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Abstract
Aims/hypothesis In obesity oxidative stress is thought to con-
tribute to the development of insulin resistance, non-alcoholic
fatty liver disease and the progression to non-alcoholic
steatohepatitis. Our aim was to examine the precise contribu-
tions of hepatocyte-derived H2O2 to liver pathophysiology.
Methods Glutathione peroxidase (GPX) 1 is an antioxidant
enzyme that is abundant in the liver and converts H2O2 to
water. We generated Gpx1lox/lox mice to conditionally delete
Gpx1 in hepatocytes (Alb-Cre;Gpx1lox/lox) and characterised
mice fed chow, high-fat or choline-deficient amino-acid-defined
(CDAA) diets.
Results Chow-fed Alb-Cre;Gpx1lox/lox mice did not exhibit
any alterations in body composition or energy expenditure,
but had improved insulin sensitivity and reduced fasting
blood glucose. This was accompanied by decreased
gluconeogenic and increased glycolytic gene expression as
well as increased hepatic glycogen. Hepatic insulin receptor

Y1163/Y1163 phosphorylation and Akt Ser-473 phosphory-
lation were increased in fasted chow-fed Alb-Cre;Gpx1lox/lox

mice, associated with increased H2O2 production and insulin
signalling in isolated hepatocytes. The enhanced insulin signal-
ling was accompanied by the increased oxidation of hepatic
protein tyrosine phosphatases previously implicated in the at-
tenuation of insulin signalling. High-fat-fed Alb-Cre;Gpx1lox/lox

mice did not exhibit alterations in weight gain or
hepatosteatosis, but exhibited decreased hepatic inflammation,
decreased gluconeogenic gene expression and increased insulin
signalling in the liver. Alb-Cre;Gpx1lox/lox mice fed a CDAA
diet that promotes non-alcoholic steatohepatitis exhibited
decreased hepatic lymphocytic infiltrates, inflammation and
liver fibrosis.
Conclusions/interpretation Increased hepatocyte-derived
H2O2 enhances hepatic insulin signalling, improves glucose
control and protects mice from the development of non-
alcoholic steatohepatitis.
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HFF High-fat-fed

Troy L. Merry and Melanie Tran contributed equally to this paper.

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-016-4084-3) contains peer-reviewed but unedited
supplementary material, which is available to authorised users.

* Tony Tiganis
Tony.Tiganis@monash.edu

1 Metabolic Disease and Obesity Program and Department of
Biochemistry and Molecular Biology, Biomedicine Discovery
Institute, Monash University, Melbourne, VIC 3800, Australia

2 Present address: Faculty of Medical and Health Sciences, The
University of Auckland, Aukland, New Zealand

3 Department of Medicine (Austin Hospital), The University of
Melbourne, Melbourne, VIC, Australia

4 Department of Anatomical Pathology, AlfredHospital, Prahran, VIC,
Australia

Diabetologia (2016) 59:2632–2644
DOI 10.1007/s00125-016-4084-3

http://dx.doi.org/10.1007/s00125-016-4084-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s00125-016-4084-3&domain=pdf


HGKO Hepatocyte-specific Gpx1-knockout
HGP Hepatic glucose production
IR Insulin receptor
NAFLD Non-alcoholic fatty liver disease
NASH Non-alcoholic steatohepatitis
NOX NADPH oxidase
PEPCK Phosphoenolpyruvate carboxykinase
PI3K Phosphatidylinositol 3-kinase
PRDX Peroxiredoxin
PTP Protein tyrosine phosphatase
ROS Reactive oxygen species
SHP Small heterodimer partner
SOD Superoxide dismutase
TCPTP Tyrosine-protein phosphatase non-receptor type 2

Introduction

Obesity is a major risk factor for the development of insulin
resistance, a key factor in the aetiology of the metabolic syn-
drome and type 2 diabetes [1–3]. Obesity and insulin resis-
tance promote the development of non-alcoholic fatty liver
disease (NAFLD), which in a subset of individuals can prog-
ress to non-alcoholic steatohepatitis (NASH) [4]. NASH is
characterised by fatty liver and overt inflammation that can
lead to the death of steatotic hepatocytes, instigating repara-
tive responses that result in fibrosis [4]. Oxidative stress
accompanying the obese state is considered a key factor in the
development of insulin resistance [5–7] and an important con-
tributor to the development of NAFLD and NASH [4, 8–10].
Systemic and hepatic oxidative stress is evident in obesity and
there is direct evidence for the involvement of reactive oxygen
species (ROS) in the promotion of insulin resistance, NAFLD
and NASH in obesity/type 2 diabetes in rodents [5–13].

Mitochondria are thought to be the primary contributors to
oxidative stress in obesity. Superoxide (O2•

–) is a natural
byproduct of the single-electron transport chain [14, 15]. In
obesity, the chronic uptake and oxidation of energy substrates
is thought to generate reducing equivalents that exceed the
rate of ATP utilisation, thus enhancing the generation of
O2•

– [14, 15]. In addition, anaplerotic/cataplerotic pathways
in hepatocytes in NAFLD induce mitochondrial O2•

– genera-
tion and inflammation [9], whereas in NASH, increased
NADPH oxidase (NOX)-4 expression may also contribute to
hepatic oxidative stress [8]. O2•

– is converted to H2O2 by
superoxide dismutase (SOD) and thereafter eliminated by
antioxidant enzymes such as catalase, peroxiredoxins
(PRDXs) and glutathione peroxidase (GPX) [14, 15].
Oxidative stress ensues when the production of O2•

–/H2O2

exceeds the antioxidant capacity of a cell.
Transient, localised H2O2 generation can occur in response

to physiological stimuli such as growth factors and hormones
[14]. Both NOX andmitochondria have been implicated in the

generation of O2•
– and H2O2 in response to physiological

stimuli [14, 16, 17]. An increase in H2O2 in response to stimuli
such as insulin can facilitate signalling by oxidising and
inactivating protein tyrosine phosphatases (PTPs) [18].
Several PTPs, including the tyrosine-specific PTP1B and the
dual-specificity phosphatase and tensin homologue, can be
oxidised in response to insulin to promote insulin receptor
(IR) activation and downstream phosphatidylinositol
3-kinase (PI3K) signalling, respectively [16, 19–22].

GPX1 is a ubiquitous selenoenzyme that uses glutathione
to catalyse the conversion of H2O2 into H2O [18]. Gpx1–/–

mice are healthy and fertile and do not show any obvious
abnormalities [23, 24]. Indeed, when Gpx1–/– mice are fed a
high-fat diet that promotes moderate adiposity and insulin
resistance, but not hyperglycaemia [25], GPX1 deficiency
promotes insulin signalling in muscle and protects mice from
the development of insulin resistance [22], indicating that in-
creases in H2O2 in muscle may be beneficial. Moreover, even
in the context of morbid obesity and hyperglycaemia, global
GPX1 deficiency protects mice from the development of
steatohepatitis and liver damage and improves glucose metab-
olism [25]. Given the extensive tissue crosstalk in the control
of glucose and lipid homeostasis and the capacity of H2O2 to
diffuse across membranes, it is difficult to definitively ascribe
the effects of global GPX1 deficiency and heightened H2O2

on hepatic pathophysiology to any cell type or tissue and to
exclude potential detrimental effects being masked by the
global deletion of GPX1. Therefore we have ‘floxed’ the
Gpx1 allele to allow us to explore the hepatocyte-specific
contributions of GPX1 to the regulation of hepatic insulin
sensitivity and the development of NAFLD and NASH.

Methods

Mice Gpx1lox/+ mice on a C57BL/6 J background were gen-
erated by the Monash Gene Targeting Facility as described in
electronic supplementary material (ESM) Methods. Alb-Cre
(C57BL/6 J) mice have been described previously [13]. Mice
were maintained on a 12 h light–dark cycle in a temperature-
controlled high-barrier facility with free access to food (6%
wt/wt fat) and water. Where indicated, mice were fed an
obesogenic diet (23.5% wt/wt fat, SF04-027; Specialty
Feeds, Glen Forest, WA, Australia) or a choline-deficient
amino-acid-defined (CDAA) diet (SF13-103; Specialty
Feeds). Experiments were conducted on age-matched male
mice and experimentors were blind to outcome assessment.
Experiments were approved by the Monash University
Animal Ethics Committee.

Metabolic analyses Blood was collected for analysis of fed
and fasted blood glucose and plasma insulin as described pre-
viously [22]. Insulin and pyruvate tolerance tests were
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performed in mice fasted for 4–6 h and hyperinsulinaemic–
euglycaemic clamps were performed as described previously
[22]. Other metabolic analyses and NASH scoring are
described in ESM Methods.

Biochemical analyses Tissue homogenates were analysed as
described previously [22]. Immunoblotting antibodies are
described in ESM Methods. Hepatic glycogen was extracted

and debranched with amylo-α-l,4-α-1,6-glucosidase and glu-
cose units were analysed using an enzymatic fluorometric
method described previously [26].

For the analysis of PTP oxidation, frozen liver samples
were homogenised under anaerobic conditions in the presence
of N-ethylmaleimide to alkylate all reduced PTPs and then
subsequently reduced and hyperoxidised to the sulfonic state
as described previously [13]. Immunoblots were probed with
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bFig. 1 Hepatocyte-specific
Gpx1-deficient mice. (a) Gpx1
locus and targeting. (b) Southern
blot analysis of C57BL/6 J wild-
type (+/+) and Gpx1-targeted ES
cells (figure provided by Monash
Gene Targeting Facility, Monash
University, Australia). (c) PCR
analysis of +/+, Gpx1lox/+ (lox/+)
and Gpx1lox/lox (lox/lox) C57BL/
6 J mice. (d–f) Epididymal fat,
gastrocnemius muscle, liver and
isolated hepatocytes from +/+
(grey bars), lox/lox (black bars)
and Alb-Cre;Gpx1lox/lox (white
bars) HGKO mice processed for
immunoblotting. (g) Livers from
lox/lox (black bars) and HGKO
(white bars) processed for
quantitative real-time PCR (n = 5
per genotype). Quantified results
are means ± SE for the indicated
number of mice
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a mouse monoclonal antibody (PTPox) raised against the sig-
nature motif of the prototypic PTP1B oxidised to the irrevers-
ible sulfonic state, which detects tyrosine-specific PTPs
oxidised to the sulfonic state [27].

Total and oxidised glutathione levels in tissue supernatant
fractions or blood were measured as described previously
[25].

H2O2 measurements Hepatocytes were isolated using a two-
s tep col lagenase A perfus ion method [13, 28] .
Hepatocytes were serum-starved in low-glucose DMEM
(ThermoFisher, Waltham, MA, USA) containing 0.1%
(vol./vol.) FBS for 2 h and incubated in PBS containing
100 μmol/l Amplex Red reagent and 1 U/ml HRP
(Amp l e x R e d hy d r o g e n p e r o x i d e a s s a y k i t ;
ThermoFisher) in the presence or absence of 100 nmol/l
insulin and fluorescence measured and normalised to
protein.

Quantitative PCR Hepatic levels of Gpx1, Gpx3, Gpx4, Ho1
(also known as Hmox1), Txn1, Trxrd1 (Txnrd1), G6pc, Pck1,
Gck, Pdk4, Lpk (Col2a1), Ppargc1α (Ppargc1a), Cpt1,
Acadl, Srebp1c (Srebf1), Fasn, Saa1, Crp, Il1α (Il1a), Ifnγ
(Ifng), Il6, Tnf, Mcp-1 (Ccl2), αSma (Acta2) and Tgfβ
(Tgfb1) were assessed by quantitative real-time PCR
(ΔΔCt) performed using the TaqMan Universal PCR Master
Mix and TaqMan Gene Expression Assays (ThermoFisher
Scientific) as described previously [13].

Statistical analyses Analyses were performed using the two-
tailed Student’s t test or ANOVA. A p value of<0.05 was
considered significant (*p<0.05, **p<0.01, ***p<0.001).

Results

Hepatocyte-specific GPX1-deficient mice We generated a
floxed allele of Gpx1 (Fig. 1a–c) by gene targeting in Bruce
4 ES cells. ‘Floxing’ the Gpx1 allele (Gpx1lox/lox; C57BL/6)
alone caused a reduction in GPX1 protein in epididymal fat
and gastrocnemius muscle (Fig. 1d,e), which express low
amounts of GPX1, but not in liver (Fig. 1f), where GPX1
expression is abundant. The reduction in GPX1 in fat or mus-
cle did not result in systemic oxidative stress when GPX1-
deficient mice were compared with C57BL/6 wild-type mice,
as assessed by measuring reduced (GSH) and oxidised
(GSSG) glutathione levels in blood and reflected by an unal-
tered GSH:GSSG ratio (a reduced ratio being indicative of
oxidative stress; Fig. 2a). Moreover, the reduction in GPX1
in muscle of Gpx1lox/lox (lox/lox) mice did not result in in-
creased H2O2 when compared with C57BL/6 wild-type mice,
as assessed using the H2O2 selective probe Amplex Red
(Fig. 2e). Similarly, the reduction in GPX1 in fat or muscle
did not result in oxidative stress as assessed by measuring
GSH and GSSG levels (Fig. 2c,d). Therefore the remaining
GPX1 protein in lox/lox mouse tissues such as adipose tissue
or muscle is sufficient to prevent any increase in H2O2 and the
development of oxidative stress. To conditionally deleteGpx1
in hepatocytes, we bred lox/loxmice with those expressing the
Alb-Cre transgene, which recombines floxed alleles in hepa-
tocytes [29]. GPX1 protein expression was specifically ablat-
ed in livers from 10-week-old Alb-Cre;Gpx1lox/lox hepatocyte-
specific Gpx1-knockout (HGKO) mice; this was not the case
in other tissues including muscle and epididymal fat (Fig. 1d–
f). Any remaining GPX1 in HGKO livers reflected that pres-
ent in non-parenchymal cells, as no GPX1 protein was detect-
ed in hepatocytes from HGKO mice (Fig. 1f). Hepatic GPX1
deficiency did not result in compensatory increases in Gpx2,
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Fig. 2 Liver GSH/GSSG and
hepatocyte H2O2 levels. Ten-
week-old male +/+ (grey bars,
n= 4–7), lox/lox (black bars,
n= 5–10) and HGKO (white bars,
n= 5–10) mice were fed a chow
diet. (a–d) Blood, liver,
epididymal fat or gastrocnemius
muscle total GSH (tGSH) and
GSSG levels and normalised
GSH/GSSG ratios. (e) H2O2 in
muscle. Results are means ± SE.
(f) Hepatocyte H2O2 production
from lox/lox (black squares) and
HGKO (white circles) mice.
Representative results from three
experiments are shown
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Gpx3 or Gpx4, or alterations in Txn1 (encoding thioredoxin),
Trxrd1 (encoding thioredoxin reductase) or Ho1 (encoding
haem oxygenase-1) (Fig. 1g). Moreover hepatic GPX1 defi-
ciency did not result in compensatory increases in catalase or
PRDX1 in liver and fat, or altered PRDX1 expression in mus-
cle (Fig. 1d–f). However, hepatic GPX1 deficiency was ac-
companied by decreased catalase in gastrocnemius muscle
(Fig. 1e), pointing towards crosstalk between hepatocyte and
muscle antioxidant capacity.

H2O2 generation in HGKO mice At 4–10 weeks of age no
differences were evident in body weight or body/tissue com-
position between lox/lox and HGKO mice (ESM Fig. 1a–c).
Food intake, oxygen consumption, ambulatory activity and

energy expenditure were unaltered, as were respiratory
exchange ratios, consistent with unaltered energy homeostasis
and fuel utilisation (ESM Fig. 1d). To determine whether
hepatocyte GPX1 deficiency results in oxidative stress we
monitored alterations in GSH and GSSG in blood or liver
homogenates from chow-fed lox/lox and HGKOmice. No alter-
ations were evident in blood or liver as a consequence of GPX1
deficiency (Fig. 2a,b). Similarly, no changes in GSH or GSSG
were evident in epididymal fat (Fig. 2c). Interestingly total GSH
and GSSG were elevated in muscle of HGKO mice, but the
GSH:GSSG ratio was unaltered (Fig. 2d), consistent with the
increase in GSH being compensatory to counter any muscle
oxidative stress that may otherwise occur as a result of decreased
muscle catalase expression (Fig. 1e). In keeping with this,
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chow-fed mice. (a–d) Livers from
lox/lox (n= 5–9) and HGKO
(n = 6–8) mice processed for
quantitative PCR (a, c), glycogen
measurement (b) or histology
(d) (scale bar, 50 μm). Black bars,
lox/lox mice; white bars, HGKO
mice. (e) Blood glucose and
plasma insulin levels from +/+
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bars, n= 11) mice. (f) Pyruvate
tolerance test (2 mg/g) and insulin
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lox/lox (black squares; n = 9 and
12, respectively) and HGKO
(white circles; n= 9 and 13,
respectively) mice. AUCs were
determined and arbitrary units
(AU) are shown.
(g) Hyperinsulinaemic–
euglycaemic clamps in 10-week-
old male fasted (4 h) lox/lox
(black bars, n = 6) and HGKO
(white bars, n= 5) mice. Glucose
infusion (GIR) and disappearance
(RD) rates and basal and clamped
endogenous glucose production
(EGP) were determined. Results
are means ± SE. †p= 0.06
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muscle H2O2 levels were not altered (Fig. 2e). To directly assess
whether hepatic GPX1 deficiency results in increased H2O2, we
isolated hepatocytes from chow-fed lox/lox andHGKOmice; we
found that GPX1 deficiency resulted in increased hepatocyte
H2O2 production (Fig. 2f). Therefore, GPX1 deficiency
increases H2O2 in hepatocytes but the levels do not exceed the
antioxidant capacity of the liver and do not promote overt hepatic
or systemic oxidative stress in chow-fed mice.

Glucose homeostasis in HGKO mice In the postprandial
state insulin acts in the liver via the PI3K/Akt2 pathway
with the following effects: (1) repressed transcription of
gluconeogenic genes, including Pck1 (encoding phospho-
enolpyruvate carboxykinase [PEPCK]) and G6pc
(encoding glucose 6-phosphatase [G6P]) and (2) increased
transcription of Gck (encoding glucokinase [GCK]) and
other genes that promote glycogen storage or glycolysis,
to coordinately repress hepatic glucose production (HGP)
and prevent postprandial hyperglycaemia [1–3]. We found
that the expression of the gluconeogenic genes G6pc and

Pck1 was reduced in the livers of fasted mice (Fig. 3a),
accompanied by a 7.2-fold increase in Gck expression
(Fig. 3a); GCK catalyses the conversion of glucose to
G6P and serves as the first step in glycolysis or glycogen
synthesis. In keeping with this, glycogen levels were in-
creased in the livers of HGKO mice (Fig. 3b). In addition,
the expression of Pdk4 (encoding pyruvate dehydrogenase
kinase-4, which is repressed by insulin and inhibits
glucose oxidation) was decreased by 50% (Fig. 3a). No
differences were evident in Srebp1c and Fasn lipogenic
gene expression (Fig. 3c) or in hepatic steatosis as
assessed by histology (Fig. 3d). No changes were evident
for Lpk (encoding pyruvate kinase, which catalyses the
conversion of phosphoenolpyruvate to pyruvate) or for
Ppargc1a (encoding proxisome proliferator-activated re-
ceptor γ-1α) and other mitochondrial genes involved in
fatty acid oxidation (Fig. 3a). These results are consistent
with GPX1 deficiency enhancing the repression of HGP
and promoting glucose storage and utilisation without
effects on lipogenesis.
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We next examined glucose homeostasis in chow-fed
C57BL/6 (+/+), lox/lox and HGKO mice. Although blood
glucose levels of fed mice and mice fasted for 6 h remained
the same, 12 h fasted blood glucose levels were significantly
reduced in HGKO mice compared with +/+ or lox/lox mice
(Fig. 3e). The reduced blood glucose levels in mice fasted for
12 h is consistent with HGP being reduced in HGKO mice.
No differences were observed in plasma insulin levels of fed
mice (Fig. 3e), consistent with unaltered pancreatic insulin
secretion, but 12 h fasted plasma insulin levels were reduced,
consistent with improved insulin sensitivity; no differences
were observed between +/+ and lox/lox mice. To assess the
effect on HGP we performed pyruvate tolerance tests;

pyruvate increases blood glucose by promoting gluconeogen-
esis. Administration of pyruvate increased blood glucose in
+/+ and lox/lox mice, but the increase was attenuated in
HGKO mice (Fig. 3f; ESM Fig. 2a). Next we assessed insulin
sensitivity in insulin tolerance tests. We found that insulin
responses were moderately improved in HGKO mice
(Fig. 3f); no differences were observed between +/+ and
lox/lox mice (ESM Fig. 2b). These results point towards
hepatocyte-specific GPX1 deficiency repressing HGP and
enhancing insulin sensitivity in chow-fed mice.

To further characterise glucose homeostasis we subjected
chow-fed lox/lox and HGKO mice to hyperinuslinaemic–
euglycaemic clamps (Fig. 3g). We found that the glucose

Actin

100 kDa

75 kDa

50 kDa

37 kDa

100 kDa

75 kDa

50 kDa

37 kDa

100 kDa

75 kDa

50 kDa

37 kDa

PTPox

75 kDa

50 kDa

PTP1B

75 kDa

50 kDa

SHP-1

37 kDa

TCPTP

75 kDa

50 kDa

SHP-2

ActinActin

Processed liver homogenates 
from individual mice; 
short exposure

Processed liver homogenates 
from individual mice; 
medium exposure

Processed liver homogenates 
from individual mice; 
long exposure

0

1

2

3

4 *

0

1

2

3

0

1

2

3

4 *

HGKOlox/lox HGKOlox/lox HGKOlox/lox

P
T

P
ox

/T
C

P
T

P
(f

ol
d)

P
T

P
ox

/S
H

P
1

(f
ol

d)

P
T

P
ox

/P
T

P
1B

(f
ol

d)

PTPox

75 kDa

37 kDa

50 kDa

25 kDa

100 kDa

150 kDa

250 kDa

75 kDa

37 kDa

50 kDa

25 kDa

100 kDa

150 kDa

250 kDa

Tubulin

Processed liver 
homogenates from 
individual mice

Processed liver 
homogenates from 
individual mice

Tubulin

HGKOlox/lox HGKOlox/lox
a

b

c

Fig. 5 Hepatic PTP oxidation.
Livers from lox/lox and HGKO
mice were processed for
assessment of total PTP oxidation
by immunoblotting with PTPox
antibody to detect oxidised PTPs
(a, b) and reprobed as indicated
(c). PTPox species increased in
HGKO livers are marked by
arrows; those co-migrating with
PTP1B, SHP-1 and TCPTP are
marked by coloured arrows.
PTPox species co-migrating with
PTP1B, SHP-1 and TCPTP were
quantified. Black bars, lox/lox
mice; white bars, HGKO mice.
Representative and quantified
(means ± SE) results are shown

2638 Diabetologia (2016) 59:2632–2644



infusion rate necessary to maintain euglycaemia was signifi-
cantly increased in HGKO mice (Fig. 3g), consistent with
enhanced whole-body insulin sensitivity. Moreover glucose
disappearance, which reflects hepatic and peripheral glucose
metabolism, tended to be higher in HGKO mice than in lox/
lox mice (p=0.06) (Fig. 3g). Finally, the extent to which en-
dogenous glucose production was suppressed by insulin tended
to be higher in the HGKOmice (Fig. 3g). These results indicate
that hepatic GPX1 deficiency enhances insulin sensitivity by
potentiating the suppression of gluconeogenic enzymes and by
promoting hepatic glucose storage.

Insulin signalling in HGKO mice In the liver insulin pro-
motes glycogen synthesis by activating Akt, which phosphory-
lates and inhibits glycogen synthase kinase-3 that phosphory-
lates and inhibits glycogen synthase (GS). Akt also phosphory-
lates and inhibits forkhead box protein O1 (FOXO1), which
promotes PEPCK and G6P and inhibits GCK expression [30].
We monitored for IR activation and downstream PI3K/Akt sig-
nalling in liver, epididymal fat and muscle in mice that had been
fasted (4 h) and administered a bolus of insulin. Hepatic GPX1
deficiency enhanced basal IR-Y1162/Y1163 phosphorylation in
fasted mice, but not insulin-induced IR phosphorylation
(Fig. 4a). Similarly GPX1 deficiency enhanced basal
PI3K/Akt signalling, as assessed by Akt-S473 phosphorylation,
but had no effect on insulin-induced Akt phosphorylation
(Fig. 4a). The activation status of other signalling pathways in
fasted mice, including those mediated by STAT-3 (signal trans-
ducer and activator of transcription-3), ERK1/2 (extracellular
signal-regulated kinases 1/2) and c-Jun N-terminal kinases
(JNK) were not altered (ESM Fig. 3a) and there were no overt
changes in general tyrosine phosphorylation (ESM Fig. 3b). In
keeping with the increased basal PI3K/Akt signalling, FOXO1
Thr-24 phosphorylation was higher and GS Ser-640/Ser-641
phosphorylation lower in fasted HGKO mice (Fig. 4b). The
increased IR phosphorylation and PI3K/Akt signalling in 4 h
fasted HGKO mice suggests that insulin signalling may be
prolonged by GPX1 deficiency. In keeping with this, 12 h

fasting IR and Akt phosphorylation were not altered (ESM
Fig. 3c). No differences were evident in basal or insulin-
induced IR or Akt phosphorylation in fat or muscle (ESM
Fig. 3d). To reaffirm the enhanced insulin signalling we com-
pared responses in hepatocytes from lox/lox and HGKO mice.
Hepatocyte basal and insulin-induced H2O2 generation was
exacerbated by GPX1 deficiency (Fig. 4c). Moreover, insulin-
induced IR-Y1162/Y1163 and Akt-S473 phosphorylation was
enhanced (Fig. 4d). These results indicate that GPX1 deficiency
enhances hepatic insulin-induced H2O2 and insulin-induced IR
activation and PI3K/Akt signalling to repress HGP and promote
liver glucose storage or utilisation.

PTP oxidation inHGKOmiceOnemechanism bywhich the
increased H2O2 levels associated with GPX1 deficiency might
enhance IR signalling and thereby improve hepatic glucose
metabolism is through the oxidation and inactivation of PTPs
involved in IR dephosphorylation. PTP oxidation was exam-
ined in livers from lox/lox and HGKO mice by immunoblot
analysis (Fig. 5a,b) and immunoblots were reprobed with anti-
bodies to PTPs with corresponding molecular masses (Fig. 5c).
The oxidation status of PTPs (Fig. 5a,b), including those co-
migrating with tyrosine-protein phosphatase non-receptor type
2 (TCPTP), PTP1B and small heterodimer partner (SHP)-1,
implicated previously in IR desphosphorylation [31, 32], was
enhanced by GPX1 deficiency (Fig. 5b,c). These results are
consistent with the elevated H2O2 in GPX1-deficient hepato-
cytes promoting the oxidation and inactivation of PTPs and
hence insulin signalling and glucose homeostasis.

Oxidative stress in obese HGKO mice Obesity is
characterised by oxidative stress and insulin resistance [5–7].
Accordingly, we determined whether hepatocyte GPX1 defi-
ciencymight exacerbate oxidative stress and insulin resistance
in mice fed an obesogenic diet. Hepatic GPX1 deficiency did
not alter body weight, adiposity (ESM Fig. 4a–c), food intake,
energy expenditure or ambulatory activity (ESM Fig. 4d) after
12 weeks of high-fat feeding. Liver-specific GPX1-deficient
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mice exhibited systemic oxidative stress as indicated by in-
creased blood GSSG levels and decreased GSH:GSSG ratios
(Fig. 6a). When compared with lox/lox mice, no differences
were evident in hepatic H2O2 detoxification and redox gene
or protein levels (ESM Fig. 5a,b) and there were no differences
in GSH or GSSG (Fig. 6b), GPX1, catalase or PRDX1 in mus-
cle (ESM Fig. 5c). Interestingly, GSSG levels in the liver were
decreased so that the GSH:GSSG ratio was increased (Fig. 6c).
Peroxide detoxification by GPX1 is reliant on GSH and results
in the generation of GSSG. Hence the decrease in GSSG is in
keeping with GPX1 being one of the major enzymes that uses
GSH as an electron donor to generate GSSG. Despite the de-
creased liver GSSG, H2O2 was markedly increased in hepato-
cytes isolated from high-fat-fed (HFF) HGKO vs lox/lox mice;
this increase far exceeded that normally seen in response to
insulin (Fig. 6d). These results are consistent with hepatocyte
GPX1 deficiency exacerbating hepatocyte-derived H2O2 and
promoting systemic oxidative stress in HFF mice.

Glucose homeostasis in obese HGKO mice We determined
whether the systemic oxidative stress evident in HFF
HGKO mice might exacerbate the development of insu-
lin resistance and glucose intolerance. When comparing
HGKO mice with lox/lox mice, although no differences
were evident in blood glucose levels, fasted insulin
levels were reduced (Fig. 7a), consistent with improved
insulin sensitivity. Moreover, although no differences
were evident in insulin tolerance tests (Fig. 7b), pyru-
vate responses were attenuated (Fig. 7c) and the expres-
sion of G6pc and Pck1 in the livers of fasted mice was
reduced (Fig. 7d), consistent with decreased gluconeo-
genesis. In keeping with this, GPX1 deficiency was
accompanied by significantly increased insulin-induced
phosphorylation of IR and Akt Ser-473 in the liver
(Fig. 7e). These results point towards hepatic GPX1
deficiency improving liver glucose homeostasis even in
the context of obesity and systemic oxidative stress.
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Reduced inflammation and NASH in HGKOmiceHepatic
oxidative stress has been linked with the development of
NAFLD and NASH, the latter characterised by lymphocyte
infiltrates, inflammation and liver damage [4, 8–11]. We
found that hepatocyte-specific GPX1-defiency in HFF mice
was not associated with overt differences in steatohepatitis, as
assessed by histology (Fig. 8a) or the expression of lipogenic
genes (Fig. 8b). Surprisingly, the enhanced hepatocyte-
derived H2O2 in HFF HGKO mice resulted in the decreased
expression of genes associated with inflammation (Fig. 8c).
Since HFF C57BL/6 mice develop fatty liver, but not NASH,

we sought to further explore the impact of GPX1 deficiency
on the development of NASH and the associated inflamma-
tion and fibrosis in mice fed a CDAA diet for 12 weeks. The
CDAA diet promotes weight gain, insulin resistance and key
features of NASH, including steatosis, lymphocytic infiltrates
and fibrosis [8]. Hepatic GPX1 deficiency did not alter body
weight in CDAA diet-fed mice (ESM Fig. 6a) and had no
obvious effect on hepatic steatosis as assessed by histology
(Fig. 8a), or the expression of lipogenic genes (Fig. 8b).
Strikingly, GPX1 deficiency resulted in reduced lymphocytic
infiltration in the liver and repressed hepatic inflammation, as
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assessed by histology (Fig. 8d; ESM Fig. 6b) and expression
of acute-phase and pro-inflammatory genes (Fig. 8c).
Moreover, GPX1 deficiency markedly reduced fibrosis, as
assessed by histology (PicroSirius Red collagen staining;
Fig. 8e and ESM Fig. 6b) and expression of fibrogenic genes
(Fig. 8f). Finally CDAA-fed HGKO mice exhibited a signif-
icant reduction in systemic inflammation, as assessed by
reduced circulating levels of IFNγ, IL-6 and TNF (Fig. 8g).
Therefore, GPX1 deficiency represses lymphocytic infiltra-
tion, inflammation and fibrosis in the liver, key diagnostic
and pathological features of NASH.

Discussion

Global GPX1-deficient mice fed an obesogenic diet are
protected from the development of steatohepatitis and ensuing
liver damage [25]. Although this was previously attributed to
decreased pancreatic insulin secretion and attenuated insulin-
mediated hepatic lipogenesis [25], a hepatocyte-intrinsic con-
tribution could not be excluded. Here, we confirm that hepa-
tocyte GPX1 deficiency does not alter the development of
steatohepatitis in mice fed either an obesogenic diet that pro-
motes NAFLD or a CDAA diet that promotes NASH.
Strikingly, despite the unaltered steatosis, hepatic GPX1 defi-
ciency was associated with decreased hepatic and systemic
inflammation and reduced liver lymphocytic infiltration and
fibrosis in mice fed a CDAA diet. Although the molecular
mechanism by which hepatocyte GPX1 deficiency may
decrease inflammation and ensuing NASH remains to be
resolved, one possibility is that this may be linked to increased
PTP1B oxidation, since hepatic PTP1B deficiency represses
hepatocyte endoplasmic reticulum stress and inflammation
[33, 34].

Altered oxidative phosphorylation and increased ROS
levels are reported in patients with NASH [4, 11] and there
is compelling evidence from rodent models linking oxidative
stress with NAFLD or NASH [10, 35, 36]. Hepatocyte-
specific SOD1-deficiency or combined SOD1/2 deficiencies
increase steatohepatitis in HFF mice [37, 38]. This is consis-
tent with superoxide being important in the promotion of
steatohepatitis and liver disease. In keeping with this, NOXs
are elevated in models of fibrogenic disease [39], whereas
NOX1/4 inhibition or hepatocyte NOX4 deficiency protect
mice against NASH [8, 40]. In contrast, a recent study has
shown that the deletion of the haem oxygenase-1 gene in
hepatocytes promotes the generation of H2O2 and attenuates
high-fat diet-induced insulin resistance and hepatic inflamma-
tion and damage [41]. Our findings also challenge the concept
that hepatocyte-derived H2O2 per se is a driver of liver
disease.

We previously reported that global GPX1 deficiency pro-
motes hepatic insulin signalling and repression of HGP in the

obese state [25]. However, it was unclear whether these effects
were intrinsic to hepatocytes or reflected reduced pancreatic
insulin secretion [25], since hyperinsulinaemia can drive insu-
lin resistance [42–44] and reduction in circulating insulin can
protect mice from diet-induced obesity, insulin resistance and
steatosis [45]. In this study we found that insulin-induced
H2O2 generation and insulin signalling were increased in he-
patocytes from HGKO mice, accompanied by increased he-
patic IR activation and signalling even in the context of obe-
sity. Why does GPX1 deficiency in HFF mice not promote
insulin resistance? One argument could be that a sufficient
level of H2O2 was not achieved in hepatocytes. However,
H2O2 generation by hepatocytes isolated from HFF HGKO
mice far exceeded levels normally achieved in response to
insulin. We propose that either H2O2 per se is not detrimental
or that hepatic oxidative stress and the promotion of insulin
resistance may also be reliant on contributions from non-
parenchymal cells. In keeping with the latter premise, mice
overexpressing PRDX4, a secreted enzyme that scavenges
ROS, are protected from steatohepatitis [46].

Reactive and potentially modulatory cysteines exist in
many proteins [14, 15]. However, the low thiol pKa of the
catalytic cysteine in PTPs renders them highly susceptible to
oxidation and inactivation [18]. In this study we report that the
oxidation of select hepatic PTPs, including PTP1B, SHP-1
and TCPTP, is increased in HGKO mice. Previous studies
have established that PTP1B and SHP-1 can dephosphorylate
the IR to regulate hepatic insulin sensitivity [31, 33, 47].
Similarly, heterozygous TCPTP deficiency enhances hepato-
cyte IR phosphorylation and represses HGP [28, 48]. We
speculate that the oxidation of such PTPs would promote in-
sulin signalling to regulate hepatic glucose metabolism, al-
though we cannot exclude the contribution of other pathways
given the growing number of metabolic proteins that can be
oxidised, including pyruvate kinase M2 [49] and pyruvate
kinase 2 [50].

Our findings warrant a redress of the contributions of ROS
such as H2O2 to hepatic pathophysiology in obesity and sug-
gest that increases in hepatocyte H2O2 may in fact represent a
compensatory and beneficial response to attenuate disease
progression.
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