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Abstract
Aims/hypothesis In this prospective case–control study we tested the hypothesis that, while long-term improvements in insulin
sensitivity (SI) accompanying weight loss after Roux-en-Y gastric bypass (RYGB) would be similar in obese individuals with
and without type 2 diabetes mellitus, stimulated-islet-cell insulin responses would differ, increasing (recovering) in those with
diabetes but decreasing in those without. We investigated whether these changes would occur in conjunction with favourable
alterations in meal-related gut hormone secretion and insulin processing.
Methods Forty participants with type 2 diabetes and 22 participants without diabetes from the Longitudinal Assessment of
Bariatric Surgery (LABS-2) study were enrolled in a separate, longitudinal cohort (LABS-3 Diabetes) to examine the mecha-
nisms of postsurgical diabetes improvement. Study procedures included measures of SI, islet secretory response and gastroin-
testinal hormone secretion after both intravenous glucose (frequently-sampled IVGTT [FSIVGTT]) and a mixed meal (MM)
prior to and up to 24 months after RYGB.
Results Postoperatively, weight loss and SI-FSIVGTT improvement was similar in both groups, whereas the acute insulin response
to glucose (AIRglu) decreased in the non-diabetic participants and increased in the participants with type 2 diabetes. The resulting
disposition indices (DIFSIVGTT) increased by three- to ninefold in both groups. In contrast, during the MM, total insulin respon-
siveness did not significantly change in either group despite durable increases of up to eightfold in postprandial glucagon-like
peptide 1 levels, and SI-MM and DIMM increased only in the diabetes group. Peak postprandial glucagon levels increased in both
groups.
Conclusions/interpretation For up to 2 years following RYGB, obese participants without diabetes showed improvements in DI
that approach population norms. Those with type 2 diabetes recovered islet-cell insulin secretion response yet continued to
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manifest abnormal insulin processing, with DI values that remained well below population norms. These data suggest that, rather
than waiting for lifestyle or medical failure, RYGB is ideally considered before, or as soon as possible after, onset of type 2
diabetes.
Trial registration ClinicalTrials.gov NCT00433810
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Abbreviations
Φd Dynamic beta cell responsivity
Φs Static beta cell responsivity
AIRglu Acute insulin response to glucose
DI Disposition index
FSIVGTT Frequently-sampled IVGTT
GIP Gastric inhibitory polypeptide
GLP-1 Glucagon-like peptide 1
HE Hepatic insulin extraction
LABS Longitudinal Assessment of Bariatric Surgery
MM Mixed meal
RYGB Roux-en-Y gastric bypass
SG Glucose effectiveness
SI Insulin sensitivity

Introduction

Bariatric/metabolic surgery has been shown to improve
glycaemic control and often induces remission of type 2

diabetes in obese individuals [1–3]. Previous studies have
consistently demonstrated improvements in insulin sensitivity
proportional to the amount of weight loss following bariatric
surgery [4–6]. Given the importance of declining islet-cell
function in the pathogenesis of type 2 diabetes [7] and the
prominent effects of Roux-en-Y gastric bypass (RYGB) on
the secretion of gut hormones involved in islet-cell secretory
responses, we designed a study to better understand the effect
of RYGB on islet-cell function in response to both oral (mixed
meal [MM]) and intravenous nutrient stimulation. Study times
after surgery included an early point at which weight loss was
still ongoing and a later visit when weight was at or near its
nadir [8].

We hypothesised that, because of altered nutrient flow
through the gastrointestinal tract after RYGB, changes in
key gut hormones known to influence islet-cell insulin
secretion (such as glucagon-like peptide 1 [GLP-1] and
possibly gastric inhibitory polypeptide [GIP]) would oc-
cur early and be maintained long-term. In addition, we
hypothesised that in individuals with and without type 2
diabetes, insulin sensitivity would improve with
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postsurgical weight loss in both groups and that the
proinsulin-to-insulin ratio would decrease, reflecting im-
proved islet-cell insulin-processing efficiency. On the oth-
er hand, we hypothesised that the postsurgical stimulated-
islet-cell secretory responses would differ. In non-diabetic
individuals in whom hyperinsulinaemia compensates for
insulin resistance allowing maintenance of normal glucose
levels at baseline, insulin secretion would be reduced after
surgery, reflecting decreased demand accompanying im-
proved insulin sensitivity. In contrast, in individuals with
type 2 diabetes, in whom defective islet function mani-
fests in baseline hyperglycaemia, post-RYGB stimulated
insulin secretory capacity would recover (increase). If the
latter is shown to be true, these data would not only pro-
vide important insights into mechanisms of diabetes re-
mission and prevention after RYGB, but would also place
this procedure among a handful of interventions shown to
reverse the decline in beta cell function that accompanies
onset and progression of type 2 diabetes [9].

Methods

The Longitudinal Assessment of Bariatric Surgery (LABS)
study is a prospective, longitudinal cohort study with three
phases: LABS-1, LABS-2 and LABS-3 [10]. LABS-1 is com-
plete and reported 30 day postsurgical adverse outcomes in
nearly 5000 participants [11]. LABS-2 is a cohort of 2458
participants and has a primary goal of evaluating long-term
efficacy of bariatric surgery [8]. The LABS-3 Diabetes
substudy comprised a subcohort from the LABS-2 study re-
cruited specifically to better understand the physiological
mechanisms of glucose metabolism improvement following
RYGB.

Participants and study visits Candidates were approached for
inclusion if they were scheduled for RYGB at a participating
LABS-2 site at the University of Pittsburgh, University of
Washington or Oregon Health & Science University (ESM
Fig. 1). Individuals with diabetes were included if they were
documented to have a fasting plasma glucose ≥7.0 mmol/l and
≤10 mmol/l or HbA1c ≥48 mmol/mol (6.5%) and ≤69 mmol/
mol (8.5%) and were treated with lifestyle interventions alone
or metformin and/or sulfonylurea. Exclusion criteria included
type 1 diabetes, creatinine >150 μmol/l, treatment with insulin
or other non-metformin/non-sulfonylurea diabetes medica-
tions, treatment with weight-loss medications and individuals
unlikely or unwilling to comply with follow-up visits.
Participants on metformin, without a pre-treatment glucose
or HbA1c measurement but meeting criteria for diabetes, were
assumed to be on this therapy for diabetes prevention, weight
loss or polycystic ovarian syndrome, and were excluded.
Control participants (those without diabetes) were included

if their fasting plasma glucose was <7.0 mmol/l and/or their
HbA1c was <48 mmol/mol (6.5%) and they were not taking
any diabetes medications. They were matched to participants
with diabetes based on age, sex and pre-surgical BMI. All
studies were approved by the investigational review boards
at each site and consent was obtained from each participant
before enrolment.

In the week before each research study visit, participants
met with a registered dietitian to receive instruction regarding
a standardised diet consisting of ~30% total energy from fat,
~10–15% from protein and ~55–60% from carbohydrates.
During this time, participants with diabetes also stopped their
diabetes medications and self-monitored their capillary blood
glucose levels at home. All other usual medications for co-
morbid conditions (i.e. hypertension, gastroesophageal reflux
and hyperlipidaemia) were continued, as was treatment for
obstructive sleep apnoea.

At the end of this pre-study week, participants presented to
the clinical research centres at their respective institutions fol-
lowing an overnight fast on each of 2 days, scheduled not
more than a week apart. On one day, fasting blood samples
were drawn for lipids and proinsulin levels after which partic-
ipants were given an MM (BOOST Plus, Nestlé Health
Science, Epalinges, Switzerland; 1506 kJ (360 kcal), 45 g
carbohydrate, 14 g fat, 14 g protein). Blood samples were
obtained for glucose, insulin, C-peptide, glucagon, GLP-1
and GIP 15 min before and 0, 10, 20, 30, 60, 90, 120, 150,
180 and 240 min after meal consumption. On the other day,
they underwent an insulin-modified frequently-sampled
IVGTT (FSIVGTT) [12].

Following these baseline studies, participants underwent
identical procedures as described above at 6 and 24 months
after RYGB.

Biochemical analysisDetermination of glucose was performed
by the hexokinase method using Roche reagents (Roche
Diagnostics, Indianapolis, IN, USA). Levels of insulin and
C-peptide were measured by a two-site enzymometric assay
using Tosoh reagents on a Tosoh 2000 autoanalyzer (Tosoh
Corp., Tokyo, Japan). Proinsulin levels were determined by
radioimmunoassay using a Millipore kit (MilliporeSigma,
Burlington, MA, USA). All lipid analyses were performed at
the Northwest Lipid Metabolism and Diabetes Research lab-
oratory, University of Washington, Seattle, WA, USA.

Total GLP-1, total GIP, total adiponectin and glucagon
were measured by the Oregon Health & Science University
Oregon Clinical and Translational Research Laboratory,
Portland, OR, USA. To determine total GLP-1 and total GIP,
blood was collected into EDTA vacutainers (prepared with
500 KU aprotinin and 10 μl dipeptidyl-peptidase-4 inhibitor
per ml of whole blood) on ice. To determine adiponectin,
blood was collected into EDTA vacutainers (prepared with
500 KU aprotinin/ml whole blood) on ice. These three
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analytes were measured using single-plex immunoassays
from Meso Scale Discovery/Sector Imager (Gaithersburg,
MD, USA). Glucagon was measured in blood collected in
heparin vacutainers on ice, prepared with 500 KU aprotinin/
ml whole blood, using an RIA fromEMDMillipore (Billerica,
MA, USA). The specificity of the glucagon assay was
established by testing cross-reactivity with several gut hor-
mones: oxyntomodulin (0.02%), 7-37 GLP-1 (none), 7-36
GLP-1 (<0.01%) and 1-37 GLP-1 (none).

Definition of diabetes and diabetes remission Diabetes remis-
sion included both partial and complete remission, according to
the American Diabetes Association Consensus Group recom-
mendation [13], as HbA1c <48 mmol/mol (6.5%) (or fasting
glucose ≤6.9 mmol/l if HbA1c was not available) and the ab-
sence of concurrent pharmacological therapy for diabetes.

Modelling for insulin secretory response and insulin sensitiv-
ity Insulin sensitivity (SI), beta cell responsivity to glucose (Φ;
measured as Φ total, Φ basal, Φ dynamic and Φ static) and
hepatic insulin extraction (HE basal and HE total) were deter-
mined during theMMas previously described [14]. Disposition
index (DI) during the MM was derived from the product of SI
and Φ total. Variables of sensitivity to insulin and secretion
response during the FSIVGTT, including SI, glucose effective-
ness (SG) and acute insulin response to glucose (AIRglu), were
modelled as previously described [15]. The DI during the
FSIVGTTwas derived from the product of SI and AIRglu.

Statistical analysis Forty participants with type 2 diabetes and 20
without diabetes (60 in total) were estimated to provide an effec-
tive sample size for detecting modest-to-large effects on insulin
sensitivity and stimulated-islet-cell secretion for within-person
analyses and large-to-very-large effect sizes for between-group
analyses based on prior studies [16, 17]. For continuous mea-
sures, participants in the diabetes vs no-diabetes groups were
compared based on a Wilcoxon Rank Sum test to assess statisti-
cal significance of differences, unless normally distributed, in
which case paired t tests were performed. For categorical mea-
sures, the frequency and percentage of each category was report-
ed, and a Pearson χ2 test was used for statistical significance. For
tables with small cell frequencies, Fisher’s exact test was used.
Measures of insulin secretion and sensitivity from the FSIVGTT
and MM over time were modelled using generalised linear
models which included a heterogeneous autoregressive working
correlation matrix to account for the correlation between succes-
sive measures. The model assumed a γ distribution for the mea-
sures to account for the highly skewed nature of the data. The
mean measures at 6 months and 24 months were compared with
baseline measures using aWald t test. Missing values were treat-
ed as random occurrences. The generalised linear models used
here utilised likelihood-based inference under which estimates
are unbiased when data are missing completely at random.

Results

Sixty-two participants (40 with type 2 diabetes and 22 without
diabetes) were enrolled and did not differ by groupwith respect to
percentages of women and race, or by baseline age, BMI, per-
centage body fat or presence of obstructive sleep apnoea
(Table 1). In participants with diabetes in whom the information
was obtained (n = 24), the median duration of diabetes was
3.0 years. At baseline, HbA1c, fasting glucose, proinsulin and
proinsulin:insulin ratios were all higher in the participants with
diabetes than in the non-diabetic participants, but fasting insulin,
C-peptide and total adiponectin levels were no different (Table 2).

Median weight loss was similar in both groups at 6 months
(24% vs 26% in participants with vs without diabetes,
p = 0.27) and 24 months (29% vs 32% in participants with
vs without diabetes, p = 0.57) (Fig. 1). Accompanying this
weight loss, fasting glucose and insulin levels were lower than
baseline at each follow-up visit in both groups (Fig. 2 and
Table 2). Compared with baseline, two years after surgery
HbA1c levels significantly decreased to 31 mmol/mol (5.0%)
in non-diabetic participants and 33 mmol/mol (5.2%) in par-
ticipants with type 2 diabetes (Table 2), remaining marginally
higher in the diabetes group (p = 0.017). Compared with base-
line, at both follow-up visits the time to peak glucose and
insulin levels during the MM shifted to an earlier time point
(30 vs 60–90 min) in each group (p < 0.001, Fig. 2). On the
other hand, the peak postprandial glucose level increased
compared with baseline in the non-diabetic participants
(p < 0.001) but not in those with diabetes (Fig. 2 and
Table 3). Similarly, peak postprandial insulin concentrations
at each follow-up time point were higher than at baseline in
both groups (Fig. 2 and Table 3). Despite these high early
postprandial levels for both glucose and insulin following a
meal, AUC levels had decreased by the visit at 6 months and
remained lower than baseline at 24 months (Table 3).

Fasting levels of GIP were not different and fasting GLP-1
levels were lower after surgery compared with baseline in both
groups (although the difference in GLP-1 did not reach statisti-
cal significance in the non-diabetes group) (Table 3). However,
the postprandial increases in levels of these hormones following
an MM mirrored those of glucose and insulin in both groups
(Fig. 3). Peak GIP shifted 30 min earlier and AUC GIP was
lower at 6 and 24 months compared with baseline (Fig. 3 and
Table 3). Peak GLP-1 levels increased seven- to eightfold, and
AUC levels were significantly increased in both groups at 6 and
24 months after surgery compared with baseline (Fig. 3 and
Table 3). Also in both groups, fasting glucagon levels decreased
after surgery but peak levels following the MM increased and
the increase in AUC approached statistical significance at both
6 months and 24 months after surgery (Fig. 3 and Table 3).

Glucose metabolism variables following an MM Using a
standardised MM to derive meal-related variables of insulin
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Table 2 Fasting metabolic variables prior to and after RYGB in participants with and without type 2 diabetes

Variable Baseline 6 Months 24 Months

n Mean (95% CI) n Mean (95% CI) p value (vs baseline) n Mean (95% CI) p value (vs baseline)

Fasting glucose, mmol/l

With diabetes 39 7.30 (6.73, 7.87)*** 38 5.21 (4.93, 5.49)** <0.001 35 5.24 (5.03, 5.45) <0.001

Without diabetes 21 5.26 (5.09, 5.43) 22 4.74 (4.58, 4.9) <0.001 17 5.00 (4.84, 5.15) 0.011

Fasting insulin, pmol/l

With diabetes 39 129.7 (102.8, 156.5) 37 47.7 (36.9, 58.6) <0.001 35 41.5 (32.4, 50.6) <0.001

Without diabetes 21 130.5 (91.4, 169.5) 22 37.2 (30.4, 44) <0.001 17 36.9 (29.1, 44.7) <0.001

HbA1c, mmol/mol

With diabetes 36 46 (43–49)*** 35 33 (32, 36)* <0.001

Without diabetes 22 34 (33, 36) 15 31 (30, 32) <0.001

HbA1c, % 36 35

With diabetes 36 6.4 (6.1, 6.6)*** 35 5.2 (5.1, 5.4)* <0.001

Without diabetes 22 5.3 (5.2, 5.4) 15 5.0 (4.9, 5.1) <0.001

C-peptide, nmol/l

With diabetes 39 1.3 (1.1, 1.5) 38 0.70 (0.60, 0.83) <0.001 35 0.70 (0.57–0.80) <0.001

Without diabetes 21 1.1 (0.90, 1.4) 22 0.57 (0.50, 0.67) <0.001 17 0.67 (0.57, 0.77) <0.001

Proinsulin, pmol/l

With diabetes 39 40 (26, 54)** 36 12 (8.8, 15)** <0.001 35 8.9 (6.0, 12)* <0.001

Without diabetes 21 18 (14, 21) 22 6.5 (5.6, 7.4) <0.001 17 5.2 (4.7, 5.8) <0.001

Proinsulin:insulin ratio

With diabetes 39 2.2 (1.8, 2.7)*** 36 1.8 (1.6, 2.1)** 0.05 35 1.8 (1.2, 2.3)* 0.13

Without diabetes 21 1.1 (0.9, 1.4) 22 1.3 (1.1, 1.5) 0.17 17 1.1 (0.91, 1.4) 0.89

Adiponectin, μg/ml

With diabetes 40 7.35 (6.17, 8.53) 37 11.6 (9.9, 13.3) <0.001 35 14.7 (12.0, 17.5) <0.001

Without diabetes 21 8.38 (7.08, 9.67) 22 11.7 (9.06, 14.3) 0.001 17 14.6 (11.6, 17.6) <0.001

Estimates are based on Wald t test from generalised linear model

*p < 0.05, **p < 0.01 and ***p < 0.001 vs without diabetes

Table 1 Baseline characteris-
tics of participants with and with-
out type 2 diabetes

Variable Diabetes

(N = 40)

Without diabetes

(N = 22)

p value

Female sex, % 75 77 0.84

Race, % 0.94

White 95 95

Other 5 5

Age, years 52 (47, 57) 52 (45, 54) 0.88

BMI, kg/m2 47.9 (43.1, 54.8) 45.7 (43.6, 50.7) 0.57

Duration of diabetes, yearsa 3.0 (1.75, 5.5) –

Diabetes treatment, n (%) 29 (72.5) –

No medications (diet alone), n (%) 11 (27.5) –

Metformin, n (%) 21 (52.5) –

Sulfonylurea, n (%) 10 (25) –

Obstructive sleep apnoea, n (%) 31 (77.5) 20 (90.9) 0.30

Data expressed as %, n (%) or median (25th percentile, 75th percentile)
a Data are for 24 participants
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secretion and sensitivity [14], participants with and without
type 2 diabetes exhibited reduced basal (fasting) beta cell
responsivity (Φb) and slight increases in basal HE (Table 4)
(p < 0.001 for all comparisons) at 6 and 24 months after
RYGB. During the follow-up visit at 24 months, despite an
overall 32% reduction in the amount of secreted insulin per

unit increase of glucose during the dynamic phase of the meal,
or dynamic beta cell responsivity (Φd), Φd remained signifi-
cantly higher in the non-diabetic participants than in those
with diabetes, in whom Φd did not significantly change after
surgery (Table 4). Static beta cell responsivity (Φs, the amount
of insulin secreted in response to glucose during the static
phase compared with basal state) and total Φ (the overall beta
cell responsivity derived from Φd and Φs) were higher in the
participants without diabetes than in those with type 2 diabetes
at each study visit, but did not significantly change in either
group as a result of the surgery and accompanying weight loss
(Table 4). Conversely, the total HE during the meal was great-
er in participants with diabetes than in those without, both at
baseline and during follow-up, but did not significantly
change in either group following surgery. Insulin sensitivity
derived during the meal test (SI-MM) improved 6 months after
surgery in both groups and continued to increase in partici-
pants with diabetes thereafter. However, the increase was no
longer significantly different from baseline in participants
without diabetes after 24 months, despite continued weight
loss (Table 4). Despite this increase in SI-MM, insulin sensitiv-
ity remained lower in participants with diabetes than in those
without at all three study visits. The meal-derived disposition
index (DIMM,) representing insulin secretion response to a
given level of insulin sensitivity (calculated as the product of
total Φ and SI-MM), was lower in participants with type 2
diabetes than in those without diabetes, at each visit. In the
diabetes group, DIMM was higher 6 and 24 months after

Fig. 2 Mean ± SEM for glucose (a, b) and insulin (c, d) levels during the MM in participants with (a, c) and without (b, d) type 2 diabetes at baseline
(circles) and at 6 months (squares) and 24 months (triangles) after RYGB

Fig. 1 Median (bold black line) and individual (grey lines) BMI at
baseline and at 6 and 24 months after RYGB in 40 participants with type
2 diabetes (a) and 22 participants without diabetes (b). Median total
weight loss after 6 months was 24% in participants with type 2 diabetes
and 26% in participants without diabetes (p = 0.27), and after 24 months
was 29% in participants with type 2 diabetes and 32% in participants
without diabetes (p = 0.57)

Diabetologia (2018) 61:1142–1154 1147



surgery compared with baseline, whereas in the non-diabetes
group it remained high and unchanged from baseline through-
out (Table 4 and Fig. 4).

Glucose metabolism variables derived from FSIVGTTsDerived
measures of insulin secretion and sensitivity during the
FSIVGTT (Table 5) showed that the acute insulin response to

Table 3 Baseline and postsurgical levels of glucose, insulin and gut hormones secreted following an MM prior to and after RYGB in participants
with and without type 2 diabetes

Variable Baseline 6 Months 24 Months

n Mean (95% CI) n Mean (95% CI) p value
(vs baseline)

n Mean (95% CI) p value
(vs baseline)

Peak glucose, mmol/l

With diabetes 39 9.96 (9.14, 10.78)*** 38 9.32 (8.89, 9.75)*** 0.09 35 9.79 (9.32, 10.25)* 0.69

Without diabetes 21 6.88 (6.57, 7.18) 22 7.98 (7.56, 8.4) <0.001 17 9.05 (8.62, 9.48) <0.001

Glucose AUC, mmol (4 h) l−1

With diabetes 39 2130 (1942, 2319)*** 38 1523 (1445, 1602)*** <0.001 35 1472 (1385, 1559)* <0.001

Without diabetes 21 1448 (1382, 1514) 22 1278 (1234, 1321) <0.001 17 1347 (1298, 1395) 0.022

Peak insulin, pmol/l

With diabetes 39 491.9 (405.1, 578.7)** 38 807.5 (617, 997.9) <0.001 35 771.4 (641.5, 901.4)*** <0.001

Without diabetes 21 778.3 (596.8, 959.7) 22 1137.4 (863.7, 1411.2) 0.003 17 1221 (1022.1, 1419.8) <0.001

Insulin AUC, pmol (4 h) l−1

With diabetes 39 66,376 (57,212, 75,539) 38 51,305 (41,779, 60,832) <0.001 35 44,929 (38,306, 51,552) <0.001

Without diabetes 21 89,867 (66,916, 112,818) 22 57,628 (46,770, 68,487) 0.001 17 57,365 (46,776, 67,954) 0.006

Fasting GIP, pmol/l

With diabetes 40 16.5 (13.3, 19.7) 38 13.5 (12, 15.1) 0.029 35 14.6 (12.9, 16.3) 0.17

Without diabetes 21 15.1 (12.3, 18) 22 12.5 (10.8, 14.2) 0.1 17 14.7 (12.9, 16.5) 0.78

Peak GIP, pmol/l

With diabetes 40 140.4 (124, 156.9) 38 150.9 (131.1, 170.7) 0.29 35 159.4 (133.7, 185.1) 0.14

Without diabetes 21 129.2 (103.8, 154.6) 22 156.6 (130.3, 182.8) 0.036 17 135.1 (112.4, 157.9) 0.62

GIPAUC, pmol (4 h) l−1

With diabetes 40 16,167 (14,522, 17,813) 38 11,727 (10,355, 13,099) <0.001 35 12,435 (10,544, 14,325) <0.001

Without diabetes 21 15,879 (13,280, 18,478) 22 13,126 (11,146, 15,107) 0.004 17 12,048 (10,042, 14,055) 0.001

Fasting GLP-1, pmol/l

With diabetes 40 4.3 (3.5, 5.2) 37 3.5 (2.9, 4.0) 0.04 35 3.3 (2.8, 3.9) 0.011

Without diabetes 20 4.4 (3.3, 5.4) 21 2.7 (2.1, 3.3) <0.001 17 3.5 (2.7, 4.3) 0.05

Peak GLP-1, pmol/l

With diabetes 40 9.7 (7.4, 11.9) 38 68.5 (59.2, 77.7) <0.001 35 66.9 (58.3, 75.5) <0.001

Without diabetes 21 12.2 (3.1, 21.3) 22 66.2 (49.7, 82.6) <0.001 17 69.2 (56.5, 82.0) <0.001

GLP-1 AUC, pmol/l

With diabetes 40 1445 (1243, 1647) 38 4441 (3971, 4912) <0.001 35 4067 (3629, 4505) <0.001

Without diabetes 21 1399 (1068, 1730) 22 4194 (3435, 4953) <0.001 17 3910 (3282, 4538) <0.001

Fasting glucagon, ng/l

With diabetes 40 78.5 (71.6, 85.4) 38 66.1 (59.9, 72.4) <0.001 35 66.8 (61.5, 72.1) <0.001

Without diabetes 21 85 (72, 97.9) 22 70 (60.8, 79.2) <0.001 17 68.6 (59, 78.2) <0.001

Peak glucagon, ng/l

With diabetes 40 102.2 (91.9, 112.5) 38 113.3 (106.5, 120) 0.045 35 112.3 (105.4, 119.2) 0.05

Without diabetes 21 99.2 (84.7, 113.8) 22 105.9 (94.9, 116.8) 0.17 17 109.9 (97.5, 122.3) 0.05

Glucagon AUC, ng (4 h) l−1

With diabetes 40 20,490 (18,782, 22,198) 38 21,880 (20,834, 22,925) 0.06 35 21,526 (20,124, 22,928) 0.19

Without diabetes 21 21,356 (18,312, 24,401) 22 22,023 (19,867, 24,179) 0.44 17 23,083 (20,385, 25,780) 0.14

Estimates are based on Wald t test from generalised linear model

*p < 0.05, **p < 0.01 and ***p < 0.001 vs without diabetes
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intravenously administered glucose, AIRglu, significantly in-
creased in the participants with type 2 diabetes and decreased
in the non-diabetic participants. Insulin sensitivity (SI-FSIVGTT)
was greater at baseline in participants without diabetes than in
those with diabetes, and both groups experienced significant
improvements in insulin sensitivity such that by 24months they
were no longer significantly different from one another. Despite
divergent changes in AIRglu, the FSIVGTT-derived disposition
index (DIFSIVGTT) increased roughly ninefold in participants
with diabetes and 2.5-fold in non-diabetic participants by
24 months after surgery compared with baseline (Table 5 and
Fig. 4). Glucose effectiveness (SG) did not differ between the
groups and was not affected by surgery or weight loss.

Diabetes remission and characteristics of participants with
diabetes that persisted or recurred after surgery None of the

non-diabetic participantsdevelopeddiabetesduring the24months
of follow-up. Of the 40 participants with diabetes enrolled at
baseline, 34 had data to determine diabetes status at 24 months.
Of these, three were classified as having diabetes at 24 months
(91% remission rate). Two of these three participants were taking
diabetesmedication at 6months, whereas the thirdwas not taking
any diabetes medications at either of those time points.

Discussion

The current study was undertaken to compare 2 year changes
in insulin sensitivity and secretory responses, and levels of
gastrointestinal hormones, measured during oral (MM) and
intravenous (FSIVGTT) challenges in obese participants with
and without diabetes following RYGB.

Fig. 3 Mean ± SEM for GLP-1 (a, b), GIP (c, d) and glucagon (e, f) during theMM in participants with (a, c, e) and without (b, d, f) type 2 diabetes at
baseline (circles) and at 6 months (squares) and 24 months (triangles) after RYGB
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Although previously reported [18–21], in the largest stud-
ied groups to date after RYGB we found that fasting glucose
and insulin levels declined, HbA1c levels improved in both
participants with and without diabetes to become nearly iden-
tical and not clinically meaningfully different, and a

fundamental change in post-meal glucose appearance and dis-
appearance was readily apparent. Through creation of a
gastrojejunostomy that bypasses the pyloric valve, gastric
emptying is accelerated [21–23] and peak postprandial glu-
cose levels are shifted to an earlier time point after meal

Table 4 Variables of insulin sensitivity and secretion derived from the MM test prior to and after RYGB in participants with and without type 2
diabetes

Variable Baseline 6 Months 24 Months

n Mean (95% CI) n Mean (95% CI) p value (vs baseline) n Mean (95% CI) p value (vs baseline)

Basal beta cell responsivity (Φb), 10−9

With diabetes 39 34 (30, 39) 38 25 (21, 29) <0.001 34 23 (20, 27) <0.001

Without diabetes 18 41 (33, 49) 22 23 (20, 26) <0.001 17 24 (19, 28) <0.001

Dynamic beta cell responsivity (Φd), 10
−9

With diabetes 39 2428 (1997, 2859)** 38 2181 (1793, 2569) 0.22 34 1967 (1496, 2439) 0.10

Without diabetes 18 4566 (3414, 5719) 22 2623 (2114, 3131) <0.001 17 3120 (2442, 3798)** 0.017

Static beta cell responsivity (Φs), 10
−9/min

With diabetes 39 97 (77, 117)*** 38 125 (101, 150)** 0.004 34 106 (88, 125)*** 0.41

Without diabetes 18 233 (183, 283) 22 212 (156, 267) 0.55 17 208 (175, 241) 0.36

Total Φ 10−9/min

With diabetes 39 100 (80, 120)*** 38 131 (105, 156)** 0.01 34 111 (92, 130)*** 0.38

Without diabetes 18 238 (188, 288) 22 218 (162, 274) 0.58 17 217 (183, 251) 0.45

SI-MM, 10
−5 l kg−1 min−1 (pmol/l)−1

With diabetes 33 5.6 (4.0, 7.1) 38 7.7 (6.0, 9.5) 0.023 34 9.4 (7.6, 11.2) <0.001

Without diabetes 20 7.3 (3.0, 11.5) 22 10.7 (5.3, 16.0) 0.009 17 9.5 (6.3, 12.6) 0.16

DIMM (SI-MM × total Φ)

With diabetes 33 1022 (596, 1448)* 38 1639 (1170, 2108)* 0.037 34 1682 (1240, 2124)* 0.025

Without diabetes 18 2673 (1313–4034) 22 3224 (2103, 4345) 0.47 17 2866 (2070, 3663) 0.81

HE basal

With diabetes 39 0.78 (0.75, 0.8) 38 0.86 (0.85, 0.88) <0.001 34 0.88 (0.87, 0.89) <0.001

Without diabetes 20 0.75 (0.72, 0.79) 22 0.86 (0.84, 0.87) <0.001 17 0.88 (0.86, 0.9) <0.001

HE total

With diabetes 39 0.70 (0.68, 0.73)*** 38 0.71 (0.68, 0.74) 0.43 34 0.72 (0.7, 0.75) 0.21

Without diabetes 20 0.62 (0.55, 0.69) 22 0.63 (0.58, 0.68) 0.7 17 0.66 (0.61, 0.72) 0.16

Estimates are based on Wald t test from generalised linear model

*p < 0.05, **p < 0.01 and ***p < 0.001 vs without diabetes

Fig. 4 Change in DI after RYGB for participants with (white circles)
and without (black squares) type 2 diabetes at baseline (BL) and at 6
months (6 mo) and 24 months (24 mo) after RYGB. Mean ± SEM for
AIRglu vs SI derived from an FSIVGTT (a) and insulin secretion (Φ total)

vs SI derived from an MM (b). Background solid and dotted lines repre-
sent percentiles derived from normal populations as previously described
[15, 47]

1150 Diabetologia (2018) 61:1142–1154



ingestion (30 min) in individuals with and without diabetes.
Another notable finding was that, after surgery, peak postpran-
dial glucose levels remained equal to baseline levels in the
participants with type 2 diabetes and were actually higher than
baseline in participants without diabetes. Additionally, post-
prandial glucose levels rapidly declined following these peaks
in both groups, resulting in lower AUC glucose and HbA1c

levels during follow-up (i.e. improved glucose tolerance and
glycaemic control, respectively). Such marked glucose fluctu-
ations (including early postprandial hyperglycaemia), referred
to as glycaemic variability or ‘dysglycaemia’, have been sug-
gested to play a role in diabetes complications independently
of HbA1c levels [24]. However, several cohort studies that
have included large numbers of post-RYGB participants have
reported reduced microvascular and macrovascular diabetes-
related complications and mortality compared with non-
surgical control groups [25, 26], suggesting that despite this
postprandial hyperglycaemia, the overall reductions in fasting
and postprandial glucose exposure following RYGB are
beneficial.

Plasma insulin responses, as well as those of GIP and GLP-
1, were augmented in a pattern that mirrored the accelerated
postprandial glucose appearance and disappearance following
surgery. The seven- to eightfold increases in peak GLP-1 levels
and GLP-1 AUC after surgery seen in both groups are thought
to contribute to improved insulin secretion [27–30] and
remained robust throughout the 24 months of follow-up.
Counterintuitively, we found that despite large postsurgical
weight loss and increases in peak insulin, glucose and GLP-1
levels [31, 32], the post-meal glucagon AUC did not change,
and peak concentrations increased. This paradoxical meal-

related glucagon response has previously been reported after
RYGB in smaller studies [33–36] and in this report we confirm
that this is not due to cross-reactivity of our assay with either
GLP-1 or oxyntomodulin. Interestingly, our data are consistent
with a recently demonstrated dual role for increased glucagon
and GLP-1 levels in facilitating long-term weight-loss mainte-
nance after RYGB through appetite regulation [37].

Insulin sensitivity measured during the FSIVGTT in-
creased postoperatively in participants with and without dia-
betes. In agreement with our hypothesis and extending find-
ings of a previous smaller study [38], the acute insulin re-
sponse to intravenously administered glucose decreased in
the non-diabetic participants but increased in those with type
2 diabetes up to 2 years after RYGB. Despite opposing stim-
ulated insulin responses, RYGB restored diminished pancre-
atic insulin secretory capacity (as demonstrated by increases
in DIFSIVGTT) in both groups, with the non-diabetic group
showing improvement from the fifth to the 25th percentile of
normative population values. A larger relative increase in
DIFSIVGTT occurred in the diabetes group, but the pre-
surgery secretory defect was so profound that even with an
approximately ninefold increase, the DIFSIVGTT still remained
below the fifth percentile of the normal values 24 months after
surgery. This meant that, despite equal weight loss, similarly
impressive gains in insulin sensitivity by 24 months and less
‘glucotoxicity’ [39], the insulin secretory capacity of partici-
pants with type 2 diabetes did not recover fully enough after
2 years to even match the pre-surgical values of non-diabetic
participants. Likewise, proinsulin levels and insulin-
processing efficiency improved in both groups after surgery
but still showed persistent defects (higher levels of proinsulin

Table 5 Variables of insulin sensitivity and secretion derived from the insulin-modified FSIVGTT prior to and after RYGB in participants with and
without type 2 diabetes

Variable Baseline 6 Months 24 Months

n Mean (95% CI) n Mean (95% CI) p value
(vs baseline)

n Mean (95% CI) p value
(vs baseline)

AIRglu, pmol/l

With diabetes 39 80 (8, 153)*** 37 147 (91, 203)** 0.017 35 150 (101, 199)*** 0.028

Without diabetes 22 486 (297, 674) 22 288 (221, 355) 0.008 17 312 (260, 363) 0.048

SI-FSIVGTT, 10
−5 (pmol/l)−1 min−1

With diabetes 37 0.90 (0.60, 1.3)* 37 2.8 (2.2, 3.4)* <0.001 34 4.3 (3.3, 5.3) <0.001

Without diabetes 22 1.6 (1.1, 2.2) 22 4.2 (3.1, 5.2) <0.001 17 5.0 (4.1, 5.9) <0.001

SG, min−1

With diabetes 27 14 (13, 16) 29 14 (13, 16) 0.94 26 15 (13, 16) 0.64

Without diabetes 19 15 (12, 17) 17 14 (12, 16) 0.88 15 16 (13, 19) 0.23

DIFSIVGTT (SI-FSIVGTT × AIRglu), min−1

With diabetes 39 73 (33, 114)*** 37 326 (225, 427)*** <0.001 35 654 (307, 1000)*** 0.001

Without diabetes 22 597 (407, 788) 22 957 (809, 1106) 0.002 17 1493 (1197, 1788) <0.001

Estimates are based on Wald t test from generalised linear model

*p < 0.05, **p < 0.01 and ***p < 0.001 vs without diabetes
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and proinsulin:insulin ratio) in the type 2 diabetes group com-
pared with the non-diabetic group at each visit.

Of note, 2 years after surgery, fasting plasma glucose or
HbA1c levels reverted to ‘normal’ in over 90% of the cohort
with diabetes at baseline, becoming virtually indistinguishable
from the non-diabetic control group. As already discussed,
however, this does not mean that the groups became metabol-
ically equivalent. Indeed, recent reports have shown that a
persistent impairment in insulin secretion is a major factor
contributing to the failure to achieve or sustain diabetes remis-
sion after surgically induced weight loss [40, 41]. These re-
ports and our data indicate that simple clinical indicators used
to determine normal glucose tolerance or ‘non-diabetic’ status
in patients who have undergone weight loss surgeries fail to
adequately describe the metabolic heterogeneity within this
group or adequately assign risk for subsequent long-term de-
terioration in glucose control.

Previous studies have shown improvements of insulin se-
cretion in response to both intravenous and oral (glucose and
MM) chal lenges within 3 months of RYGB and
biliopancreatic diversion [42, 43]. Longer-term, however, we
find that the changes in insulin sensitivity and insulin secretion
derived from the responses to an MM differed from the re-
sponses to an FSIVGTT. Basal insulin responsiveness (Φb)
derived from the MM improved in both groups. However,
despite a robust increase in postprandial GLP-1 levels that
persisted for 2 years after RYGB, which should correspond
with improved beta cell glucose sensitivity [6, 44–46], it is
somewhat surprising that the corresponding measures of
meal-related dynamic insulin responsiveness (Φd) did not
change in the type 2 diabetes group and decreased in the
non-diabetic control group, and that total insulin responsive-
ness (total Φ) did not change in either group. One potential
explanation for this discrepancy between oral and intravenous
stimulated insulin secretory responses is that Φ values are
normalised to glucose levels during modelling of the MM
data, whereas calculations of AIRglu from the FSIVGTT are
not. Another explanation is that the Φ and SI values derived
during the MM were already close to population norms (see
Fig. 4) in participants without diabetes, so did not have much
room for improvement. It is also possible that improvements
in SI-MM after surgery in the participants with type 2 diabetes
group resulted in a reduced demand on islet cells, in which
case maintenance of insulin responsiveness represents an im-
provement in the relative islet insulin secretory capacity, as
reflected by a significant increase in DIMM in this group.

In summary, we demonstrate that for up to 2 years after
RYGB, obese adults experience improvements in SI as well
as improved insulin secretory responses to intravenously ad-
ministered glucose as measured by DI with weight loss, de-
spite opposite directionality of AIRglu responses in those with
type 2 diabetes (increased) vs without diabetes (decreased).
The gastric bypass procedure is therefore among a handful

of interventions shown to reverse the decline in beta cell func-
tion that accompanies onset and progression of type 2 diabe-
tes. For participants with type 2 diabetes, however, the base-
line beta cell secretory defect was so profound that evenwith a
marked postsurgical improvement, mean DI remained below
the fifth percentile of a normative population 2 years after
surgery. Combining our findings with recent reports that
islet-cell recovery is an important determinant of diabetes re-
mission status following bariatric surgery [40, 41, 46], consid-
eration should be given to recommending RYGB as early as
possible after the diagnosis of diabetes (the median diabetes
duration in our study was only 3 years) or, more optimally, in
obese individuals at risk for diabetes in whom we show that
restoration of beta cell secretory capacity to variables within
population norms is more likely. Our data also highlight a
paradoxical increase in peak postprandial glucagon levels that,
rather than negatively affecting postprandial glucose metabo-
lism, supports an alternative, beneficial role for glucagon
(along with markedly higher meal-stimulated GLP-1 levels)
in appetite regulation and weight-loss maintenance after
RYGB. Finally, studying the durability of beta cell recovery
during longer-term follow-up will be vital for a deeper under-
standing of the mechanisms involved in type 2 diabetes im-
provement, remission and recurrence following RYGB.
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