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Abstract Maternal obesity and diabetes dramatically increase
the long-term risk for obesity in the next generation, and
pregnancy and lactation may be critical periods at which to
aim primary prevention to break the obesity cycle. It is
becoming increasingly clear that the gut microbiome in
newborns and infants plays a significant role in gut health
and therefore child development. Alteration of the early infant
gut microbiome has been correlated with the development of
childhood obesity and autoimmune conditions, including
asthma, allergies and, more recently, type 1 diabetes. This is
likely to be due to complex interactions between mode of
delivery, antibiotic use, maternal diet, components of

breastfeeding and a network of regulatory events involving
both the innate and adaptive immune systems within the infant
host. Each of these factors are critical for informing
microbiome development and can affect immune signalling,
toxin release and metabolic signals, including short-chain
fatty acids and bile acids, that regulate appetite, metabolism
and inflammation. In several randomised controlled trials,
probiotics have been administered with the aim of targeting
the microbiome during pregnancy to improve maternal and
infant health but the findings have often been confounded by
mode of delivery, antibiotic use, ethnicity, infant sex, maternal
health and length of exposure. Understanding how nutritional
exposure, including breast milk, affects the assembly and
development of both maternal and infant microbial communi-
ties may help to identify targeted interventions during preg-
nancy and in infants born to mothers with obesity or diabetes
to slow the transmission of obesity risk to the next generation.
The aim of this review is to discuss influences on infant
microbiota colonisation and the mechanism(s) underlying
how alterations due to maternal obesity and diabetes may lead
to increased risk of childhood obesity.
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HFD High-fat diet
HMO Human milk oligosaccharide
LGG Lactobacillus rhamnosus strain GG
LPS Lipopolysaccharide
NAFLD Non-alcoholic fatty liver disease
NHP Non-human primate
RCT Randomised controlled trial
SCFA Short-chain fatty acid
TGR5 G protein-coupled BA receptor 1
Treg T regulatory
WSD Western-style diet

Introduction: gestational diabetes and obesity affect
the health of both mother and infant

The developmental origins of health and disease (DoHAD)
hypothesis, now substantiated by extensive research in
animals and humans, suggests that both maternal nutrient
deficiency and nutrient excess in utero and in early infancy
programs a susceptibility to metabolic disease later in life
[1–3]. The importance of minimising risks associated with
maternal obesity and/or diabetes is no longer limited to
improving the immediate pregnancy outcomes for mother
and infant but, even more challenging, includes improving
the long-term metabolic health of the affected offspring
[4].

Maternal obesity and diabetes are consistently among
the most powerful predictors of childhood obesity [5] and
other adverse health conditions, such as type 2 diabetes,
non-alcoholic fatty liver disease (NAFLD) and the meta-
bolic syndrome, now emerging in children as young as
6 years of age [6]. Maternal Western-style diet (WSD)
and insulin resistance in non-human primates (NHPs)
promote lipotoxicity in the fetal liver [7] and NAFLD-
like changes that persist in the offspring despite weaning
to a healthy diet [8]. In human infants, using nuclear
magnetic resonance spectroscopy, newborns from mothers
with gestational diabetes mellitus (GDM) and obesity
show evidence of increased intrahepatic fat at birth [9],
potentially increasing the risk for NAFLD in adolescence
[10]. Changes in behaviour, including appetite, anxiety and
aggression, as well as neurological neurotransmitter
pathways, have been observed in 1-year-old juvenile
NHPs exposed to a maternal WSD, suggesting multiple
systems are affected [11]. Recent data in humans also
indicate that maternal obesity increases the capacity for
umbilical cord mesenchymal stem cells to undergo adipo-
genesis, markers of which correlate with infant adiposity
[12]. Consequently, there is an enormous public health
need to target underlying dietary or metabolic factors in
mothers with obesity or diabetes to prevent early-life obe-
sity, NAFLD and diabetes risk in the next generation [3].

Glossary

Cross-fostering A technique in animal research in which
offspring are removed from the biological mother at birth
and breastfed by a surrogate mother

Dysbiosis An imbalance of or an unhealthy change in, the
normal composition of microbes in a particular
microbiome

Endotoxin Component of the outer membrane of Gram-
negative bacteria known to elicit a strong immune re-
sponse when in systemic circulation (endotoxaemia) also
known as lipopolysaccharide

Enterohepatic circulation Circulation of substances such
as bile acids, from the liver into bile, secretion into the
small intestine, absorption by enterocytes and transporta-
tion back to the liver

Epigenome The chemical modification of the DNA
(genome) (e.g. the attachment of a methyl group) to alter
gene expression

Glycans Compounds consisting of a large number of
monosaccharides linked glycosidically also known as
polysaccharides glycans may also refer to the carbohydrate
portion of a glycoconjugate (also known as glycoprotein
glycolipid, proteoglycan or oligosaccharide)

Gnotobiotic mice Mice colonised by a known set of gut
bacteria or no gut bacteria (germ-free) and raised in an
aseptic environment

Inflammasome A multiprotein complex that activates
caspases and leads to the formation and secretion of pro-
inflammatory cytokines as a component of the innate im-
mune system

Lamina propriaConnective tissue layer of the intestine that
together with the epithelium constitutes the gut mucosa

Lipopolysaccharide See Endotoxin

Microbiome The community of microorganisms found in a
particular environment such as a part of the body

Oligosaccharide Saccharide polymer containing a small
number of monosaccharides

Prebiotics Substances used to promote the growth of mi-
croorganisms often these are indigestible carbohydrates
that are used as energy substrate for gut microbes

Probiotics Live bacteria and yeasts that are beneficial to a
host

Short-chain fatty acid Saturated aliphatic organic acids
with one to six carbons end-product of dietary fermenta-
tion by anaerobic microbiota

Toll-like receptor A component of the innate immune
system that recognises structurally conserved motifs that
are expressed exclusively on microbial pathogens to initi-
ate an inflammatory response
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Development of the infant microbiome
and childhood obesity risk

Evidence that the gut microbiota might influence obesity
began with the observation that sterile, germ-free mice had
decreased capacity for energy harvest compared with
colonised counterparts [13]. Once colonised, these mice
extracted more energy from dietary indigestible complex
plant polysaccharides and increased their energy harvest, or
caloric intake, contributing to obesity. More recently, human
studies in twin pairs discordant for obesity demonstrated that
transplanting microbiota from the twin with obesity, which
demonstrated a shift towards increased Clostridia from the
Firmicutes phylum as well as elevated Gammaproteobacteria
and Deltaproteobacteria classes from the Proteobacteria
phylum, into germ-free mice increased fat mass and
biomarkers associated with the metabolic syndrome (refer
to Fig. 1 for microbiota taxonomy) [14]. There is evidence
that gut composition very early in life is correlated with later
microbiota colonisation, suggesting that dysbiosis in infancy
due to obesity exposure may have later consequences on
metabolic health [15]. Groundbreaking studies in NHPs
showed that a maternal high-fat diet (HFD) reduced the
diversity of offspring intestinal microbiota in juvenile
animals at 1 year of age [16], even after switching to a

healthy diet at the time of weaning. This persistent effect
of early-life diet suggests that maternal diet exposure during
gestation and breastfeeding can pattern the composition of
the microbial community, with long-lasting effects.
However, studies assessing the duration of microbial disrup-
tion in these offspring is lacking. A review of the early
infant microbiome and childhood obesity reported that
despite a global reduction of the Bacteroidetes phylum, early
elevations in the Bacteroides fragilis species and reductions
in the genus Bifidobacterium correlated with elevated BMI
in later childhood [15]. Further, the transition from a neona-
tal to a mature microbiota may be governed in part by the
shift from a gut dominated by the Proteobacteria phylum,
particularly of the Gammaproteobacteria class, to one
dominated by the Bacteroidetes and Firmicutes phyla [17,
18]. In mouse [17] and human [18] studies, this pioneering
Gammaproteobacteria, a driver of early inflammation neces-
sary for adaptation of the innate immune system to prevent
gastrointestinal autoimmunity, may be reduced in offspring
exposed to maternal obesity. Cumulatively, these findings
support the hypothesis that, although the early microbiome
has erratic compositional shifts and high inter-individual
differences before reaching a more stable microbiome at
around 2 years of age [19, 20], there are clear implications
for the early microbiome on life-long health.

Bacteroidetes Bacteroidetes Bacteroidales

Prevotellaceae Prevotella

Bacteroidaceae Bacteroides B. fragilis

Firmicutes

Erysipelotrichia

Clostridia Clostridiales Clostridiaceae Clostridium

Bacilli

Lactobacillales Lactobacillaceae Lactobacillus

L. salivarius

L. rhamnosus 
GG (LGG)

Bacillales Staphylococcaceae Staphylococcus

Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium B. lactis

Proteobacteria

Gammaproteobacteria Enterobacteriales Enterobacteriaceae Escherichia E. coli

Deltaproteobacteria

Phylum Class Order Family Genus Species

Fig. 1 Taxonomy of microorganisms referred to in this review article
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Pregnancy and the maternal microbiome

Each individual’s gut microbiome consists of a unique pattern
of microbes that is determined by both diversity (different
strains of bacteria) and abundance (quantity of each strain).
Mothers share their microbes and microbiome metabolites
with the fetus in utero, during delivery and during lactation;
the composition of the microbiome is shaped by the environ-
ment including diet, maternal health status and metabolism,
mode of delivery, gestational weight gain (GWG), genetics
and use of antibiotics.

The maternal gut microbiota differs between women with
normal weight and obesity particularly in the latter half of
pregnancy, with overweight women demonstrating increases
in the Firmicutes phylum (Staphylococcus) as well as
increases in some Proteobacteria (Escherichia coli) [21].
Furthermore, these differences are associated with increased
neonatal birthweight [21, 22]. One mechanism by which
maternal microbes in obesity could affect the developing fetus
is through elevated levels of microbe-derived plasma endotox-
in; this may increase gut translocation of bacteria-derived
products across the intestinal mucosa, which could contribute
to systemic and placental inflammation and insulin resistance
[23]. In 2012, Koren et al demonstrated changes in the mater-
nal gut microbiome composition from the first to the third
trimester of pregnancy [24]. When pooled stool samples from
either trimester were inoculated into gnotobiotic mice, stool
from the third trimester was associated with excess weight
gain and inflammation compared with mice receiving stool
from women in their first trimester. However, this
pregnancy-related change in microbe composition has been
challenged recently by DiGiulio et al [25] who, by repeated
sampling throughout gestation, demonstrated that vaginal, gut
and oral cavity microbiota remained relatively stable during
and after pregnancy (except in those who experienced preterm
delivery). These discrepant findings require independent
confirmation and may be explained by heterogeneity in
BMI, age, ethnicity, genetics, lifestyle, degree of maternal
insulin resistance, gestational age and especially by differ-
ences in the maternal diet or supplementation, which could
markedly affect microbiome composition [15].

Mode of delivery affects the infant microbiome
and obesity risk

Although the founding microbiota composition in infants
largely reflects maternal transfer during birth, the mode of
delivery affects postnatal assembly of the microbiota and
thereby altering resistance to pathogen invasion, immune
stimulation and other important developmental cues early
in life [26]. Infants born by vaginal delivery are colonised
by microbes resident in the birth canal and the mother’s

gastrointestinal tract, whereas infants born by Caesarean
delivery are initially colonised by skin flora [26, 27]. In
breastfed infants delivered at full term without medical
interventions, the gut microbiota at 4 days is dominated
by Gammaproteobacteria and some Staphylococcus
species, followed by subsequent Bifidobacterium colonisa-
tion [18]. In babies born via Caesarean delivery, infants’
stool revealed a decrease in Bacteroidetes phylum,
Bifidobacterium and Lactobacillus species and a rise in
Clostridium species, as well as an overall reduction in
microbiome diversity; these differences persisted, in some
cases even at 2 years of age [26, 28].

Differences in the early microbiome may have metabol-
ic consequences, as Caesarean delivery is associated with a
46% increase in obesity risk at 7 years of age [29] and a
20% increased risk in development of type 1 diabetes com-
pared with children born vaginally [30]. One study found
that while most infants had acquired high levels of the
genus Bifidobacterium by the age of 6 months, this acqui-
sition was delayed in infants born via Caesarean delivery
[27]. Furthermore, the abundance of these microbes
inversely correlated with infant adiposity at the age of
18 months, demonstrating that the correlation of mode of
delivery with infant adiposity may be driven by
microbiome composition [27]. However, other confound-
ing variables associated with Caesarean delivery risk, such
as peripartum antibiotics, maternal obesity, glucose intol-
erance and insulin resistance, could independently influ-
ence the infant microbiome and obesity risk. Increased
childhood BMI following Caesarean delivery is more
pronounced in offspring of mothers with obesity [29], sug-
gesting that gestational risk factors, mode of delivery and
postnatal environment may contribute to shaping future
obesity risk during this highly susceptible period of life.

While maternal vaginal and intestinal microbes are impor-
tant, as they are the sites of vertical microbial transmission to
the newborn during vaginal delivery, a recent paradigm shift
suggests that the womb is not sterile and microbial exposure
may begin in utero. The placenta and amniotic fluid have been
reported to serve as potential sources of intrauterine microbial
transmission from the mother to the developing fetus [31, 32].
However, the potential for contamination and the low biomass
of microbes in these sources suggest that more research is
needed to understand how they affect infant immunity and
gut development.

Maternal diet and infant breastfeeding shapes
the microbial community: impact on immunity
and metabolism

In humans, the composition of breast milk influences the de-
velopment of intestinal permeability, energy retention
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capacity and autoimmunity and may differ according to
maternal obesity status and maternal diet [33]. Accumulating
evidence suggests that exclusive breastfeeding is associated
with lower risk of paediatric obesity [34, 35] and that this
protection may be even greater in women with obesity who
breastfeed their infants for at least 6 months [36]. However,
breastfeeding-induced protection against obesity in offspring
is not universal across all lactating mothers and remains
poorly characterised [36].

Cross-fostering studies in mice in which offspring of
lean dams were nursed by obese dams suggested that
maternal obesity had distinct effects on the hormonal,
nutritional and microbial composition of milk that were
associated with a NAFLD phenotype as well as with
increased body weight, plasma insulin and proinflammato-
ry cytokines in offspring [37]. However, it is important to
note that in mouse studies, the effect of coprophagy
(the eating of faeces) cannot be ruled out as a contributing
factor in offspring response to obese dam exposure.
Similarly, offspring born to mothers fed a WSD and
switched to normal chow diet after weaning had worse
outcomes than those offspring whose mothers were only
exposed to standard low-fat diet with respect to infection,
autoimmunity and allergic sensitisation, which often
precede the development of obesity [38]. These maternal
WSD effects were linked to alterations of the offspring gut
microbiome, suggesting that excess dietary fat consump-
tion during pregnancy and lactation can have effects on
offspring immunity and gut barrier function that persist
into later life. However, very few studies take into consid-
eration differences in breast milk related to maternal
phenotype and even fewer link these to their impact on
infant microbiome and infant gut function. The factors
involved in human milk transfer of obesity risk remain
poorly understood.

In humans, breast milk serves as a principal source of
important immune and growth factors necessary for initial
microbial colonisation. Human milk glycans are a large
and diverse group of polysaccharides that include free
human milk oligosaccharides (HMOs), glycoproteins,
glycopeptides and glycolipids capable of enriching popu-
lations of Bifidobacteria [39]. HMOs are complex sugars
that resist digestion by the infant’s stomach and are
metabolised by selective intestinal microbiota. The metab-
olism of HMOs can lead to the production of short-chain
fatty acids (SCFAs), which may have metabolic influences
(discussed below). It is generally accepted that HMOs have
significant prebiotic effects, serving as a source of energy
and nutrients that enable desired bacteria to colonise the
infant intestinal tract [40]. The type of oligosaccharides
that infants receive from their mothers depends on the
mother’s genotype and phenotype [33, 41] but the amount
may be variable, particularly given that mothers with

obesity and diabetes have difficulties breastfeeding. A
more in-depth coverage of milk glycans and the infant
gut microbiome is beyond the scope of this review but this
topic is covered extensively by Bode [40].

The most common microbes found in human breast
milk, but in relatively low abundance, are from the genera
Bifidobacterium and Lactobacillus [42], similar to the
microbes found in the infant gut. This suggests that breast
milk microbiota, albeit at very low concentrations, can be
transferred to the infant gut, although this finding is not
universal [43]. Similar to the gut microbiome, breast milk
microbial communities from mothers with obesity or
excessive GWG were less diverse and had a higher relative
abundance of the groups Lactobacillus and Staphylococcus
and reduced Bifidobacterium at 6 months post delivery
[44]. Moreover, breast milk from women with obesity
contains high levels of metabolic and inflammatory
markers, such as leptin, insulin, glucose, IL-6 and TNFα,
compared with milk from women with normal weight [45].
These changes, in addition to changes in antioxidant and
microbial status, may be important factors in shaping the
early infant gut microbiome [46].

Medium-chain saturated and long-chain unsaturated fatty
acids present in breast milk have also been shown to have
antimicrobial properties [47], suggesting that higher triacyl-
glycerol hydrolysis or circulating fatty acids in obesity might
have an impact onmicrobial colonisation in the infant. Studies
are needed to establish whether human milk lipids have an
antimicrobial effect in the offspring and whether they play a
role in the development of the infant microbiome. To date very
little is known about the contents of breast milk from women
with diabetes [48, 49]. Compared with breastfed infants, the
diversity of the genus Bifidobacterium was found to be
decreased in formula-fed infants [50] and this was associated
with increased adiposity at 18 months [27]. Interestingly,
formula-fed infants have greater diversity of gut microbial
communities relative to breastfed infants and, functionally,
these infants have higher proportions of proinflammatory
Gammaproteobacteria [20] which may suggest delayed gut
maturation. It is important to note that thus far studies have
not addressed the effect of breast milk volume consumed,
duration of breastfeeding or the impact of formula supplemen-
tation on the development of the infant gut microbiome. Given
the beneficial attributes of breast milk in establishing the early
microbiome, a deviation from the normal composition of
breast milkmay be associated with an increased risk of obesity
and inflammatory conditions. Thus, while breastfeeding is
strongly recommended as the best source of nutrition for a
newborn, it is clear that not all breast milk is the same. This
raises the question of whether and how changes in diet or
pre- or probiotics in lactating women with obesity or diabetes
can affect the developing gut microbiome of the newborn
(discussed below).
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Early antibiotic exposure increases the risk
for obesity

Retrospective studies of antibiotic exposure at various
windows of time during the first 2 years of life found that
broad-spectrum treatment is associatedwith childhood obesity
[51, 52]. Children born to mothers who were given antibiotics
during the second or third trimester of pregnancy had an 84%
higher risk of obesity at age 7 years; however, first-trimester
antibiotics had no effect [29]. Animal studies have suggested
that there is a critical window during which alteration of the
gut microbiota can influence future health. Antibiotic treat-
ment given to neonatal mice just prior to or immediately
following birth through weaning resulted in enhanced suscep-
tibility to allergic asthma, while the same treatment in adult
mice had no effect [53–55]. Likewise, mice exposed to prena-
tal antibiotics had increased body fat percentage and increased
expression of adipogenic targets, including peroxisome
proliferator-activated receptor γ and fatty acid binding protein
2. Moreover, in mice, a HFD combined with maternal
antibiotic use exacerbated changes in body mass and
hyperinsulinaemia in the offspring, suggesting that maternal
obesity may compound the effect of antibiotics on disruption
of the microbiome and downstream metabolic outcomes [54].
Studies of infant postnatal antibiotic exposure in the first
6–12 months of life have found an association between
antibiotic use and elevated weight and central adiposity as
early as 24 months and up to 9 years of age regardless of
maternal weight status [52, 56, 57]. These studies point to
the ability of both maternal microbiome and early infant
antibiotic exposure to program metabolic pathways in infants.
The early gut microbiome and the immune system is reviewed
more comprehensively by Maynard et al [58].

The microbiome and GDM

GDM is a growing problem and has a current prevalence of
9.2% in the USA [59] and 2–6% in Europe [60]. The charac-
terisation and role of microbiomes of women with GDM and
their offspring are understudied. Data characterising intestinal
microbiota in patients with type 2 diabetes showed that in
addition to reduction of the Firmicutes phylum, the ratio of
Bacteroidetes to Firmicutes correlated positively and signifi-
cantly with plasma glucose concentration but not with BMI
[61]. Thus, bacterial species, specific for type 2 diabetes rather
than obesity, can be considered as a separate signature altered
by hyperglycaemia. More recently, the stool microbiota of
insulin-resistant women with a history of GDM was
characterised at 3–16 months postpartum and compared with
that of normoglycaemic postpartum controls [62]. These
authors found that a subset of individuals with former GDM
had relatively higher abundance of the Prevotellaceae family

despite no apparent differences in diet compared with the
control group. Additionally, at the phylum level, the former-
GDM group had reduced abundance of Firmicutes, similar to
the situation in type 2 diabetes. A role for Prevotella in mucin
degradation in the gut [63] suggests that changes in gut health
could be present in individuals who have high levels of insulin
resistance, but this hypothesis has not been tested directly in
individuals matched for similar BMI, race or breastfeeding
status. In one study, offspring of women with diabetes, the
meconium (the first intestinal discharge of a newborn)
demonstrated an increased within-sample diversity and
Bacteroidetes relative abundance compared with meconium
from infants born to mothers without diabetes [31].
However, the shift in meconium microbes was most apparent
in those with pre-pregnancy diabetes, not GDM. The authors
of this study hypothesised that certain conditions, such as
pre-existing diabetes, may make microbes more transmissible
in utero [31]; however, cross-fostering studies in rats have
pointed to a specific role of breast milk in the transfer of
GDM morbidity to offspring, particularly on neurological
development [64]. Although correlations between GDM and
infant outcomes exist, the gut microbial shifts in GDM remain
to be characterised before mechanisms of cause and effect on
infant health can be elucidated.

Mechanisms for microbiome-induced metabolic
disorders

SCFAs SCFAs have recently emerged as pivotal regulators of
host metabolism and immunity. SCFAs are gut microbiome
byproducts, mainly acetates, propionates and butyrates,
produced through anaerobic fermentation of indigestible
dietary-fibre carbohydrates [65, 66]. SCFAs are absorbed
and used by colonocytes (butyrate) and peripheral tissues
(acetate) for energy, or may act as substrates for lipogenesis
(acetate), gluconeogenesis (propionate) or regulation of
cholesterol synthesis (propionate) in the liver. The hypothesis
that dysbiosis may result in increased energy harvest was
tested in subjects with normal weight and obesity that were
fed the same diet for 3 days which led to increased energy
retention of ∼630 kJ (∼150 kcal) in individuals with obesity
and increased abundance of members of the Firmicutes
phylum and reduced abundance of Bacteroidetes in stool
samples in response to various diets [67]. This shift was also
associated with elevated SCFAs. Faecal metabolites in over-
weight children support this hypothesis since overweight as
opposed to normal-weight children have lower levels of inter-
mediate metabolites such as lactate, yet higher levels of buty-
rate, which is the byproduct of lactate-utilising microbiota,
suggesting extensive substrate utilisation. In addition to
increased energy extraction from the diet, SCFA metabolites
can also influence levels of satiety hormone which could lead
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to altered food intake. Another mechanism by which SCFAs
alter host physiology is through modification of immune cells
in the gut. SCFAs upregulate colonic T regulatory (Treg) cells
and render lamina propria macrophages hyporesponsive to
normal gut microbes through the downregulation of
proinflammatory effectors, shifting the cells toward an
anti-inflammatory phenotype [66, 68].

Although levels of SCFAs have been reported to be elevat-
ed in faecal samples from individuals with obesity [69], it
remains to be seen whether this is a cause of or response to
the metabolic and inflammatory shifts in the microbiome.
Knockdown of the SCFA receptors, namely G protein-
coupled receptors (GPR40, GPR41 and GPR43), has led to
inflammation, glucose intolerance and diet-induced obesity in
mouse models [70]. Moreover, studies of SCFAs have dem-
onstrated beneficial metabolic effects when delivered enteral-
ly [71]. In pregnant mice, supplementation with butyrate
reduced maternal proinflammatory factors TNFα and IL-1β
as well as weight gain, plasma glucose, insulin, triacylglycerol
and cholesterol [72]; these effects may have been be due to
butyrate inhibiting the inflammation and lipolysis generated
by the interaction of adipocytes and macrophages [73].
Furthermore, dietary butyrate ameliorated HFD-induced
pancreatic beta cell dysfunction, as manifested by increased
insulin storage, beta cell size, mass and apoptosis [72]. SCFAs
also act as important microbial signals to remodel the intesti-
nal microbial community through activation of the
inflammasome [74], thereby helping prevent chronic intesti-
nal inflammatory responses to microbes and their products.
Finally, the discovery of uteroplacental GPR41 and GPR43
receptors and their role in the inflammatory processes of
labour could provide a path by which SCFAs influence fetal
programming through their action on the placenta [75].

Epigenetics Recent studies have shown that microbes affect a
diverse set of epigenetic factors, including DNA methylation,
histone modification, chromatin-associated complexes and
non-coding RNAs, to alter chromatin structure and gene
expression [76]. SCFAs have been reported to influence the
epigenome; specifically, butyrate is recognised as a potent
histone deacetylase inhibitor [66, 77]. Butyrate exerts an
anti-inflammatory effect in mice by promoting Treg cell dif-
ferentiation through an increase in histone H3 acetylation,
which corresponds to increased Foxp3 mRNA expression
[78, 79]. The microbiota in mice is also required to modulate
the expression of Toll-like receptors 2 and 4 in the colon
through epigenetic mechanisms [80]. Interestingly, a recent
pilot study correlated pregnant women with either
Firmicutes or Bacteroidetes as a dominant group with differ-
ential DNA methylation profiles of gene promoters involved
in lipid metabolism, obesity and inflammation in whole blood
collected from the same women at 6 months postpartum [81],

suggesting a relationship between microbes, or their products,
and host epigenetic regulation.

Bile acids Another important function of the gut microbiome
that may affect infant physiology is the metabolism of primary
bile acids (BAs) to secondary BAs in the small intestine.
While ∼95% of secreted BAs is reabsorbed from the small
intestine via the enterohepatic circulation pathway, ∼5%
reaches the colon, where they are excreted. The primary
BAs cholic acid and chenodeoxycholic acid are synthesised
from cholesterol in the liver and conjugated to taurine or
glycine to form bile salts before secretion into the duodenum
where the bile assists in lipid digestion [82]. Bacterial salt
hydrolase deconjugates and dehydroxylates primary BAs to
form secondary BAs, most commonly deoxycholic acid and
lithocholic acid [82]. Secondary BAs activate nuclear
farnesoid X receptors (FXRs) in the liver, which regulate liver
BA synthesis [83] and G protein-coupled BA receptor 1
(GPBAR1/TGR5) in the gut; this enhances secretion of
glucagon-like peptide-1, which potentiates glucose-induced
insulin secretion from beta cells [84]. The beneficial effects
of BA signalling via FXR and TGR5 also include attenuation
of proinflammatory innate immune responses in a mouse
model of NAFLD [85], lipopolysaccharide (LPS)-induced
hepatic damage and inflammation [86] and inflammatory
bowel disease [87]. Conversely, there is evidence that excess
BAs may influence microbiota composition through their
strong antimicrobial activity. In mice, overfeeding with BAs
induced changes similar to those seen with a HFD, including a
shift from Bacteroidetes to Firmicutes (specifically the
Clostridia and Erysipelotrichia classes) [88]. The role of
microbiome development and BA production in early life on
glucose homeostasis and inflammation warrants further
investigation.

Prevention and intervention with pre- and probiotics
in mothers and infants

The use of pre- and probiotics has been shown to rapidly
modify the microbial community and reduce (at least tempo-
rarily) adiposity and chronic inflammation in animal models
of obesity and in limited human studies [89–91]. There have
only been a handful of randomised controlled trials (RCTs)
that examined the effects of probiotics administered during
pregnancy with the aim of improving insulin sensitivity and
reducing GDM diagnosis, with limited success. In one RCT
either Bifidobacterium lactis alone or B. lactis plus
Lactobacillus rhamnosus GG (LGG) probiotic was adminis-
tered to pregnant women 14 days before a scheduled
Caesarean delivery [92]. Both treatments (compared with
placebo) were found to decrease the expression of Toll-like
receptor genes in the placenta and meconium of neonates,
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suggesting that in utero microbial exposure can alter the fetal
innate immune system development. A Finnish study
randomised 256 women during their first trimester of
pregnancy into a control or dietary intervention group [93].
The intervention group received intensive dietary counselling
(increased fibre, less fat) provided by a nutritionist and were
further randomised, double-blind, to receive a daily LGG and
B. lactis probiotic that continued until the end of exclusive
breastfeeding (average 3.4 months) postpartum. The infants
were followed up at 24 months of age. Dietary counselling
combined with probiotics decreased the frequency of GDM
from 36% in the diet/placebo group to 13%. Despite lowering
the risk of GDM, there were no significant differences in
birthweight among groups after controlling for maternal
BMI, smoking, length of gestation or infant growth over
24 months. This study lacked confirmation of changes in
maternal or infant microbes following probiotic consumption.
Interestingly, the risk of central adiposity in mothers at
6 months postpartum, defined as waist circumference 80 cm
or more, was lower in women in the diet/probiotics group
compared with the control/placebo group, with no effect seen
after dietary intervention alone [94].

In a more recent RCT 175 pregnant women with an early
pregnancy BMI of 30.0–39.9 kg/m2 were assigned to receive
either a daily Lactobacillus salivarius probiotic or a placebo
capsule from 24 to 28 weeks of gestation in addition to routine
antenatal care [95]. From pre-intervention to post-interven-
tion, comparing groups there were no changes in fasting
glucose, incidence of GDM or neonatal anthropometric mea-
sures [95]. However, it is possible that the differences between
studies may be due to differences in timing, duration and type
of probiotic supplementation used, as well as a lack of analysis
of the potential dietary influence on probiotic effects, rather
than a lack of probiotic capacity to effect maternal obesity and
GDM.

Although studies of maternal probiotic supplementation
have not found differences in infant anthropomorphic
outcomes [93, 95, 96], some studies have reported differences
in infant gut microbial composition [96–98]. An RCT involv-
ing 122 mother–infant pairs at high risk of developing allergic
disease found that daily LGG and B. lactis supplementation
from 36 weeks gestation to delivery resulted in higher
Bifidobacterium colonisation in the infant at 90 days of life
despite the lack of LGG in maternal milk samples 1 month
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and probiotics

Formula feeding

Caesarean delivery

Perinatal antibiotics

Altered SCFAs, LPS

Intestinal barrier function

Abnormal immune programming

Changes in gut satiety hormones

Energy extraction
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Chronic inflammation

Increased risk of: 

Later life obesity

Immunological dysfunction

The metabolic syndrome

NAFLD
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Infant dysbiosis
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Inflammation ( LPS)

Increased energy extraction

Breastfeeding ( HMOs)

Vaginal delivery 

Maternal dysbiosis 

Bacteroidetes
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Diversity
Escherichia coli
Staphylococcus
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Staphylococcus

Maternal health
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C
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Fig. 2 Proposed pathways for the
transgenerational cycle of obesity.
GWG, pre-pregnancy BMI,
development of GDM and/or
HFD/WSD can result in maternal
gut dysbiosis. This dysbiosis may
be directly transmitted to the
infant and may cause dysbiosis in
the infant gut by causing
alterations to SCFA metabolite
production, a proinflammatory
state, epigenetic alterations and
increased energy extraction from
ingested nutrients. External
influences such as early-life
nutrition (breastfeeding vs
formula-feeding), mode of
delivery and antibiotic treatment
may additionally influence the
composition of the infant gut
microbiome. These changes in
gut microbiome function may
result in infants born large for
gestational age and with excess
adiposity, both of which place the
child at increased risk of obesity,
immune dysfunction and NAFLD
later in life. Adulthood obesity
during childbearing years then
perpetuates the cycle of obesity.
DM, type 1 or 2 diabetes
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postpartum [96]. A retrospective study of six women taking
LGG from 30–36 weeks gestation until delivery found that in
vaginally delivered infants, colonisation of LGG persisted up
to 6 months postpartum [97]. Interestingly, a subset of infants
remained colonised up to 24months despite a lack of maternal
LGG supplementation at 1 month postpartum. However,
anthropometric and metabolic outcomes were not assessed
in the infants. Of note, prenatal LGG administration, while
modulating Bifidobacterium levels, did not result in an
increase in overall infant microbiome diversity at 7 days of
life [99]. While these studies cumulatively support the ability
of maternal probiotic supplementation to alter the infant gut
microbiome independent of direct vertical transmission of
microbes, the effect of supplement timing during gestation,
characterisation of these alterations, what specific factor(s)
influence the duration of effect, concurrent infant diet
influences and their long-term outcomes deserve further
examination.

Perspectives

Pregnancy and the postnatal period are critical windows of
opportunity for the prevention of metabolic diseases in the
next generation. Maternal obesity or diabetes, along with poor
diet, may affect the establishment of a stable, healthy intestinal
microbiome in infants, with long-term health consequences.
Early communication between the infant host and its gut
microbiota can affect the programming of immune cells and
other metabolic and biochemical pathways that may greatly
affect the developmental trajectory of body weight. Bacteria-
driven inflammation can reduce the abundance of other
bacteria that compete with the proinflammatory pathogens,
promoting organisms that may increase the ability of the gut
microbiota to extract otherwise indigestible dietary polysac-
charides. Alternatively, enteroendocrine cells of the gut
modify or secrete a variety of bioactive peptides and fatty
acids, all known to be connected to food intake, lipid storage
and energy homeostasis, which can be influenced by micro-
bial metabolites. At present, there are no well-controlled
longitudinal studies of the microbiome in infants of women
with diabetes during pregnancy (a growing population).
Microbiota specific for maternal diabetes rather than obesity
may emerge in the infant as a separate signature altered by
hyperglycaemia that elicits additional risk factors for infant
health.

The founding microbial composition in infants born to
mothers with obesity or diabetes, and the bioactive compo-
nents of breast milk, are just beginning to be explored for their
relationships to infant body composition. However, gut micro-
biota composition and metabolic biomarkers for obesity in
adulthood may not be applicable to the rapidly developing
infant microbiome, which may need to respond differentially

in order to develop immune tolerance and respond to prenatal
exposures, birth events and powerful postnatal dietary and
environmental factors. Prospective follow-up studies that can
account for multiple influential covariates, including ethnicity,
sex of offspring, geographical location, metabolic and
immune health of the mother and infant, and diet using more
standardised profiling techniques are critical for understand-
ing whether early microbiome development has a causal role
in obesity risk. A skewed early-life gut microbiota composi-
tion could likely play a pivotal role in the mechanism(s)
underlying the additional obesity risk in infants of mothers
with obesity or diabetes, as illustrated in Fig. 2. Despite
important evidence showing associated changes in maternal
and infant nutrition with obesity and dynamic changes in the
infant microbiome, the causative mechanisms in the newborn
infant are still unknown. Consequently, understanding the
mechanisms whereby changes in maternal and infant
diet alter the composition and output of the early microbiome
may allow us a potentially powerful opportunity for primary
prevention in mothers and infants to reduce long-term
metabolic risks in the next generation.
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