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Abstract
Aims/hypothesis Diabetic retinopathy is a common microvascular complication of diabetes mellitus and is initiated by inflam-
mation and apoptosis-associated retinal endothelial cell damage. Prostaglandin E2 (PGE2) has emerged as a critical regulator of
these biological processes. We hypothesised that modulating PGE2 and its E-prostanoid receptor (EP2R) would prevent diabetes
mellitus-induced inflammation and microvascular dysfunction.
Methods In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/
EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal
vascular and biochemical markers were assessed.
Results Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial
cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition,
pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation
of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin
domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and
recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein
signalling pathway.
Conclusions/interpretation The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be
considered as a potential target for diabetic retinopathy prevention and treatment.
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Abbreviations
ASC Apoptosis-associated speck-like protein contain-

ing a C-terminal caspase-activation and recruit-
ment domain

COX-2 Cyclooxygenase-2
CREB cAMP response element-binding protein
EP1–4R E-prostanoid1–4 receptor
hRMEC Human RMEC
LDH Lactate dehydrogenase
NLRP3 Nucleotide-binding domain and leucine rich repeat

containing family, pyrin domain containing 3
OCT Optical coherence tomography
PGE2 Prostaglandin E2

PKA Protein kinase A
RMEC Retinal microvascular endothelial cell
STZ Streptozotocin
z-VAD Z-YVAD-fmk

Introduction

Diabetic retinopathy, a prevalent complication of diabetes, is a
leading cause of visual impairment and blindness in the adult
population. However, the biochemical and molecular mecha-
nisms are not well understood [1, 2]. Early clinical symptoms
include retinal microvascular endothelial cell (RMEC) dys-
function and vascular dysfunction [3, 4]. Emerging evidence
indicates that high-glucose-induced para-inflammation,
characterised by a chronic low level of inflammation and a
disordered immune response, is involved in the onset and

progression of RMEC damage [5, 6]. The retinas from animal
models of diabetes show inappropriate activation of the
nucleotide-binding domain and leucine rich repeat containing
family, pyrin domain containing 3 (NLRP3) inflammasome,
which is a molecular complex of NLRP3, apoptosis-
associated speck-like protein containing a C-terminal cas-
pase-activation and recruitment domain (ASC) and pro-
caspase 1 [7]. These diabetic retinas also express high levels
of proinflammatory cytokines such as IL-1β [8].

Two signalling pathways are believed to be involved in the
generation and release of IL-1β induced by high glucose
levels and the accumulation of advanced glycation end-
products [9]. The first pathway is triggered by glucose abnor-
malities, which induce IL-1β transcription and stimulate the
production of IL-1β precursor pro-IL-1β. The second signal-
ling pathway induces conformational changes in the NLRP3
inflammasome platform and activates caspase 1 to convert
pro-IL-1β into the mature secreted form of IL-1β. The
NLRP3 inhibitor MCC950 has been shown to inhibit high-
glucose-induced RMEC dysfunction, consistent with the
promising clinical effects of an IL-1 receptor antagonist for
the treatment of diabetic retinopathy [5].

Prostaglandin E2 (PGE2) is a potent inflammatory mediator
that is a crucial IL-1β inducer and causes fever [10]. PGE2 is
biosynthesised from arachidonic acid by cyclooxygenase en-
zyme and stimulates its G-protein-coupled plasma membrane
receptors (E-prostanoid1–4 receptors [EP1–4Rs]), activating
multiple signal transduction pathways leading to downstream
responses [11]. The EP1 receptor mainly couples to the Gq
protein and upregulates the level of intracellular calcium; the
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EP2 and EP4 receptors couple to the Gs protein, activate ade-
nylate cyclase and increase the production of intracellular
cAMP. In contrast, the EP3 receptor couples to the Gi protein,
inactivates adenylate cyclase and decreases the formation of
intracellular cAMP [12].

Recent research findings have verified that cyclooxygenase-
2 (COX-2) and PGE2 are involved in the pathogenesis of dia-
betic retinopathy. Significantly higher than normal PGE2 levels
have been detected in the vitreous fluid of individuals with
complications from proliferative diabetic retinopathy and also
in animal models of diabetic retinopathy [13]. In addition, pro-
gression of retinopathy can be prevented or delayed by prosta-
glandin inhibitors [14, 15]. In receptor combination patterns,
PGE2 shows various biological effects and the specific E-
prostanoid receptors of PGE2 that regulate endothelium impair-
ment and vascular dysfunction have not been well illustrated.
These findings prompted us to determine whether the PGE2/
EP2R cascade mediates RMEC damage in diabetic retinopathy
and to investigate the underlying molecular mechanisms.

Methods

Human vitreous fluid Participants with type 1 diabetes who
had undergone vitrectomy owing to proliferative diabetic ret-
inopathy were recruited from Wuxi People’s Hospital
Affiliated to Nanjing Medical University, Wuxi, Jiangsu,
China. The research followed the tenets of the Declaration
of Helsinki. The protocol for sample collection was approved
by the hospital ethics committee and the study participants
gave informed consent. For further details, see electronic sup-
plementary materials (ESM) Methods.

Cell culture Human RMECs (hRMECs) were obtained from
BeNa Culture Collection (Beina Chuanglian Biotechnology
Institute, Beijing, China) and cultured in DMEM supplement-
ed with 10% FBS (vol./vol.) and 1% antimycotics and antibi-
otics (vol./vol.). Mycoplasma contamination was not tested.
For further details, see ESM Methods.

Animals and treatments Eight-week-old homozygous male
Sprague Dawley rats (220–250 g) were randomly divided into
six groups. Diabetes was induced with an i.p. injection of
streptozotocin (STZ; 60 mg/kg in 10 mmol/l citrate buffer at
pH 4.6), as previously reported [16]. The rats had blood glucose
levels >16.7 mmol/l, indicating that diabetes had been success-
fully established. The STZ-treated rats were given an intravit-
real injection of 5 mmol/l PGE2, butaprost (a PGE2/EP2R ago-
nist) or AH6809 (an EP2R antagonist), all mixed with saline
solution (154 mmol/l NaCl) 1:1, at a total volume of 6 μl for
each eye. A vehicle control was prepared by mixing one vol-
ume of DMSO with one volume of saline solution. The six
experimental groups were as follows: control; untreated STZ;

STZ + PGE2; STZ + butaprost; STZ + AH6809 and STZ +
DMSO. All studies adhered to the institutional guidelines for
humane treatment of animals, Principles of Laboratory Animal
Care (National Institutes of Health [NIH], Bethesda, MD,
USA) and to the Association for Research in Vision and
Ophthalmology (ARVO) Statement for the Use of Animals in
Ophthalmic and Vision Research. For further details, see ESM
Methods.

Intravitreal injection Rats were ventilated after being
anaesthetised with a mixture of ketamine (80 mg/kg, i.p.)
and xylazine (4 mg/kg, i.p.). A volume of about 6 μl of the
designated mixture was delivered into the vitreous cavity
using a 33-gauge needle. Rats received an intravitreal injec-
tion every 3 weeks.

Retinal imaging Rats were anaesthetised (ketamine/xylazine)
and their pupils were dilated with Cyclomydril (Alcon, Fort
Worth, TX, USA). Spectral domain optical coherence tomog-
raphy (OCT) was performed using the image-guided OCT
system (Micron IV; Phoenix Research Labs, Pleasanton,
CA, USA) with the guidance of a bright-field live fundus
image.

Permeability measurement The permeability of the blood–
retina barrier in rats was quantified with Evans Blue, which
binds to the plasma albumin, using the method described by
Shan and colleagues [16] (see ESMMethods). Digital images
of rat retinal flat mounts were examined under an Olympus
BX-51 light microscope (Olympus, Tokyo, Japan) to check
for Evans Blue extravasation from the retinal vessels.

Retinal trypsin digestion assay Eyes of rats were enucleated,
fixed in 4% paraformaldehyde (wt/vol.) for 24 h, equatorially
bisected and the retinas were removed. The retinas were incu-
bated with 3% trypsin (wt/vol.) at 37°C for 3 h; they were then
gently shaken to free the vessel network, washed and mounted
onto glass slides to dry. Retinal vasculature was stained with
Periodic acid–Schiff and Haematoxylin. Digital images were
examined under an Olympus BX-51 light microscope
(Olympus, Tokyo, Japan).

H&E staining Eyes of rats were enucleated and fixed in 4%
paraformaldehyde (wt/vol.) for 24 h. The retina and sclera
were dehydrated in a graded ethanol series and embedded in
paraffin. For H&E staining, 5 μm thick sections were taken
along the vertical meridian and observed under an Olympus
BX-51 light microscope (Olympus, Tokyo, Japan).

Immunofluorescence analysis Standard immunofluorescence
analysis was performed to localise NLRP3 andASC expression
in retina of rats as previously described [17]. For TUNEL anal-
ysis, the retina sections of rats were stained using a fluorescein-
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conjugated TUNEL in situ cell death detection kit (Roche
Diagnostics, Mannheim, Germany). Images were acquired
using a confocal microscope (Leica, Heidelberg, Germany).

Lectin labelling of the adherent retinal leucocytes Leucostasis
assay was performed using a perfusion labelling technique, as
previously reported [18] (see ESM Methods). FITC-coupled
concanavalin A lectin (Vector Labs, Burlingame, CA, USA)
was used to label the adherent leucocytes and the vascular
endothelial cells in rat retinas. Images were examined under
a confocal microscope (Leica, Heidelberg, Germany).

Transmission electron microscopy analysis Retinal sections of
rats, approximately 2 mm× 3 mm, were isolated from each
eyecup following the protocol described previously [19] (see
ESM Methods). The ultrastructure of the retina tissues was
observed using a transmission electron microscope (Tecnai
G2 Spirit Bio TWIN; FEI, Hillsboro, OR, USA).

Immunoprec ip i tat ion and western blot analys is
Immunoprecipitation and western blotting were performed
as described previously [17] using NLRP3, ASC, caspase 1,
caspase 3, CREB, p-CREB, EP1R, EP2R, EP3R, EP4R,
COX-2, Epac1, β-actin and Laminb antibodies (see ESM
Methods).

RNA quantification The relative expression levels of mRNA
of rat Icam1, rat Il-1β, human IL-1β, human NLRP3, human
EP1R, human EP2R, human EP3R or human EP4R were
quantified by quantitative RT-PCR [17] (see ESM Methods).
The data were analysed by using the 2−ΔΔCt method and nor-
malised to endogenous control GAPDH or Gapdh mRNA.
The primers used are detailed in ESM Table 1.

Tissue and serum biochemical measurements Serum lactate
dehydrogenase (LDH) levels in the cell culture supernatant
fractions of the hRMECs were measured using commercially
available assays (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China).

Flow cytometry The hRMECs were suspended in 400 μl of
binding buffer (422201, Biolegend, San Diego, CA, USA)
and stained with 5 μl of annexin V–FITC at 4°C in the dark.
After 15min, the cells were incubated with 10μl of propidium
iodide buffer for 5 min at 4°C in the dark. The cell apoptosis
rates were evaluated by a Cytomics FC500 instrument
(Beckman Coulter, Miami, FL, USA).

IL-1β and PGE2 assay IL-1β and PGE2 in the cell culture
supernatant fractions of the hRMECs was measured using
commercial ELISA kits (Elabscience Biotechnology Co.,
Wuhan, China; Cayman Chemical Company, Ann Arbor,
MI, USA, respectively). The cell culture supernatant fraction

was concentrated tenfold by ultrafiltration centrifugation
(Amicon Ultra-0.5; Millipore, Billerica, MA, USA).

Statistical analysisThe experiments were not performed blind.
However, an effort was made to simulate the conditions of
blinded assays. All the samples were obtained via the same
procedures and treated in the same way. All the data was
obtained via direct recording of the physiological variables
so that the analysis did not include any subjective evaluations.
The results are expressed as the mean ± SEM. Significance
was established between two groups using Student’s t test
(paired t test), while ANOVA was used for multiple group
comparisons followed by Tukey’s post hoc test. Tukey’s post
hoc test was run only if the F value achieved p < 0.05 and
there was no significant variance in homogeneity. The data
was analysed with the GraphPad Prism-5 statistical software
(Prism v5.0; GraphPad Software, La Jolla, CA, USA).
Differences were considered statistically significant at
p < 0.05.

Results

PGE2/EP2R signalling mediates the impairment of retinal ves-
sels in rat model of type 1 diabetes The potent proinflamma-
tory and angiogenic cytokine PGE2 was upregulated in the
vitreous fluid of individuals with diabetic retinopathy vs
healthy individuals (ESM Fig. 1a). We cultured hRMECs in
high-glucose medium to mimic diabetic conditions in vitro.
High-glucose stress resulted in a significant increase in COX-
2 and EP2R expression compared with the control medium
(ESM Fig. 1b–d). Moreover, EP2R (also known as
PTGER2) mRNA levels were significantly increased in
hRMECs treated with ATP and lipopolysaccharide (important
risk factors for endothelial cell injury in diabetic retinopathy)
(ESM Fig. 1e). This data suggests a potential role for EP2R in
RMECs experiencing high-glucose stress.

Diabetic retinopathy is typically characterised by an abnor-
mal change in the retinal microvasculature, resulting in retinal
non-perfusion, increased vasopermeability and pathological
intraocular proliferation of the retinal vessels [20]. We used
intravitreal injection of an EP2R agonist (butaprost) and an-
tagonist (AH6809) in STZ-induced diabetic rats for 3 months
to investigate whether EP2R is a potential regulator of
diabetes-induced microvascular complications. Evans Blue
leakage assay indicated that PGE2 and butaprost increased
diabetes-induced retinal vascular leakage; these symptoms
were alleviated in rats that were pre-treated with AH6809
(Fig. 1a–c). Retinal trypsin digestion assay indicated that
diabetes-associated pericyte loss and capillary degeneration
were more severe in the retinas of PGE2- and butaprost-
treated rats (Fig. 1d,e). Inhibition of EP2R partially reduced
this detrimental effect (Fig. 1d,e).
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PGE2/EP2R signalling influences morphological changes in
diabetic rat retina The fundus images taken in PGE2- and
butaprost-treated diabetic rats showed that the intraretinal
microvascular abnormalities occurred as early as 6 weeks
after diabetes was successfully established (Fig. 2a). At
that time, the deposition of extravasated lipoproteins in
each group of rats was not yet clearly visible by fundus
photography. OCT showed an increased retinal thickness
in the PGE2- and butaprost-treated diabetic rats. The num-
ber of hyperreflective dots (arrows) in the superficial por-
tion of the inner retina dramatically increased in the
PGE2- and butaprost-treated diabetic rats (Fig. 2a,b). In

contrast, the AH6809 pre-treated group showed signifi-
cantly improved morphology of the retinal layers under
diabetic conditions (Fig. 2a,b). We continued to monitor
the retinal oedema and detachments later in the course of
the disease model. Three months after diabetes was suc-
cessfully established, histological examination showed
that the retinal tissue in the control rats housed under
normal conditions was intact and that the layers of the
retina were clear and regularly arranged (Fig. 2c). By
comparison, the retinal oedema in the STZ-treated rats
was remarkable, and in the PGE2- and butaprost-treated
rats, the disordered retinal structure, retinal oedema and
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Fig. 1 PGE2/EP2R signalling mediates retinal vascular leakage and cap-
illary degeneration in diabetic rats. (a–c) Rats were infused with Evans
Blue dye for 2 h. Red fluorescence dots in the flat-mounted retina indi-
cated retinal vascular leakage. The fluorescence signal was detected using
an Olympus BX-51 light microscope at ×4 objective (a); scale bar, 100
μm. The area (b) and the quantity (c) of the Evans Blue leakage were
determined (n=6). (d, e) Retinal trypsin digestion was used to detect

changes in the pericytes and the acellular capillaries; scale bar, 25 μm.
Representative images are shown (d). Original magnification ×200 using
an Olympus BX-51 light microscope; scale bar, 25 μm. Red arrows
indicate acellular capillaries. Acellular capillaries were quantified in 30
random fields per retina and averaged (n=5) (e). Results are presented as
means ± SEM; *p<0.05 and **p<0.01 for each pair of groups indicated.
Con, vehicle control-treated non-diabetic rats
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neovascularisation were potently exacerbated (Fig. 2c–e).
Meanwhile, rats pre-treated with AH6809 demonstrated
improved histological retinal changes under diabetic
conditions (Fig. 2c–e).

PGE2/EP2R signalling regulates endothelial cell apoptosis in
the retina of STZ-induced diabetic rats In diabetic retinopathy,
endothelial cell injury and apoptosis are thought to be
one of the initial pathological changes responsible for
breakdown of the blood–retina barrier and the subsequent
vascular hyperpermeability [20, 21]. In advanced diabetic
retinopathy, there is a more severe loss of endothelial cells

due to retinal hypoperfusion and hypoxia, as well as the
aberrant formation of new blood vessels [22]. Three months
after diabetes was successfully established in our rat
model, the PGE2- and butaprost-treated groups displayed
significantly increased amounts of diabetes-induced cell
apoptosis as assessed by TUNEL assay; compared with
these groups, the rats treated with the EP2R antagonist
AH6809 showed decreased levels of apoptosis (Fig. 3a,b).
Electron-microscopic examination revealed that PGE2

induced apoptotic nuclear condensations in the endothelial
cells when compared with cells from the untreated diabetic
rats (Fig. 3c). In addition, the endothelium was partially
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Fig. 2 PGE2/EP2R signalling influences morphological changes in the
eyes of diabetic rats. (a, b) Retinal images at 6 weeks and 9 weeks after
diabetes was successfully established in the rat model (a). Note the mor-
phological changes in the colour fundus images and the OCT images. The
number of hyperreflective dots in the OCT images (arrows) was deter-
mined (b). (c–e) H&E staining in paraffin sections of rat retinas 3 months

after establishment of the diabetes model (c); scale bar, 25 μm. GCL–IPL
and retinal thickness were evaluated in the H&E-stained sections (d, e).
The results are presented as means ± SEM; n=6, *p<0.05 and **p<0.01
for each pair of groups indicated. Con, vehicle control-treated non-dia-
betic rats; GCL, ganglion cell layer; INL, inner nuclear layer; IPL, inner
plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer
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detached from the basal membrane in the PGE2-treated
group. At the same time point, the diabetic rats treated with
AH6809 showed attenuated cellular injury (Fig. 3c), which
correlated with the TUNEL assay data.

PGE2/EP2R signalling is engaged in leucocyte adhesion in the
diabetic rat retina Chronic subclinical inflammatory response
is thought to play a critical role in the pathogenesis of diabetic
retinopathy [18, 23]. Leucostasis, a main characteristic of
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electron micrographs of retinal vascular endothelial cells in diabetic rats
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from two control rats; scale bar, 2 μm. Arrows indicate retinal vascular
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dothelial cell; GCL, ganglion cell layer; INL, inner nuclear layer; IPL,
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inflammation in diabetic retinopathy, is reported to contribute
to retinal capillary closure, non-perfusion, capillary dropout
and local ischaemia [24, 25]. In our rat model, adherent retinal
leucocytes were labelled in situ with FITC-linked concanava-
lin A. Six weeks after diabetes was successfully established,
retinal flat mounts were prepared and the adherent leucocytes
were counted in the blood vessels. Compared with the diabetic
retina, a 3.6-fold (n = 7, p < 0.01) and 3.3-fold (n = 7, p < 0.01)
increase in the number of adherent leucocytes was seen in the
PGE2- and butaprost-treated diabetic retinal capillaries, re-
spectively (Fig. 4a,b). A 0.7-fold (n = 7, p < 0.01) decrease
in the number of adherent leucocytes was seen in the retinas
of the AH6809-treated rats vs untreated diabetic rats (Fig.
4a,b).This was consistent with the mRNA level of Icam1 in
the retinas (Fig. 4c).

PGE2/EP2R signalling is involved in the activation of the
NLRP3 inflammasome in vivo NLRP3 inflammasome activa-
tion has been reported in diabetic retinopathy [26]. Its effector
molecule, IL-1β, mediates leucostasis and apoptosis in retinal
capillary endothelial cells [27]. The NLRP3 inflammasome

comprises the cytoplasmic receptor NLRP3, the adaptor mol-
ecule ASC and pro-caspase 1. Assembly of the NLRP3
inflammasome requires the association of NLRP3 with ASC
oligomers via homotypic pyrin domain interactions. In our
study, the PGE2-treated diabetic rats displayed augmented for-
mation of the diabetes-induced NLRP3–ASC complex, while
AH6809 blocked the STZ-related association of NLRP3 with
the ASC oligomers (Fig. 5a). Moreover, this was consistent
with Il-1β (also known as Il1b) and Nlrp3mRNA levels in the
retina (Fig. 5b,c).

PGE2/EP2R signalling mediates activation of the NLRP3–ASC
complex inflammasome in hRMECs Endothelial cells are
recognised as the primary cellular targets for diabetes-
induced vascular damage [20, 28, 29]. We selected an
RMEC line to study the mechanistic aspects and the function-
al significance of PGE2/EP2R signalling alteration in vitro.
The association of NLRP3 with the ASC oligomers signifi-
cantly increased in the PGE2- and butaprost-treated cells; the
association was inhibited by AH6809 pre-treatment (Fig. 6a).
To further assess the impact of the PGE2/EP2R signalling
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alteration on inflammasome activation, we examined the mat-
uration of pro-caspase 1, which is cleaved into active 10 kDa
or 20 kDa fragments that then enzymatically cleave pro-IL-1β
to produce mature IL-1β. Treatment with high glucose or

LPS + ATP increased both the caspase 1 cleavage and the
levels of IL-1β and NLRP3 mRNA in hRMECs (ESM Fig.
2a,b). A similar effect was seen in hRMECs treated with in-
creasing concentrations of PGE2 (1–20 μmol/l) (ESM Fig.
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2c). Caspase 1 cleavage in the hRMECs was increased by
both PGE2 and butaprost treatment; the effect was diminished
in the cells pre-treated with AH6809 (Fig. 6b). AH6809 ad-
ministration also significantly attenuated PGE2-induced in-
creases in the mRNA levels of IL-1β and NLRP3 (Fig. 6c).
We next addressed whether IL-1β administration could medi-
ate apoptosis of hRMECs. IL-1β (10 ng/ml) stimulation sig-
nificantly increased the activation of caspase 3, consistent
with the number of apoptotic cells measured by flow cytom-
etry analysis (Fig. 6d,e). As previously mentioned, pyroptosis
is initiated by caspase 1 activation and leads tomembrane pore

formation and the leakage of cellular contents. To confirm that
the cell death induced by PGE2 and butaprost was pyroptosis,
the caspase 1 inhibitor, z-YVAD-fmk (z-VAD), was used. z-
VAD pre-treatment effectively abolished the LDH release and
the caspase 3 activation induced by PGE2 and butaprost ex-
posure (Fig. 6f,g).

EP2R-coupled cAMP/protein kinase A/cAMP response
element-binding protein signalling mediated NLRP3 activa-
tion and pyroptosis in RMECs We next examined the signal-
ling pathways involved in regulating the PGE2/EP2R-
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mediated NLRP3 activation and pyroptosis in hRMECs.
Recent studies have shown that PGE2 activates EP2R, stimu-
lating cAMP/protein kinase A (PKA) signalling [30, 31].
Indeed, in our study, pre-treatment of the hRMECs with either
SQ22536 (an adenylate cyclase inhibitor) or H89 (a PKA
inhibitor) dramatically inhibited the PGE2-induced NLRP3
activation (Fig. 7a,b). This was consistent with the decreased
IL-1β and NLRP3mRNA levels, as well as the attenuated IL-
1β production (Fig. 7c,d). Epac1 and PKA are both intracel-
lular receptors of cAMP. However, Epac1 expression was sig-
nificantly inhibited by high glucose (30 mmol/l) compared
with normal glucose (5 mmol/l) treatment (ESM Fig. 3a,b).
Epac1 agonist had no effect on PGE2-induced NLRP3
inflammasome activation in hRMECs (ESM Fig. 3c,d).
Under the circumstances, diabetic retinopathy and high-
glucose stress-associated PGE2/EP2R-mediated NLRP3 acti-
vation may mainly result from the cAMP/PKA/cAMP re-
sponse element-binding protein (CREB) signalling pathway.
It has been reported that activated PKA transfers into the cell

nucleus and phosphorylates the transcription factor CREB
protein, regulating gene expression. Therefore, we exam-
ined the phosphorylation of CREB at Ser133, which is crit-
ical for CREB transcriptional activation. Stimulation of
hRMECs with PGE2 and butaprost led to a significant in-
crease in CREB phosphorylation, which was blocked by
AH6809 pre-treatment (Fig. 7e). PGE2 induced the phos-
phorylation and activation of CREB in rats and this was also
blocked by AH6809 pre-treatment (ESM Fig. 4a,b).We also
investigated the effects of AH6809 on the activation of
NF-κB, another key transcription factor implicated in
PGE2/EP2R signalling pathways in hRMECs. There was
no significant difference noted between each group of
hRMECs (ESM Fig. 5a,b). Moreover, both the adenylate
cyclase inhibitor (SQ22536) and the PKA inhibitor (H89)
inhibited CREB phosphorylation (Fig. 7f). Taken together,
this data suggests that the cAMP/PKA/CREB signalling
pathway is involved in EP2R-mediated NLRP3 activation
and pyroptosis in hRMECs.
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Discussion

In the present study, we demonstrated the important role of
PGE2/EP2R signalling in diabetes-associated hRMEC dys-
function and vascular dysfunction. We found that the
diabetes-associated inflammation and hRMEC damage were
ameliorated by inhibition of the PGE2/EP2R and coupled
cAMP–PKA–CREB signalling pathways. This was associat-
ed with an amelioration of NLRP3 inflammasome activation.

Animals in the STZ-induced diabetes model displayed
symptoms of diabetic retinopathy such as endothelium impair-
ment, vascular leakage and capillary degeneration, leading to
increased acellular vessels [32–34]. We showed that the ret-
inas of STZ-induced diabetic rats developed phenotypical and
histopathological features consistent with diabetic retinopathy.
PGE2, butaprost, AH6809 and DMSO were administered to
the rats by intravitreal injection, suggesting that their retinal
effects are independent of any systemic activity. We observed
that both PGE2 and butaprost aggravated the deleterious ef-
fects of STZ-induced diabetes, while the effects were amelio-
rated in the animal group that received AH6809.

OCT is a non-invasive imagingmodality that enables quan-
titative measurement of retinal thickness and evaluation of
morphological changes in eyes with diabetic retinopathy and
diabetic macular oedema [35]. Consistent with the histological
examination, the OCT images revealed retinal oedema and an
increased number of hyperreflective dots in the inner retina of
PGE2- and butaprost-treated diabetic rats. The hyperreflective
dots in diabetic retina delineated on spectral domain OCT
represent activated microglia cells and it has been reported
that the number increases with progressing retinopathy [36,
37]. These hyperreflective dots have been described in inflam-
matory retinal conditions and may present in diabetic eyes
even when clinical retinopathy is undetectable [38, 39].
Therefore, hyperreflective dots in OCT imaging of diabetic
retinas are a prominent feature of the disease process and
may be used to closely monitor diabetic retinopathy in clinical
practice.

In the early stages of diabetic retinopathy, hyperglycaemia
and chronic inflammation damage the retinal endothelium and
play a key role in further vascular leakage, pericyte loss, in-
creased acellular vessels and the eventual manifestation of
clinical diabetic retinopathy symptoms [40, 41]. Leucostasis
is a characteristic of diabetic retinopathy inflammation [25,
42]. Our results demonstrate that PGE2 and butaprost treat-
ment of hRMECs increases diabetes-induced leucocyte infil-
tration, Icam1 expression and apoptosis of RMECs. These
effects were suppressed by AH6809 pre-treatment. However,
the sample size of the AH6809 + STZ group in our study was
not large enough to draw an irrefutable conclusion regarding
Icam1 expression.

Recent studies have implicated the inappropriate activation
of the NLRP3 inflammasome in diabetic retinopathy [26].

Glucose abnormalities have also been reported to be an im-
portant trigger of the sterile inflammatory response mediated
by the NLRP3 inflammasome [43]. We observed that PGE2

and butaprost promoted diabetes-induced activation of
NLRP3 inflammasome in vivo and in vitro and that this could
be prevented by AH6809 administration. Moreover, exoge-
nous administration of IL-1β led to an elevation in hRMEC
apoptosis. Alternatively, however, it was also reported that
PGE2 inhibits NLRP3 inflammasome activation through
EP4R and intracellular cAMP in human macrophages [44].
This difference might be due to the dose and the way in which
PGE2 was used in those studies (PGE2 was used after LPS
priming). The differences in our findingsmight also arise from
cell type and epoprostanoid expression. This data suggests
that the PGE2/EP2R signalling pathway mediates NLRP3
inflammasome activation in diabetic retinopathy.

The G protein consists of α, β and γ subunits, and the α
subunit is divided into Gαs, Gαi and Gαq, among others.
According to previous reports, EP2R couples to the Gαs sub-
unit, activates adenylate cyclase, increases cytoplasmic cAMP
and induces PKA activation [12]. Our data showed that the
PKA inhibitor H89 and the adenylate cyclase inhibitor
SQ22536 suppressed the increase in IL-1β and NLRP3
mRNA levels, as well as the increase in IL-1β levels, induced
by PGE2. This demonstrates that cAMP and PKA are in-
volved in the signalling pathway mediated by PGE2/EP2R.

The transcription factors CREB and NF-κB play pivotal
roles in the PGE2 signalling pathway and the development
of diabetic retinopathy [45–48]. Toll-like receptor-mediated
NF-κB activation is associated with an acute activation of
the NLRP3 inflammasome and production of IL-1β in mac-
rophages. After these acute and initial signals are received,
adenosine further regulates IL-1β production by activating
the cAMP–PKA–CREB signalling cascade, resulting in the
upregulation of pro-IL-1β and NLRP3, further activating cas-
pase 1, without the need for any other initiating signals [49,
50]. This signalling pathway has an established important role
in several chronic inflammatory diseases. Likewise, we ob-
served in hRMECs that the ability of the PGE2/EP2R–
cAMP–PKA signalling pathway to upregulate pro-IL-1β
was dependent on CREB activation, while there was no sig-
nificant difference in the activation of NF-κB.

In summary, we demonstrated that disruption of the PGE2/
EP2R signalling pathway contributes to the attenuation of di-
abetic retinopathy. The underlying mechanism is multifold.
First, long-term exposure to high glucose concentrations and
other diabetes risk factors increases the expression and activa-
tion of COX-2, subsequently promoting the PGE2/EP2R–
cAMP–PKA signalling pathway. PKA transfers into the cell
nucleus and phosphorylates the transcription factor CREB,
upregulating the transcription of NLRP3 and pro-IL-1β.
Although the molecular basis for the activation of the PGE2/
EP2R cascade in diabetic retinopathy remains to be delineated,
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the present study implies that the PGE2/EP2R signalling path-
way is a target for new therapeutic strategies to prevent and
treat diabetic retinopathy.
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