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Abstract
Aims/hypothesis Recent clinical studies indicate that
glucagon-like peptide-1 (GLP-1) analogues prevent acute car-
diovascular events in type 2 diabetes mellitus but their mech-
anisms remain unknown. In the present study, the impact of
GLP-1 analogues and their potential underlying molecular
mechanisms in insulin resistance and atherosclerosis are
investigated.
Methods Atherosclerosis development was evaluated in
Apoe−/−Irs2+/− mice, a mouse model of insulin resistance,
the metabolic syndrome and atherosclerosis, treated with the
GLP-1 analogues lixisenatide or liraglutide. In addition, stud-
ies in Apoe−/−Irs2+/− mice and mouse-derived macrophages
treated with lixisenatide were performed to investigate the
potential inflammatory intracellular pathways.
Results Treatment of Apoe−/−Irs2+/− mice with either
lixisenatide or liraglutide improved glucose metabolism and

blood pressure but this was independent of body weight loss.
Both drugs significantly decreased atheroma plaque size.
Compared with vehicle-treated control mice, lixisenatide
treatment generated more stable atheromas, with fewer in-
flammatory infiltrates, reduced necrotic cores and thicker fi-
brous caps. Lixisenatide-treated mice also displayed dimin-
ished IL-6 levels, proinflammatory Ly6Chigh monocytes and
activated T cells. In vitro analysis showed that, in macro-
phages from Apoe−/−Irs2+/− mice, lixisenatide reduced the se-
cretion of the proinflammatory cytokine IL-6 accompanied by
enhanced activation of signal transducer and activator of tran-
scription (STAT) 3, which is a determinant for M2 macro-
phage differentiation. STAT1 activation, which is essential
for M1 phenotype, was also diminished. Furthermore, athero-
mas from lixisenatide-treated mice showed higher arginase I
content and decreased expression of inducible nitric oxide
synthase, indicating the prevalence of theM2 phenotype with-
in plaques.
Conclusions/interpretation Lixisenatide decreases atheroma
plaque size and instability in Apoe−/−Irs2+/− mice by
reprogramming macrophages towards an M2 phenotype,
which leads to reduced inflammation. This study identifies a
critical role for this drug in macrophage polarisation inside
plaques and provides experimental evidence supporting a
novel mechanism of action for GLP-1 analogues in the reduc-
tion of cardiovascular risk associated with insulin resistance.
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GLP-1 Glucagon-like peptide-1
iNOS Inducible nitric oxide synthase
IR Insulin resistance
LPS Lipopolysaccharide
MAPK Mitogen activated protein kinase
MCP1 Monocyte chemoattractant protein 1
STAT Signal transducer and activator of transcription
VSMC Vascular smooth muscle cell

Introduction

Type 2 diabetes mellitus and the metabolic syndrome are ma-
jor risk factors for developing cardiovascular disease (CVD)
[1]; individuals with vulnerable atheroma plaques are at
highest risk. These plaques are prone to rupture, promoting
life-threatening acute cardiovascular events, and are
characterised by the presence of an inflammatory infiltrate
comprised of macrophages and T cells [2]. Studies in mouse
models of insulin resistance (IR) and atherosclerosis have
shown that IR in vascular-wall cells promotes atheroma
plaque instability via several mechanisms [1, 3–5]. IR in-
creases macrophage apoptosis and reduces vascular smooth
muscle cell (VSMC) survival, favouring the thinning of
plaque fibrous caps and increasing the size of their necrotic
cores [1, 6]. Changes in plaque stability in IR have also been
attributed to the activity and effects of inflammatorymediators
[6, 7], which recruit monocytes and T lymphocytes and favour
the formation of inflammatory necrotic cores. Therefore, ther-
apeutic strategies designed to reduce atheroma inflammation
and to stabilise plaques are a high priority in the prevention of
acute events [8].

Analogues derived from the glucagon-like peptide-1 (GLP-
1) hormone are effective in the treatment of type 2 diabetes
and obesity [9]. Moreover, preclinical testing has demonstrat-
ed that these analogues have cardioprotective effects in rat
models of myocardial injury [10, 11] and protect against ath-
erosclerosis in the apolipoprotein E (apoE)-deficient mouse
model [12]. The recent ELIXA (Evaluation of Lixisenatide
in Acute Coronary Syndrome) and LEADER (Liraglutide
Effect and Action in Diabetes: Evaluation of Cardiovascular
Outcome Results) clinical trials [13, 14] indicate that treat-
ments with GLP-1 analogues are safe [14] and represent use-
ful therapies for the prevention of death caused by cardiovas-
cular events [13] in type 2 diabetes. However, the mechanisms
by which GLP1 analogues might provide protection against
CVD remain largely unknown. Thus, more work is required to
expand our understanding of the effects of incretin-based ther-
apies in the different cardiovascular system pathways and to
gain mechanistic insights for use in advanced personalised
therapies.

In this study, we explored the impact of the GLP-1 ana-
logues lixisenatide and liraglutide on cardiometabolic

dysbalance and atherosclerosis using a mouse model featuring
IR, the metabolic syndrome and atherosclerosis. This strain,
Apoe−/−Irs2+/−, combines apoE deficiency with a partial IRS2
deficiency. In addition, plaque vulnerability and the inflam-
mation associated with this vulnerability were examined and
the potential molecular mechanisms underlying lixisenatide
treatment were explored.

Methods

Mice and diets Animal care was in accordance with our in-
stitutional guidelines and followed the 2010/63/EU directive
from the European Parliament. Apoe−/− (C57BL/6J; Charles
River, L’Arbresle, France) and Irs2+/− (C57BL/6J) mice were
crossed to generate Apoe−/−Irs2+/− mice, which were identi-
fied by genotyping [4]. Mice were fed a regular chow diet
(2014C Tekland Global 14% wt/wt protein; Harlan Iberica,
Barcelona, Spain) and at 2 months they were placed on an
atherogenic diet for 2 months (10.8% wt/wt total fat, 0.75%
wt/wt cholesterol; S4892-E010; Sniff, Soest, Germany). Mice
were randomised and blindly assigned to receive lixisenatide
(n = 15; Lyxumia; Sanofi, Paris, France) at 10 μg/kg body
weight per day, liraglutide (Victoza; Novo Nordisk,
Bagsværd, Denmark) (n = 10) at 400 μg/kg body weight per
day or vehicle (n = 13) through a subcutaneously implanted
osmotic minipump (ALZET 2004; Charles River) during the
last month of the diet. Doses for lixisenatide and liraglutide
were chosen based on the previously reported optimal doses
obtained from pharmacokinetic and drug-clearance studies in
rodents described for lixisenatide [11, 15, 16] and liraglutide
[12, 17–19]. Blood pressure was measured in conscious mice
using a non-invasive tail-cuff system (LE5002 Pressure
Meter; Panlab, Barcelona, Spain) as previously described
[20].

Metabolic measurements in mice Plasma lipid levels in
overnight-fasted mice were measured using enzymatic proce-
dures (Wako, Zaragoza, Spain). HDL-cholesterol was deter-
mined after precipitation of apolipoprotein B (apoB) with dex-
tran sulfate [21]. GTT and ITT analysis were performed as
described [22, 23]. For detailed description of the tests, see
the electronic supplementary material [ESM] Methods.

Quantification of atherosclerosis burden Mice were killed
by cervical dislocation and whole aorta and hearts were har-
vested for analysis. Atherosclerosis was determined in whole-
mounted aorta fixed with 4% vol./vol. paraformaldehyde–
PBS and stained with Oil Red-O (0.2% wt/vol. in 80% vol./
vol. methanol) by en face morphometric analysis (Image J,
https://imagej.nih.gov/ij/) and in H&E-stained aortic cross-
sections of paraffin-embedded heart as the lesion area (in
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mm2) in the aortic root and as the intima–media ratio in the
ascending aorta [24].

Immunohistopathological analysis of atheromas Masson’s
trichrome staining was used to determine the collagen content,
necrotic core area and fibrous cap thickness of atheromas as
described [6]. The content of arginase I, inducible nitric oxide
synthase (iNOS), macrophages, VSMCs and T lymphocytes
in atheromas was determined by inmunostainings as described
[6]. Macrophage proliferation rate and apoptosis and macro-
phages expressing arginase I and iNOS were analysed by
double immunofluorescence. A detailed description of the
immunostainings can be found in ESM Methods.

ELISA Plasma was isolated by centrifugation of heparinised
b lood (10 U hepar in /ml ) and TNFα , monocy te
chemoattractant protein-1 (MCP1) and IL-6 were measured
using the DuoSet ELISA kits (R&D Systems, Minneapolis,
MN, USA).

Flow cytometry measurements Leucocyte analysis was per-
formed in 10 μl of heparinised whole blood as reported [25].
For detailed description of the flow cytometry analysis, see
ESM Methods.

Inflammatory properties of bone-marrow macrophages
Murine bone-marrow-derived macrophages were obtained
from the femoral bone marrow of mice killed by cervical
dislocation. Cells were differentiated for 7 days with 10%
vol./vol. FBS–DMEM (Lonza, Basel, Switzerland) supple-
mented with 10% vol./vol. L929-cell conditioned medium
(LCM; a source of macrophage colony-stimulating factor)
[24] in the presence of 40 nmol/l of lixisenatide or saline
(154 mmol/l NaCl). For the last 24 h, or 6 h before analysis,
the macrophages were challenged with lipopolysaccharide
(LPS; 100 ng/ml) or vehicle. Cytokine secretion in the super-
natant fraction was evaluated by ELISA and protein expres-
sion by western blot analysis. Three independent experiments
were performed in triplicate.

Western blot analysis Protein extracts were obtained by
homogenising cellular pellets of macrophages as previously
described [6, 23]. For a detailed description, see ESMMethods.

Statistical analysis Quantitative variables are shown as the
mean ± SEM. Differences among two groups were evaluated
using Student’s t test. All data obtained during the experiments
were analysed unless these data were out of range of the stan-
dard curve or samples were lost during the experimental pro-
cedure. Multiple comparisons were performed using one-way
ANOVA followed by Bonferroni’s or Tukey’s post hoc analy-
sis and two-way ANOVA followed by a Bonferroni’s post hoc

test (GraphPad Software, La Jolla, CA, USA). Differences
were considered statistically significant if p ≤ 0.05.

Results

Metabolic characterisation of vehicle-, liraglutide- and
lixisenatide-treated Apoe−/−Irs2+/− mice fed an atherogenic
diet The body weights of vehicle-, liraglutide- and
lixisenatide-treated Apoe−/−Irs2+/− mice were significantly in-
creased after the atherogenic diet (Fig. 1a); no difference was
found between treatments. Systolic and diastolic blood pres-
sure were significantly decreased in lixisenatide-treated
Apoe−/−Irs2+/− mice compared with liraglutide- and vehicle-
treated mice (Fig. 1b, c). Compared with vehicle treatment,
liraglutide treatment decreased systolic blood pressure
(Fig. 1b). Fasting basal glucose was similar among groups
(Fig. 1d) but, compared with vehicle-treated mice,
liraglutide- and lixisenatide-treated Apoe−/−Irs2+/− mice had
significantly decreased fasting insulin levels (Fig. 1e).

Further carbohydrate metabolism characterisation using
the GTT (Fig. 2a) revealed improved glucose tolerance, mea-
sured as the AUCglucose, in lixisenatide-treated Apoe

−/−Irs2+/−

mice compared with vehicle-treated controls. The glucose-
stimulated insulin release during the GTT (Fig. 2b), expressed
as AUCinsulin, showed decreased insulin secretion in
liraglutide- and lixisenatide-treated mice compared with
vehicle-treated controls. The ITT also demonstrated higher
insulin sensitivity in liraglutide- and lixisenatide-treated mice,
as revealed by a decrease in the AUCglucose (Fig. 2c).
Interestingly, lipid analysis showed that neither liraglutide
nor lixisenatide treatment had an effect on total cholesterol,
apoB-cholesterol, HDL-cholesterol or triacylglycerol levels in
Apoe−/−Irs2+/− mice (Fig. 2d–g). Therefore, as expected,
liraglutide and lixisenatide improve carbohydrate metabolism
and blood pressure in these mice without affecting lipid
metabolism.

Lixisenatide treatment in atherogenic-diet-fed Apoe−/−

Irs2+/− mice diminishes the atherosclerosis burden and pro-
duces more stable plaquesAnalysis of whole-mounted aortas
(Fig. 3a) demonstrated that, compared with vehicle-treated
Apoe−/−Irs2+/− mice, liraglutide- and lixisenatide-treated mice
exhibited smaller atheromas in the aortic arch region (Fig. 3b)
without significant changes in the thoracic aorta (Fig. 3c).
Similarly, the lesion size in cross-sections of hearts was also
reduced in the aortic root (Fig. 3d), ascending aorta (Fig. 3e)
and the aorta (Fig. 3f) of lixisenatide-treated Apoe−/−Irs2+/−

mice compared with vehicle-treated mice. Atheroma analysis
in cross-sections from liraglutide-treated mice showed a more
modest reduction in size, which did not reach statistical sig-
nificance (Fig. 3d–f). Given that our mouse model had a better
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Fig. 2 Metabolic analysis of
vehicle-, liraglutide- and
lixisenatide-treated Apoe−/−Irs2+/−

mice. (a) Plasma glucose levels
during the GTT and AUCglucose

generated from the glucose curve
during the test. (b) Plasma
glucose-stimulated insulin levels
during the GTTand the AUCinsulin

generated from the insulin
measurements during the test. (c)
Plasma glucose levels during the
ITT and AUCglucose generated
from the glucose curve during the
test in 4 h fasted mice. (d–g) Total
cholesterol (T-chol, d), ApoB-
cholesterol (ApoB-chol, e), HDL-
cholesterol (HDL-chol, f) and
triacylglycerol (g) plasma levels in
the three groups ofmice. Statistical
analysis was performed using one-
way ANOVA test followed by
Bonferroni’s post hoc test. White
bars and circles, vehicle-treated
mice; grey bars and black
triangles, liraglutide-treated mice;
black bars and circles, lixisenatide-
treated mice. *p < 0.05, **p < 0.01
as indicated

a b

d

B
W

 (
g)

***

***
***

S
ys

to
lic

 b
lo

od
pr

es
su

re
 (

m
m

H
g)

***
*

*

D
ia

st
ol

ic
 b

lo
od

pr
es

su
re

 (
m

m
H

g)
 

***
*

After diet
n=9

Before diet

G
lu

co
se

 (
m

m
ol

/l)

0

2

4

6

8

n=12 n=10 n=14 n=9 n=10 n=11n=10n=10 n=12n=10n=14

n=12 n=10 n=14 n=8 n=5

*
*

n=9

In
su

lin
 (

pm
ol

/l)

0

20

40

60

80

0

10

20

30

40

0

50

100

150

200

0

50

100

150

200
c

e

Fig. 1 Characterisation of vehicle-,
liraglutide- and lixisenatide-treated
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treated mice. *p < 0.05,
***p < 0.001 as indicated
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response to lixisenatide treatment, further studies were per-
formed in lixisenatide-treated mice.

Analysis of the composition of atheroma plaques (Fig. 4)
revealed a reduced content of macrophages measured as both
absolute and relative macrophage area (Fig. 4a). The T lym-
phocyte content, measured as total number of CD3+ cells and
as number of CD3+ cells per lesion area (Fig. 4b), was also
decreased in atheromas from lixisenatide-treated Apoe−/
−Irs2+/− mice compared with vehicle-treated mice. No chang-
es were observed in VSMC content between mouse groups
(Fig. 4c). Examination of plaque stability characteristics re-
vealed decreased collagen content (Fig. 4d), reduced necrotic
core area (Fig. 4d) and increased fibrous cap thickness
(Fig. 4d) in lixisenatide-treated mice. No differences were
observed in matrix metalloproteinase 9 content in the lesion
or in the media (Fig. 4e) when comparing the two groups of
mice. Thus, lixisenatide treatment decreases atherosclerosis
and inflammatory infiltration and promotes acquisition of
some characteristics of plaque stability.

Effect of lixisenatide treatment on macrophage survival in
Apoe−/−Irs2+/−mouse atheromas The decreased macrophage
content in lesions might be explained by changes in cellular
proliferation and apoptosis–key events in plaque growth and
stability. However, analysis of proliferation and apoptosis
in vivo did not reveal any differences between lixisenatide-
and vehicle-treated Apoe−/−Irs2+/− mouse atheromas (Fig. 5a–
d).

Lixisenatide treatment decreases systemic inflammation in
atherogenic-diet-fed Apoe−/−Irs2+/− mice Given that
lixisenatide treatment markedly decreased inflammatory infil-
trates in plaques, we next investigated inflammation. Analysis
of circulating leucocytes showed a decreased percentage of
lymphocytes and an increase in the percentage of neutrophils
in lixisenatide-treated Apoe−/−Irs2+/− mice compared with
vehicle-treated mice (Fig. 6a). The percentage of monocytes
was slightly decreased in lixisenatide-treated Apoe−/−Irs2+/−

mice but the difference was not significant (Fig. 6a).
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in the images in (d, e, f) delineate
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analysis was performed using one-
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Bonferroni’s post hoc test (a–e).
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**p < 0.01, ***p < 0.001 vs
vehicle
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Monocyte subpopulation analysis, however, showed that
lixisenatide treatment effectively diminished the proinvasive
and proinflammatory Ly6Chi subset without changing the oth-
er monocyte subpopulations in Apoe−/−Irs2+/− mice (Fig. 6b).
Compared with the vehicle-treated mice, the lixisenatide-
treated Apoe−/−Irs2+/− mice displayed reduced percentages of
CD3+CD69+ (Fig. 6d) and CD8+CD69+ (Fig. 6h) activated T
cells without changing the other Tcell subsets (Fig. 6c, e, f, g).
Analysis of proinflammatory cytokines in circulating plasma
revealed decreased IL-6 levels in lixisenatide-treated
Apoe−/−Irs2+/− mice (Fig. 6k) without changes in MCP1 or
TNFα levels (Fig. 6i, j). Therefore, reduced lesion size and
inflammatory infiltrate in lixisenatide-treated mice are associat-
ed with decreased circulating inflammatory cells and mediators.

Lixisenatide decreases the inflammatory properties of
Apoe−/−Irs2+/− mouse macrophages To investigate whether
lixisenatide modulated the inflammatory macrophage pheno-
type, we explored its effect on the differentiation and activa-
tion of Apoe−/−Irs2+/− mouse macrophages.

Analysis of cytokine secretion revealed that lixisenatide
treatment had no effect on MCP1 (Fig. 7a) or TNFα

(Fig. 7b) levels following 6 h stimulation with LPS; however,
IL-6 levels in LPS-stimulated macrophages were decreased
when compared with vehicle-treated macrophages (Fig. 7c).
Compared with basal conditions, 6 h stimulation with LPS
augmented the secretion of the all three proinflammatory cy-
tokines, MCP1, TNFα and IL-6 (Fig. 7a–c), in both
lixisenatide- and vehicle-treated Apoe−/−Irs2+/−mouse macro-
phages. After 24 h stimulation with LPS, cytokine secretion
was similar between lixisenatide- and vehicle-treated Apoe−/
−Irs2+/− mouse macrophages; MCP1, TNFα and IL-6 cyto-
kines were increased in both lixisenatide- and vehicle-treated
macrophages compared with unstimulated control counter-
parts (ESM Fig. 1a–c).

Next, we investigated signal transducer and activator of
transcription (STAT) proteins, which are a determinant for
macrophageM1/M2 differentiation. Protein expression analy-
sis showed decreased levels of the activated phosphoSTAT1,
which is essential for acquisition of M1 phenotype, in 6 h
LPS-stimulated lixisenatide-treated macrophages (Fig. 7d)
compared with vehicle-treated cells. Analysis of
phosphoSTAT3 protein, which is associated with the anti-
inflammatory M2 response in macrophages, was significantly
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augmented in lixisenatide-treated Apoe−/−Irs2+/− mouse mac-
rophages in basal conditions and after 6 h stimulation with
LPS (Fig. 7d). No differences in phosphoSTAT1 or
phosphoSTAT3 levels were observed between lixisenatide-
and vehicle-treated macrophages after 24 h LPS stimulation
(Fig. 7e). Stimulation with LPS resulted in increased
phosphoSTAT1 after 6 h in vehicle-treated macrophages
(Fig. 7d) and after 24 h in lixisenatide-treated macrophages
(Fig. 7e) comparedwith basal conditions. PhosphoSTAT3was
augmented after both 6 h (Fig. 7d) and 24 h (Fig. 7e) of LPS
stimulation in lixisenatide-treated macrophages compared
with unstimulated lixisenatide-treated macrophages.
Macrophage phenotype has been reported to be modulated
by activation of the stress mitogen activated protein kinase
(MAPK) [26, 27]. However, no significant changes were ob-
served in the protein expression of the activated forms of the
downstream MAPK phosphoERK, phosphop38 or
phosphoSAPK/JNK (ESM Fig. 2a–c).

Consistent with these findings, protein expression analysis
also demonstrated that lixisenatide treatment decreased the
levels of the M1 macrophage marker iNOS in 6 h LPS-
stimulated macrophages (Fig. 8a) when compared with vehi-
cle treatment. This difference was not observed after 24 h

stimulation with LPS (Fig. 8b). Compared with basal condi-
tions, increased iNOS protein levels were observed in vehicle-
treated macrophages upon 6 h and 24 h stimulation with LPS
(Fig. 8a, b) and in lixisenatide-treated macrophages only after
24 h LPS stimulation (Fig. 8b). Lixisenatide-treated macro-
phages also displayed higher protein levels of the M2 macro-
phage marker arginase I both in basal conditions and in 24 h
LPS-stimulated macrophages (Fig. 8b) compared with
vehicle-treated macrophages. No changes were observed in
arginase I expression following 6 h of LPS stimulation
(Fig. 8a).

These results indicate that lixisenatide affects macrophage
reprogramming during differentiation by modulating the
STAT signalling pathway, facilitating an anti-inflammatory
M2 phenotype with decreased proinflammatory cytokine
secretion.

Lixisenatide treatment modulates macrophage polarisation
in vivo in Apoe−/−Irs2+/− mouse atheroma plaques Next, we
evaluated the action of lixisenatide on macrophage
reprogramming in vivo. The Apoe−/−Irs2+/− mice displayed
an increase in arginase I in plaques following lixisenatide
treatment compared with vehicle treatment (Fig. 8e). In
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contrast, iNOS was significantly decreased following
lixisenatide treatment (Fig. 8f). Consistent with these results,
the ratio of arginase I-/iNOS-stained area in atheromas was
higher in lixisenatide-treated vs vehicle-treated Apoe−/−Irs2+/−

mice (Fig. 8g). Analysis of double Mac-3/arginase I and Mac-
3/iNOS immunofluorescence showed the presence of macro-
phages expressing arginase I and iNOS proteins in both
vehicle- and lixisenatide-treated mice (Fig. 8d). Therefore,
lixisenatide promotes an M2 macrophage phenotype in vivo
in Apoe−/−Irs2+/− mouse atheromas.

Discussion

The average reduction in life expectancy of a person with type
2 diabetes is approximately 10 years, due mainly to CVD.
Recent clinical trials indicate that therapies based on the
GLP-1/GLP-1-receptor axis may represent useful treatments
to reduce the risk of CVD [11, 13, 19]. In our study, treating
Apoe−/−Irs2+/− mice (which develop characteristics of IR, the

metabolic syndrome and accelerated atherosclerosis) with
lixisenatide or liraglutide efficiently decreased atherosclerosis,
indicating a drug class effect. Atheromas from lixisenatide-
treated mice also displayed characteristics of stable plaques,
diminished inflammatory cell infiltration, smaller necrotic
cores and thicker fibrous caps. As expected, lixisenatide and
liraglutide alleviated IR and improved blood pressure but did
not change body weight loss or plasma lipid levels.
Lixisenatide treatment also reduced markers of systemic in-
flammation, including proinflammatory Ly6Chi-monocytes,
activated T cells and IL-6 cytokine plasma levels. Moreover,
lixisenatide modulated macrophage polarisation towards an
M2 phenotype, as Apoe−/−Irs2+/− mouse macrophages differ-
entiated with the drug exhibited enhanced levels of activated
STAT3 and diminished activated STAT1 in response to LPS.
Consistently, in vitro treatment of macrophages with
lixisenatide resulted in decreased secretion of M1
macrophage-derived IL-6 cytokine, reduced iNOS levels (an
enzyme that characterises M1 macrophages) and augmented
expression of arginase I (an M2 marker). In agreement with a
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role for lixisenatide in macrophage reprogramming, higher
arginase I and lower iNOS levels were also detected in vivo
in atheromas from lixisenatide-treated Apoe−/−Irs2+/− mice.
Our results demonstrate that the GLP-1 analogue lixisenatide
plays a relevant role in the reprogramming of macrophage fate
towards an anti-inflammatory M2 phenotype; this might also
represent a key mechanism for decreased atherosclerosis and
acute cardiovascular events associated with IR.

Previous studies have shown that liraglutide treatment de-
creases atherosclerosis in Apoe−/− mice [12, 28, 29] and in
LDL-receptor-deficient mice [30] but also improves endothe-
lial dysfunction [31–33]. However, this is the first study to
evaluate the impact of GLP1 analogues on atherosclerosis in
the context of IR and to provide a mechanistic insight into the
cardiovascular actions of the incretin-based therapies in vivo.
Thus, treatment with lixisenatide or liraglutide markedly de-
creased atherosclerosis in IR Apoe−/−Irs2+/− mice. In addition,
lixisenatide treatment improved some markers of plaque sta-
bility; lower macrophage and T cell contents were observed,
an important finding because these are the predominant cell

types in plaque rupture and erosion sites [34]. These results
are consistent with the LEADER clinical trial, which revealed
that individuals with type 2 diabetes treated with the GLP-1
analogue liraglutide had lower death rates from cardiovascular
causes [13].

As expected, lixisenatide and liraglutide alleviated IR and
improved blood pressure in Apoe−/−Irs2+/−mice. However, no
changes were observed in body weight or plasma lipid levels,
indicating that the reduction in CVD produced by these drugs
does not result from an improvement in lipid metabolism
or reduced fat content. The lack of an effect on body
weight could be attributed to the absence of obesity in the
Apoe−/−Irs2+/− mouse model. This is not unprecedented as
previous studies have reported no changes in body weight
using these drugs in different animal models of obesity and
diabetes [15, 30]. Our results support and extend previous data
indicating the complex biology of the GLP-1/GLP-1-receptor
pathway in the cardiovascular system and highlight its poten-
tial beneficial effects in addition to its main function through
the enteroinsular axis [9].
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Given that GLP-1 hormone promotes pancreatic beta cell
[9] and cardiomyocyte [35] survival, we hypothesised that the
GLP-1 analogue lixisenatide could affect vessel-wall cell sur-
vival. However, treatment with this drug did not affect the
macrophage proliferation rate. Previous studies have shown
that increased endoplasmic reticulum stress-induced macro-
phage apoptosis is a relevant molecular mechanism of ather-
oma plaque vulnerability in states of IR [1, 6]. However,
in vivo analysis of apoptosis revealed that lixisenatide does
not affect this process in atheromas from Apoe−/−Irs2+/− mice.
Nevertheless, we cannot discard the possibility that
lixisenatide might affect macrophage survival in more ad-
vanced plaques.

Classically activated M1 macrophages exhibit atherogenic
activity by secreting proinflammatory cytokines such as
TNFα and IL-6 and modulating plaque rupture susceptibility

through their preferential location in plaque shoulders [36]. In
contrast, M2macrophages havemain functions in tissue repair
and resolution of inflammation and also downregulate M1-
associated cytokines [27, 37]. Switching of the M1 macro-
phage phenotype involves alteration of the activation status
of the MAPK and STAT signalling pathways, among several
other changes [27]. Macrophages differentiated in the pres-
ence of lixisenatide displayed higher levels of activated
STAT3 protein and lower LPS-stimulated STAT1 activation;
these transcription factors are essential for modulatingM2 and
M1 phenotype shift, respectively. In contrast, MAPK activa-
tion analysis showed the drug to have no effect on these path-
ways. Thus, lixisenatide might promote plaque stability
through a mechanism that modulates the STAT signalling
pathway resulting in the reprogramming of macrophages. In
fact, lixisenatide-differentiated macrophages secreted less IL-
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6 upon LPS stimulation and displayed increased levels of the
M2 macrophage marker arginase I and reduced expression of
the M1 macrophage marker iNOS. These findings correlate
well with data from previous in vitro studies using human
macrophages describing the anti-inflammatory effects of
exenatide [38], and with other work in a mouse model of
diet-induced obesity indicating that a related incretin-based
therapy, the DPP-4 inhibitor linagliptin, reduces IR through
an anti-inflammatory action [39]. Interestingly, in this later
study, linagliptin did not change circulating Ly6C subpopula-
tions, indicating that DPP-4 inhibitors do not modulate re-
cruitment of monocytes into the blood. Thus, the anti-
inflammatory actions of linagliptin were attributed to an M2
shift of macrophages within insulin-sensitive tissues by a
mechanism that included a reduction in the production of re-
active oxygen species and subsequent attenuation of systemic
IR. In contrast, we found that lixisenatide decreased circulat-
ing Ly6Chi monocytes, lowered activated T cells and, during
bone-marrow macrophage differentiation, induced an M2
phenotype with enhanced arginase I expression and STAT3
activation. Thus, these studies suggest that the mechanism of
action of GLP-1 analogues could include the in vivo
reprogramming of the immune stem cell fate, having a major
effect on systemic inflammation.

In line with the above results, analysis of circulating cyto-
kines in lixisenatide-treated mice revealed a decrease in IL-6,
a target cytokine for many anti-inflammatory therapies, whose
signalling pathway is hypothesised to be critical in inflamma-
tion associated with atherosclerosis [34]. Moreover,
lixisenatide treatment decreased iNOS but enhanced the pres-
ence of arginase I in atheromas; these changes correlated with
an increase in plaque stability. This finding is consistent with
recent work demonstrating that infusion of arginase I in mice
decreases the secretion of the proinflammatory IL-6 cytokine,
reduces iNOS levels and produces more stable plaques,
characterised by the presence of thicker fibrous caps [40].
Altogether, these results suggest that the GLP-1/GLP-1 recep-
tor axis plays a critical function in decreasing atherosclerosis
and might promote plaque stability through modulation of the
macrophage phenotype in an arginase I-dependent manner.

In summary, our data shows that lixisenatide modulates the
activation of STAT-dependent pathways and provides mecha-
nistic insights to suggest a function for the GLP-1/GLP-1
receptor axis in the reprogramming of macrophages towards
an M2 phenotype. In addition, we showed that this
lixisenatide-mediated effect is a main in vivomolecular mech-
anism of the atheroma plaque size reduction in insulin-
resistant mice treated with this drug. Thus, this present study
provides experimental evidence for the use of GLP-1 ana-
logues as potential therapeutic agents to reduce cardiovascular
residual risk and acute events in individuals exhibiting char-
acteristics of type 2 diabetes and suggests a potential use of
these therapies in personalised therapies.
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