleucine, proline and arginine were associated

with prediabetes status defined by 2 h glucose levels. With a
more stringent Bonferroni-adjusted significance threshold
(p < 4.2 × 10−3, adjusted for 12 amino acids), isoleucine and
lysine showed a significant associationwith overall prediabetes.
In the subcategories, isoleucine and lysine were significantly
associated with prediabetes status defined by fasting glucose
only. Isoleucine was associated with both fasting glucose- and
2 h glucose-defined prediabetes, and lysine was associated with
fasting glucose- and HbA1c-defined prediabetes. Individuals
with prediabetes defined by fasting glucose had higher levels
of valine and isoleucine, but these BCAA measures were not

Fig. 1 Mean normalised amino
acid levels in prediabetes and
normoglycaemia by (a) any of the
three criteria for prediabetes, (b)
fasting blood glucose, (c) 2 h
glucose and (d) HbA1c levels.
Arg, arginine; Gln, glutamine;
Glu, glutamate; Ile, isoleucine;
Leu, leucine; Lys, lysine; Phe,
phenylalanine; Pro, proline; Thr,
threonine; Trp, tryptophan; Tyr,
tyrosine; Val, valine. Data are
expressed as means ± SEM
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higher in individuals with prediabetes by HbA1c only. On
the contrary, mean arginine levels were higher in individ-
uals with HbA1c-defined prediabetes and were also higher
in fas t ing g lucose -de f ined pred iabe te s than in
normoglycaemic individuals, but were lower in individuals
w i t h 2 h g l u co se - d e f i n ed p r ed i abe t e s t h an i n
normoglycaemic individuals. Tryptophan and lysine levels
were consistently higher in individuals with all definitions
of prediabetes than in individuals with normoglycaemia
(Fig. 1).

These results suggested that the three glycaemic measures
defining prediabetes differ in their characteristics; hence, we
calculated correlation among these three measures. We
observed the strongest correlation between fasting glucose
and HbA1c at 0.4459 (p < 1.49 × 10−7), followed by 0.3511
(p < 7.32 × 10−5) between fasting and 2 h glucose, and 0.1904
(p < 0.0357) between 2 h glucose and HbA1c.

Known compounds associated with glucose and HbA1c levels
The analyses were extended across 181 known metabolites
with missing rates of less than 50% using a slightly different
approach. Instead of classifying individuals as prediabetic or
normoglycaemic, we tested for associations by using fasting
glucose, 2 h glucose and HbA1c as quantitative traits in linear
regression (see electronic supplementary material [ESM]
Table 1). Not surprisingly, we found that the metabolite
glucose was most significantly associated with fasting plasma
glucose levels (p = 4.1 × 10−9). Glucose was also positively
associated with HbA1c levels, albeit non-significantly (p =
5.2 × 10−3), but was not included in the top association results
for 2 h glucose. We also found a statistically significant

association between lysine and fasting glucose levels (p =
1.5 × 10−4) and non-significant associations between trypto-
phan, isoleucine and valine and fasting glucose levels. For 2 h
glucose, we found significant associations with palmitate
(4.6 × 10−6), palmitoleic acid (5.0 × 10−6), oleic acid (p =
2.5 × 10−6) and cis-7,10,13,16-docosatetraenoic acid (adrenic
acid, p = 4.6 × 10−5). No known compound was identified to
be significantly associated with HbA1c levels after Bonferroni
correction (p < 3.1 × 10−4), but several amino acids including
tryptophan, arginine, lysine and tyrosine were in the top asso-
ciation results. We also observed associations of HbA1c levels
with kynurenine and xanthine (p < 0.05), which are metabo-
lites involved in the tryptophan–kynurenine pathway.

Compounds associated with temporal changes To understand
which metabolites are indicative of future changes in diabetes-
related traits, we analysed metabolites measured in samples
from an earlier time point by testing for associations with
changes in BMI, fasting glucose and 2 h glucose levels in 28
individuals with measures from two time points. We could not
test HbA1c because it was not collected in the initial examina-
tions. We performed linear regressions for changes in each
phenotype adjusted by baseline age, BMI and baseline pheno-
type (ESMTable 2). Although we did not find any metabolites
with p values lower than the Bonferroni level (p < 3.1 × 10−4)
due to the small sample size, we observed several non-
significant (p < 0.05) association signals. Baseline oleic acid
and glucose levels were both negatively associated with future
BMI changes. Lignoceric acid (p= 2.1 × 10−3) and
glycocholate (p = 2.6 × 10−3) showed positive associations
with fasting glucose changes. Glutamine showed a non-

Table 1 Statistical differences in amino acid levels by linear regression, with age, BMI and prediabetes status as covariates

Amino acid Prediabetes by any criteria Prediabetes by fasting glucose Prediabetes by 2 h glucose Prediabetes by HbA1c

p value β p value β p value β p value β

Valine 0.05 0.36 0.02* 0.44 0.10 0.32 0.77 −0.06
Leucine 0.47 0.14 0.40 0.17 0.86 −0.04 0.71 −0.09
Isoleucine 1.7 × 10–3† 0.57 2.7 × 10–3† 0.57 0.02* 0.46 0.85 0.04

Phenylalanine 0.51 0.12 0.93 0.02 0.49 0.13 0.62 0.10

Threonine 0.61 −0.10 0.85 0.04 0.42 −0.16 0.04* −0.44
Tryptophan 6.1 × 10−3* 0.52 7.0 × 10−3* 0.54 0.20 0.26 0.08 0.39

Lysine 7.2 × 10–4† 0.61 3.1 × 10–4† 0.68 0.11 0.31 0.02* 0.48

Arginine 0.54 0.12 0.02* 0.50 0.02* −0.46 0.01* 0.58

Glutamine 0.37 −0.17 0.14 0.29 0.16 −0.28 0.78 −0.06
Proline 0.28 −0.28 0.92 −0.03 0.02* −0.67 0.82 0.07

Tyrosine 0.08 0.30 0.12 0.28 0.93 −0.02 0.29 0.25

Glutamate 0.29 0.23 0.42 0.18 0.17 0.31 0.40 0.20

Effect sizes were calculated after standardising each variable, representing SD units

*p value lower than nominal significance level (p < 0.05)
† p value is lower than Bonferroni level (p < 4.2 × 10−3 )
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significant association (p = 1.4 × 10−3) with future changes in
2 h glucose levels.

Multidimensional analysis with unknown metabolites
Although testing individual metabolites permits robust statis-
tical interpretation, the richness of metabolomics provides
more interesting perspectives with collective information from
multiple metabolites. Because it is not possible to assess the
statistical significance of high-dimensional multivariate
analyses due to the exponentially increasing hypothesis space,
we focused on qualitative aspects of discriminant analysis
with variable selection strategies. To understand the overall
information content of amino acid levels collectively, we
performed LDA using all 12 measured amino acids (including
redundant measures) to separate individuals with prediabetes
from the rest by the three aforementioned criteria. Because
LDA provides one-dimensional projections that best separate
the given groups, we performed three separate LDAs with the
three different definitions of prediabetes (Fig. 2a–c).We creat-
ed the three-dimensional coordinates on these plots by using
LDAwith prediabetes status defined by fasting glucose levels,
2 h glucose and HbA1c levels. Figures 2a and b are shown
with two of these three linear discriminants, by using the
dimensions from fasting and 2 h glucose, while Fig. 2c is
shown on the dimensions from fasting glucose and HbA1c.
As expected, fasting glucose-defined prediabetes was best
separated along the dimension created by LDA on fasting
glucose status. Next, we extended our search space into all
151 known metabolites with missing rates of less than 30%
(Fig. 2d–f), and then to all 3560 measured metabolites with
missing rates of less than 30%, including the unknown ones
(Fig. 2g–i). For these analyses, we applied LASSO [21]
regression to select the subset of metabolites that yielded the
best separation for all three subtypes of prediabetes while
regularising the number of selected metabolites. LASSO
regression selected 63 out of 151 known metabolites and
118 out of 3560 metabolites. We applied LDA onto these
selected sets of metabolites to find the one-dimensional
projections to visualise the separation. The 63 metabolites
selected by LASSO regression provided better separation for
all three prediabetes definitions (Fig. 2d–f) than using just
amino acid levels, but the improvements weremore noticeable
in the 2 h glucose results than in the others. Using all available
metabolites resulted in near-perfect separation for all three
prediabetes definitions (Fig. 2g–i). To measure how well we
could classify subtypes of diabetes based on the metabolomics
data, we performed LOO classification experiments using
both LASSO and SVM. The accuracy of fasting glucose-,
2 h glucose- and HbA1c-defined prediabetes was 0.87, 0.92
and 0.86, respectively, when we used features selected from
all metabolites, which was greatly improved from the baseline
accuracies of 0.55, 0.67 and 0.70 that were derived by using
the traditional risk factors of age, BMI, HDL-cholesterol,

triacylglycerol, systolic BP and diastolic BP. To take account
of class label imbalances we also measured MCCs, which
improved to 0.67, 0.82 and 0.59 from the baseline values of
−0.27, 0.20 and 0.070 for fasting glucose-, 2 h glucose- and
HbA1c-defined prediabetes predictions, respectively (ESM
Table 3).

It has been reported that tryptophan to kynurenine metab-
olism is upregulated in individuals with type 2 diabetes and it
is also closely related to stress and inflammation [22, 23]. We
further investigated the pairwise relationship between trypto-
phan and kynurenine levels and discovered that kynurenine
levels are positively correlated with tryptophan levels (Fig. 3).
More interestingly, we found that the correlation between
tryptophan and kynurenine was higher in prediabetic individ-
uals than in those with normoglycaemia (Fig. 3).

Discussion

These results show that there are distinct differences in amino
acid levels between prediabetic and normoglycaemic individuals.
More interestingly, we observed differences in amino acid levels
between subtypes of prediabetes. For example, themean arginine
levels of individuals with prediabetes defined by fasting glucose
(i.e. impaired fasting glucose) were much higher than those of
normoglycaemic individuals, while arginine levels for individ-
uals with prediabetes defined by 2 h glucose (i.e. impaired
glucose tolerance) was noticeably lower than those of
normoglycaemic individuals. The mean arginine levels of indi-
viduals with prediabetes by HbA1c were also higher than normal,
suggesting that arginine levels may interact differently with the
metabolic drivers of fasting and post-load glucose levels. Mean
isoleucine levels were consistently higher in individuals with
prediabetes in all three subtypes of prediabetes, consistent with
existing reports on the relationship between BCAAs and type 2
diabetes [8], but the difference was non-significant for HbA1c-
defined prediabetes. Themean proline level was (p < 0.05) lower
in prediabetic vs normoglycaemic individuals only for 2 h
glucose-defined prediabetes, while the mean threonine level
was lower (p < 0.05) only in HbA1c-defined prediabetes.

Our plasma samples from the second timepoint (127
samples) had been stored for 2–6 years and samples from
the first timepoint (28 samples) had been stored frozen 10–
16 years before metabolomic profiling. It has been reported
that metabolites stay stable at −80°C for up to seven years, but
longer storage of up to 16 years would affect the analyses [24].
We acknowledge that our results might have been affected by
the lengthy storage of the samples.

It has been previously reported that metabolites involved in
the tryptophan metabolism pathway show different signatures
between normoglycaemic individuals and those with type 2
diabetes [22]. We also observed that mean tryptophan levels
were higher in individuals with prediabetes (Fig. 1, Table 1).
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Our association analysis with all known metabolites (ESM
Table 2) showed that tryptophan was positively associated
with fasting glucose and HbA1c levels. More interestingly,
we also found that the HbA1c level was positively associated
with kynurenine (p = 4.2 × 10−3) and xanthine (p = 0.011),
which are two of the main metabolites involved in the trypto-
phan metabolic pathway. Stronger correlations between
kynurenine and tryptophan in individuals with prediabetes
vs those with normoglycaemia (Fig. 3) suggest that the
tryptophan–kynurenine metabolism is stronger in individuals
with prediabetes.

Our discriminant analyses show that metabolomic profiling
can separate the different subtypes of prediabetes. As few as 12
amino acid measures provided reasonable separation between
individuals with fasting glucose-defined prediabetes and
normoglycaemic control participants (Fig. 2a–c), while the sepa-
ration was less clear in other subtypes. Obviously, more features
provide better separation (Fig. 2d–i), but this might also result in
overfitting in the absence of an exponentially larger sample size
with the increased dimensionality. We tried to minimise the
overfitting problem by employing regularised multivariate
regression (LASSO). LOO classification results with LASSO

Fig. 2 LDAs between normoglycaemic and prediabetic individuals
defined by three criteria. Linear discriminant (LD)1 was projected by
using fasting glucose (FG)-based prediabetes status as class labels, and
LD2 and LD3 by using 2 h glucose (2hG) and HbA1c, respectively. (a–c)
LDAwas performed on 12 amino acid measures withmissing rates of less
than 30%, coloured by prediabetes status by (a) fasting glucose, (b) 2 h
glucose and (c) HbA1c. (d–f) LDA was performed on 63 metabolites

selected by LASSO regression on 151 known metabolites with missing
rates of less than 30%, coloured by prediabetes status by (d) fasting
glucose, (e) 2 h glucose and (f) HbA1c. (g–i) LDA was performed on
118 metabolites selected by LASSO regression on 3560 metabolites,
including unknown metabolites, coloured by prediabetes status by (g)
fasting glucose, (h) 2 h glucose and (i) HbA1c

Diabetologia (2020) 63:287–295 293



and SVM clearly showed improvements obtained by additional
metabolites in predicting subtypes of prediabetes.

We acknowledge that the statistical power of our results is
limited by the moderate sample size and lengthy frozen storage
of samples. Although we focused more on descriptive and
exploratory analyses than on novel discovery in this study, our
results are consistent with those of previous studies [4–10] and
suggest a need for and great potential in evaluating untargeted
metabolomics data to reveal the biological underpinnings of the
early progression of (pre)diabetes. They also point to metaboli-
cally complex differences among individuals with prediabetes
defined by different criteria. It is not known to what extent the
same is true for the different definitions of overt diabetes.

In conclusion, we observed distinctive amino acid
signatures between normoglycaemic and prediabetic indi-
viduals including BCAAs, as previously reported, with
distinctive signatures between different subtypes of
prediabetes. We identified various metabolites that are
sensitive predictors of prediabetes status and its subtypes
using statistical association tests. Our results show that
metabolomics data provide a high-dimensional snapshot
of metabolic changes in the early developmental stages of
type 2 diabetes.
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