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Abstract
Aims/hypothesis The triacylglycerol (TG)-to-HDL-cholester-
ol ratio has been shown to detect insulin resistance. However,
the added predictive value of a more comprehensive assess-
ment of lipoprotein composition is unknown.
Methods We analysed cross-sectional data from 882 non-
diabetic participants in the Insulin Resistance Atherosclerosis
Study (IRAS). Lipoproteins weremeasured by nuclear magnet-
ic resonance (NMR) spectroscopy. Determined by the frequent-
ly sampled intravenous glucose tolerance test, insulin resistance
was defined as the lowest sex-specific quartile of insulin
sensitivity.
Results The AUC of the receiver operating characteristic
curve of HDL-cholesterol and TG levels for detecting insulin

resistance was similar to that of the TG-to-HDL-cholesterol
ratio (0.676 vs 0.673; p=0.685), but smaller than the AUC of
NMR-detected lipoproteins (0.676 vs 0.745; p<0.001). NMR
lipoproteins added discriminative value to HDL-cholesterol
and TG levels (net reclassification improvement of 40.0%;
p<0.001; and integrated discrimination improvement of
9.5%; p<0.001), with net benefit within predicted probabili-
ties of between 10% and 50% by Vickers’ decision-curve
analysis. We also demonstrated additive value to demographic
variables, BMI and levels of fasting glucose, TG, and HDL-
cholesterol (net reclassification improvement of 14.0%;
p<0.001; and integrated discrimination improvement of
4.5%; p<0.001).
Conclusions/interpretation NMR lipoproteins, which can
be measured in the fasting state, add information to the
TG and HDL-cholesterol ratio across a broad range on
insulin resistance. Depending on the other risk factors of
insulin resistance that are incorporated, NMR lipoproteins
permit the correct reclassification of an additional 14–40%
of individuals.
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SI Sensitivity index
TG Triacylglycerol

Introduction

Dyslipidaemia is an important component of insulin resistance
[1], with high triacylglycerol (TG) and low HDL-cholesterol
levels as the most characteristic changes unveiled by conven-
tional laboratory methods [1, 2]. HDL-cholesterol and/or TG
levels have been shown to predict cardiovascular disease [3, 4]
and type 2 diabetes [5] and have been used to estimate insulin
resistance [6, 7]. However, the TG-to-HDL-cholesterol ratio
has been shown to be a better marker than either component
of the ratio (TG or HDL-cholesterol) alone for detecting
insulin-resistant individuals and predicting future cardiovascu-
lar disease events [8–10]. Remnant cholesterol, another choles-
terol fraction that can be estimated from the conventional lipid
panel, may be of interest. Remnant cholesterol, which reflects
the cholesterol content of TG-rich lipoproteins, has been asso-
ciated with both chronic inflammation and cardiovascular
disease [11].

Total- and LDL-cholesterol concentrations tend to be unaf-
fected in insulin-resistant individuals. Therefore, conventional
laboratory methods tend to miss many of the insulin
resistance-related changes in LDL-cholesterol particles
[12, 13]. These and other lipoprotein changes can be unveiled
by a variety of methods, including gradient-gel electrophore-
sis, density gradient ultracentrifugation and nuclear magnetic
resonance (NMR) spectroscopy [12, 14, 15].With NMR spec-
troscopy, the following lipoprotein changes have been associ-
ated with insulin resistance: (1) larger VLDL particle size with
greater concentration of large VLDL particles; (2) smaller
LDL particle size with greater concentration of total- and
small LDL particles and lower concentration of large LDL
particles; and (3) smaller HDL particle size with lower con-
centration of large HDL particles and a modest increase of
small HDL particles [12, 16].

We hypothesised that lipoprotein composition as deter-
mined by NMR spectroscopy adds predictive value to con-
ventional lipoproteins and apolipoproteins for the detection of
insulin-resistant individuals. We tested this hypothesis using
data from a large and ethnically diverse cohort of individuals,
the Insulin Resistance Atherosclerosis Study (IRAS) [17]. In
the IRAS, insulin sensitivity was measured by the frequently
sampled intravenous glucose tolerance test (FSIGTT) [17].
We used the AUC of the receiver operating characteristic
curve to evaluate the predictive discrimination of lipoproteins
and apolipoproteins [18]. Calibration and reclassification tests
and decision-curve analysis were used to overcome the limi-
tations of the AUC, which include the lack of sensitivity to
model improvement and absence of information on either ab-
solute predicted risk or risk reclassification [19–24].

Methods

Study participants The design and methods of the IRAS
have previously been described in detail [17]. Briefly, the
study was conducted at four clinical centres in the USA. At
centres in Oakland and Los Angeles, California, non-Hispanic
whites and African-Americans were recruited from Kaiser
Permanente, a nonprofit health maintenance organisation.
Centres in San Antonio, Texas and San Luis Valley,
Colorado recruited non-Hispanic whites and Hispanics from
two ongoing population-based studies (the San Antonio Heart
Study and the San Luis Valley Diabetes Study). A total of
1,625 individuals aged 40–69 years were enrolled in the
IRAS (56% women), which occurred between October 1992
and April 1994. The IRAS protocol was approved by local
institutional review committees and all participants provided
written informed consent.

Among the 1,065 non-diabetic participants, 183were exclud-
ed because of excessive alcohol intake (≥28 and ≥14 g/day in
men and women, respectively) or treatment with lipid-lowering
agents. Therefore, the present report analysed data on 882 par-
ticipants (349 non-Hispanic whites, 218 African-Americans and
315 Hispanics). Information on demographics, glucose toler-
ance status, conventional lipoproteins, NMR lipoproteins and
insulin sensitivity was available in all 882 individuals.
Apolipoproteins A-I (apoA-I) and B (apoB) were measured in
870 and 879 participants, respectively.

Acquisition of data and definition of variables Age, sex,
race/ethnicity, family history of diabetes and treatment with
glucose- and lipid-lowering medications were obtained by
self-report. Anthropometric measurements were obtained
using standardised protocols. The IRAS protocol required
two visits, 1 week apart, of approximately 4 h each.
Participants were asked prior to each visit to fast for 12 h, to
abstain from heavy exercise and alcohol for 24 h and to refrain
from smoking on the morning of the examination. During the
first visit, a 75 g OGTT was administered to assess glucose
tolerance status. During the second baseline visit, insulin sen-
sitivity and insulin secretion were measured using the
FSIGTT. An injection of regular insulin was used to ensure
adequate plasma insulin levels for the accurate computation of
insulin sensitivity across a broad range of glucose tolerance.
Glucose in the form of 50% [wt/vol.] solution (0.3 g/kg) and
regular human insulin (0.03 U/kg) were injected through an
intravenous line at 0 and 20 min, respectively. Blood was
collected at −5, 2, 4, 8, 19, 22, 30, 40, 50, 70, 100 and
180 min for measurement of plasma glucose and insulin.
Insulin sensitivity, expressed as the insulin sensitivity index
(SI), was calculated using mathematical modelling methods
(MINMOD version 3.0 [1994], Los Angeles, CA, USA) [25].

Laboratory analyses of plasma glucose and insulin took
place at the University of Southern California (Los Angeles,
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CA, USA). Plasma insulin concentration was measured by the
dextran-charcoal radioimmunoassay (coefficient of variation
[CV] of 19%) [26]. Plasma lipids and lipoproteins were
obtained from fasting single fresh plasma samples using
Lipid Research Clinic methods and were measured at the
central IRAS laboratory at the Medlantic Research Institute,
Washington, DC, USA [27]. We estimated non-HDL-
cholesterol as the difference between total and HDL-choles-
terol, and remnant cholesterol as the difference between non-
HDL-cholesterol and LDL-cholesterol.

Plasma total apoA-I and apoB concentrations were assayed
by immunoprecipitation (SPQ kit from Incstar, Stillwater,
MN, USA) and ELISA techniques at MedStar Laboratory
(Washington, DC, USA) (CV of 4.1%) [28]. LDL size was
determined by gradient-gel electrophoresis (CV of 2%) [29].
Lipoprotein subclass particle concentrations and average
VLDL, LDL and HDL particle diameters were measured by
NMR spectroscopy (LipoScience Inc, Raleigh, NC, USA)
[15, 16, 30]. Particle concentrations were given by the mea-
sured amplitudes of the characteristic lipid methyl group
NMR signals they emit. Nine subclasses were investigated:
large VLDL (including chylomicrons if present; >60 nm),
medium VLDL (35–60 nm), small VLDL (27–35 nm), IDL
(23–27 nm), large LDL (21.2–23 nm), small LDL
(18–21.2 nm), large HDL (8.8–13 nm), medium HDL
(8.2–8.8 nm) and small HDL (7.3–8.2 nm). VLDL and LDL
subclass particle concentrations are given in units of
nanomoles per litre and HDL in micromoles per litre. The
sum of each particle subclasses provides total VLDL, LDL
and HDL particle concentrations. Weighted-average VLDL,
LDL and HDL particle sizes (in nanometers) were calculated
as the sum of the diameter of each subclass multiplied by its
relativemass percentage as estimated from the amplitude of its
methyl NMR signal. NMR spectroscopy and conventional
laboratory methods have a high degree of agreement in quan-
tifying lipoprotein subclass concentrations.

Diabetes was defined as fasting plasma glucose ≥7.0 mmol/l,
2 h plasma glucose ≥11.1mmol/l and/or treatment with glucose-
lowering medications [31]. Insulin resistance was defined as the
lowest sex-specific SI quartile [32].

Statistical analyses Statistical analyses were performed using
SAS statistical software (version 9.2, SAS Institute, Cary, NC,
USA) and R Project statistical software packages (version
2.9.2, the R Foundation for Statistical Computing, Vienna,
Austria). The relation of lipoproteins and apolipoproteins to
SI was examined by Pearson’s correlation coefficients (r). The
proportion of the variance (R2) of SI explained by lipoproteins
and apolipoproteins was determined by linear regression anal-
ysis. The predictive discrimination of lipoproteins and apoli-
poproteins for the detection of insulin-resistant individuals
was assessed by the AUC of the receiver operating character-
istic curve [18]. AUCs were compared by the De Long

method [33]. The Youden’s J statistic was used to determine
the cut-off point with the best performance for identifying
persons with insulin resistance. Model calibration was evalu-
ated by the Hosmer-Lemeshow χ2 statistic. Models that had a
χ2 value >20 (p<0.01) were considered not well calibrated
[34]. The incremental value for risk predictionwas determined
by reclassification metrics (net reclassification improvement
[NRI], category-free NRI and integrated discrimination im-
provement [IDI]) with the %add_predictive macro (http://
analytics.ncsu.edu/sesug/2010/SDA07.Kennedy.pdf,
accessed 28May 2015) and%ROCPLUSmacro (www.mayo.
edu/research/departments-divisions/department-health-
sciences-research/division-biomedical-statistics-informatics/
software/locally-written-sas-macros, accessed 28 May 2015)
[20–23, 35, 36]. We used the 0.12, 0.27 and 0.50 probabilities
of having insulin resistance to generate four strata. These cut-
off points (low, intermediate and high) matched probabilities
of having insulin resistance at BMI of 25, 30 and 35 kg/m2

(overweight, obesity and morbidly obesity cut-off points),
respectively. Since NRI requires predefined clinically mean-
ingful strata, these cut-off points remain arbitrary. To over-
come this limitation, we produced Vickers’ decision curves
to identify both the range of threshold probabilities in which
NMR lipoproteins had added value to TG and HDL-
cholesterol concentrations for detecting insulin resistance
and the magnitude of benefit [24]. This analysis was carried
out using a statistical code available in R (https://www.mskcc.
org/departments/epidemiology-biostatistics/health-outcomes/
decision-curve-analysis-01, accessed 13 August 2015) [24].
Log-transformed TG and TG-to-HDL-cholesterol ratio were
used in all analyses to meet the assumptions of the tests. We
also used the natural log transformation of (SI+1) given that
some participants had SI=0. We considered a p value <0.050
(two-sided) to be significant.

Results

All participants were free of diabetes and were not taking
lipid-lowering medications. Participant characteristics are
shown in Table 1.

Measures of obesity, TG and HDL-cholesterol levels,
TG-to-HDL-cholesterol ratio and apoB concentration
had relatively strong correlations with SI (Table 2).
Non-HDL-cholesterol and estimated remnant cholesterol
in the fasting state also had a significant relationship with SI,
but neither relationship was as strong as that of TG levels.
Large VLDL particles, total and small LDL particles, large
HDL particles, and VLDL, LDL and HDL particle sizes also
had significant relationships with SI. All these relationships
were quite similar in the three ethnic groups. Conventional
lipoproteins and apolipoproteins accounted for 14.8%
(95% CI 10.5, 19.1) of the variance of SI, whereas NMR
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lipoproteins explained 18.7% (95% CI 14.1, 23.2). The pro-
portion of the SI variance explained by TG and HDL-
cholesterol levels (12.3% [95%CI 8.3, 16.3]) was comparable
with that explained by the TG-to-HDL-cholesterol ratio
(11.8% [95% CI 7.8, 15.7]).

Table 3 presents the ability of conventionally measured
lipoproteins and apolipoproteins to detect insulin resistance
as defined by the lowest quartile of SI. The AUC of

HDL-cholesterol and TG levels was greater than that either
of TG concentration (0.676 vs 0.641; p=0.020) or of
HDL-cholesterol concentration (0.651; p=0.012), but was
similar to the AUC of TG-to-HDL-cholesterol ratio (0.673;
p=0.685). Non-HDL-cholesterol, estimated remnant choles-
terol, and apolipoprotein levels and LDL size by gradient-gel
electrophoresis did not significantly increase the AUC of
HDL-cholesterol and TG levels (0.691 vs 0.676; p=0.063).
NMR lipoproteins had a higher AUC than HDL-cholesterol
and TG levels (0.745 vs 0.676; p<0.001; Table 3). This was
demonstrated in men (0.753 vs 0.641; p<0.001) and women
(0.775 vs 0.722; p=0.021) and in Hispanics (0.738 vs 0.632;
p=0.002) and non-Hispanic whites (0.809 vs 0.697;
p<0.001). In African-Americans, however, this finding did
not reach statistical significance (0.753 vs 0.720; p=0.350).
In addition, the predictive discrimination of a clinical model of
readily available variables (age, sex, ethnicity, clinic, BMI and
fasting glucose) was increased by NMR lipoproteins
(0.857 vs 0.828; p<0.001), but not by HDL-cholesterol and
TG levels (0.840 vs 0.828; p=0.073).

Non-HDL-cholesterol, estimated remnant cholesterol, and
apolipoproteins levels and LDL size by gradient-gel electro-
phoresis were not used in further testing, because none of
them increased the predictive discrimination of TG and
HDL-cholesterol levels. Figure 1a shows the incremental val-
ue of NMR lipoproteins to TG and HDL-cholesterol
(AUC 0.764 vs 0.676; p<0.001). Both models were well cal-
ibrated (Electronic Supplemental Material [ESM] Table 1).
Besides having higher predictive discrimination (greater
AUC), NMR lipoproteins added discriminative value (as mea-
sured by NRI, category-free NRI and IDI) to HDL-cholesterol
plus TG levels. NMR lipoproteins reclassified a net of 40% of
individuals more appropriately than HDL-cholesterol and TG
levels. NMR lipoproteins added predictive discrimination to
TG and HDL-cholesterol in obese and non-obese individuals
and in those with normal and impaired glucose tolerance
(ESM Table 2). Figure 1b shows the incremental value of
NMR lipoproteins within the context of a clinic model that
included age, sex, ethnicity, clinic, BMI, fasting glucose, TG
and HDL-cholesterol (AUC 0.840 vs 0.860; p=0.002). NMR
lipoproteins reclassified a net of 14% of individuals more
appropriately than the clinical model (Table 4).

Using the Youden’s J statistic to determine the cut-off point
with the best performance for identifying persons with insulin
resistance, NMR lipoproteins increased the performance of TG
and HDL-cholesterol to a sensitivity of 67.7% and a specificity
of 72.9%. The positive and negative likelihood ratios were 2.50
and 0.44, respectively. For the same level of specificity, the
combination of TG and HDL-cholesterol had a sensitivity of
51.2%, and TG-to-HDL-cholesterol ratio of 46.1%.

Figure 2a presents Vickers’ decision curves displaying the
net benefit achieved by detecting insulin resistance (lowest SI
quartile) based on predictions by TG and HDL-cholesterol

Table 1 Participant characteristics

Characteristic

n 882

Age, years 54.4 (8.5)

Female, % 56.5

African-American, % 24.7

Hispanic, % 35.7

BMI, kg/m2 28.3 (5.7)

Fasting glucose, mmol/l 5.43 (0.57)

SI, ×10
−5 min−1 pmol−1 ml−1 3.69 (3.41)

Lipoproteins, mmol/l

Total cholesterol 5.45 (1.10)

LDL-cholesterol 3.63 (0.89)

HDL-cholesterol 1.21 (0.39)

Non-HDL-cholesterol 4.23 (1.14)

Estimated remnant cholesterol 0.61 (0.73)

TG 1.50 (0.97)

TG-to-HDL-cholesterol ratio 3.45 (3.42)

LDL size by gradient-gel electrophoresis, nm 26.10 (0.97)

Apolipoproteins, g/l

ApoA-I 1.307 (0.283)

ApoB 1.039 (0.246)

ApoB-to-apoA-I ratio 0.83 (0.29)

Lipoprotein heterogeneity (NMR)

Total VLDL particles, nmol/l 64.3 (30.7)

Large 2.88 (2.96)

Medium 17.7 (13.1)

Small 43.7 (20.0)

Total LDL particles, nmol/l 1,166 (384)

IDL 43.1 (25.7)

Large 498.9 (211.5)

Small 624.5 (459.7)

Total HDL particles, μmol/l 31.5 (5.4)

Large 5.00 (2.77)

Medium 2.74 (3.65)

Small 23.7 (5.2)

Particle size, nm

VLDL 49.1 (10.6)

LDL 21.34 (0.79)

HDL 8.96 (0.47)

Data are n, percentage or mean (SD)
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levels with and without the addition of NMR lipoproteins.
Likelihood ratio test for these two nested models was statisti-
cally significant (likelihood ratio χ2 8.5; p<0.001). NMR
lipoproteins had an added net benefit to TG and
HDL-cholesterol levels if a person’s predicted probability of
having insulin resistance fell between 10% and 50%. As a
point of reference, insulin-resistance probabilities of 0.12,
0.27 and 0.50 matched probabilities of having insulin resis-
tance at BMI of 25, 30 and 35 kg/m2, respectively in IRAS
participants without diabetes. In a model that included, sex,
ethnicity, clinic, BMI, and levels of fasting glucose, TG and
HDL-cholesterol, NMR lipoproteins added a net benefit

(likelihood ratio χ2 4.2; p<0.001) if a person’s predicted prob-
ability of having insulin resistance fell between 30% and 70%
(Fig. 2b).

Discussion

In IRAS participants without diabetes, the ability of the
TG-to-HDL-cholesterol ratio to identify insulin-resistant indi-
viduals is similar to that of TG and HDL-cholesterol levels.
Apolipoprotein concentrations (both apoA1 and apoB) and
estimated remnant cholesterol in the fasting state do not

Table 2 Pearson’s correlation
coefficients relating measures of
obesity, apo, and conventional
and NMR lipoproteins to log SI

Characteristic All Non-Hispanic
whites

African-Americans Hispanics

n 882 349 218 315

Measures of obesity

BMI −0.50*** −0.51*** −0.45*** −0.51***
Waist circumference −0.55*** −0.56*** −0.49*** −0.58***

Lipoproteins

Total cholesterol −0.05 0.05 −0.12 −0.10
LDL-cholesterol −0.07 0.02 −0.16* −0.09
HDL-cholesterol 0.29*** 0.33*** 0.25*** 0.29***

Non-HDL-cholesterol −0.15*** −0.09 −0.22** −0.17**
Estimated remnant cholesterol −0.15*** −0.20*** −0.20** −0.13*
Log TG −0.30*** −0.30*** −0.30*** −0.32***
Log TG-to-HDL-cholesterol ratio −0.34*** −0.37*** −0.34*** −0.35***

LDL size by gradient-gel electrophoresis 0.13*** 0.14** 0.11 0.14*

Apolipoproteins

ApoA-I 0.10** 0.15** 0.07 0.07

ApoB −0.24*** −0.24*** −0.34*** −0.15**
ApoB-to-apoA-I ratio −0.22*** −0.28*** −0.29*** −0.12*

Lipoprotein heterogeneity (NMR)

Total VLDL particles −0.08* −0.03 −0.21** −0.11
Large −0.20*** −0.20*** −0.24*** −0.24***
Medium −0.01 0.01 −0.13 −0.03
Small −0.09** −0.02 −0.20** −0.11

Total LDL particles −0.28*** −0.27*** −0.33*** −0.27***
IDL −0.11*** −0.02 −0.29*** −0.08
Large 0.12*** 0.11* 0.12 0.12*

Small −0.28*** −0.27*** −0.33*** −0.27***
Total HDL particles 0.05 0.00 0.00 0.11

Large 0.24*** 0.28*** 0.25*** 0.24***

Medium −0.03 0.00 −0.01 −0.07
Small −0.06 −0.17** −0.14* 0.05

Particle size

VLDL −0.24*** −0.28*** −0.18** −0.28***
LDL 0.27*** 0.26*** 0.31*** 0.28***

HDL 0.24*** 0.34*** 0.29*** 0.13*

*p<0.05; **p<0.01; ***p<0.001
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add discriminative value to TG and HDL-cholesterol
levels. However, NMR lipoproteins have greater predictive
discrimination than TG and HDL-cholesterol levels or the
TG-to-HDL-cholesterol ratio.

TG concentration has long been used to identify individuals
with insulin resistance [6, 7]. The McAuley Index, which is
computed using TG and fasting insulin levels, may have a pre-
dictivediscrimination that is comparablewithmoresophisticat-
ed indices basedon theOGTT [37].Since insulin concentration
is not readily available in most clinical settings and many epi-
demiological studies, other indices derived from TG and/or

HDL-cholesterol levels have been proposed to identify
insulin-resistant individuals [7, 8]. In the current report, the
combination of TG and HDL-cholesterol levels correctly clas-
sified two-thirds of apparently healthy individuals according to
their insulin resistance status (Table 3). This ability to detect
insulin resistance is similar to that of the TG-to-HDL-
cholesterol ratio. Consequently, in line with previously reports
[8, 10],ourdata suggest that theTG-to-HDL-cholesterol ratio is
a simple surrogate index of insulin resistance.

Insulin resistance is associated with apolipoproteins and
LDL-cholesterol particles [2, 12, 13]. While this is also found

Table 3 Predictive discrimina-
tion of lipoproteins and apolipo-
proteins for detecting insulin
resistancea

Characteristic AUC p value

Conventional lipoproteins, apo and LDL particle size

Log TG and HDL-cholesterol 0.676 Referent

Log TG 0.641 0.020

HDL-cholesterol 0.651 0.012

Non-HDL-cholesterol 0.549 <0.001

Estimated remnant cholesterol 0.604 <0.001

Log TG-to-HDL-cholesterol ratio 0.673 0.685

ApoA-I and apoB 0.626 0.010

LDL particle size by gradient-gel electrophoresis 0.572 <0.001

Log TG, HDL-cholesterol, estimated remnant cholesterol,
apoA-1, apoB and LDL size by gradient-gel electrophoresis

0.691 0.063

TG and HDL-cholesterol vs NMR lipoproteins

NMR lipoproteins 0.745 Referent

Log TG and HDL-cholesterol 0.676 <0.001

Log TG, HDL-cholesterol and NMR lipoproteins 0.764 0.011

TG, HDL-cholesterol and NMR lipoproteins vs a clinical model

Clinical modelb 0.828 Referent

+Log TG and HDL-cholesterol 0.840 0.073

+NMR lipoproteins 0.857† <0.001

+Log TG, HDL-cholesterol and NMR lipoproteins 0.860‡ <0.001

a Insulin resistance defined as the lowest SI quartile
b Clinical model included age, sex, ethnicity, clinic, BMI and fasting glucose as independent variables
† p=0.025 for test of comparison with the clinical model that included log TG and HDL-cholesterol; ‡ p=0.002
for test of comparison with the clinical model that included log TG and HDL-cholesterol
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baFig. 1 Receiver operating
characteristic curves for
predictive discrimination of
HDL-cholesterol plus TG levels
(continuous line) or NMR
lipoproteins (dotted line) (a) in the
absence and (b) within the context
of a clinical model that included
age, sex, ethnicity, clinic, BMI
and fasting glucose
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in the current report, neither apoA-I or apoB levels nor LDL
size by gradient-gel electrophoresis increases the predictive
discrimination of TG and HDL-cholesterol levels. However,
a more comprehensive evaluation of lipoprotein composition
(lipoprotein size and particle and subclass concentrations)
is useful for detecting insulin-resistant individuals. NMR lipo-
proteins have greater predictive discrimination than the com-
bination of TG and HDL-cholesterol levels (correct classifica-
tion of three-quarters vs two-thirds of apparently healthy
individuals; p<0.001). NMR lipoproteins allow for the correct
reclassification of an additional 40% of individuals (Table 4),
with net benefit across a broad range on insulin resistance
(between 10% and 50% by Vickers’ decision analysis)
(Fig. 2). In addition, NMR lipoproteins have a discrimination
advantage (correct reclassification of an additional 14% of
individuals) even after considering the effect of clinical factors
that are associated with insulin resistance such as BMI and
fasting glucose.

The current findings suggest that the addition of a basal
measure of lipoprotein heterogeneity (e.g. NMR) can im-
prove the prediction of insulin resistance even over the com-
monly used measures such as the TG-to-HDL-cholesterol
ratio, which are already useful [8, 9]. This finding could
be useful in clinical research since many methods to deter-
mine insulin resistance are time-consuming and expensive
(e.g. hyperinsulinaemic clamp or MINMOD model). This
approach could also be useful in clinical practice although
no pharmacologic agent that improves insulin sensitivity has

yet been shown to definitively reduce cardiovascular disease
in non-diabetic individuals.

Estimated remnant cholesterol in the fasting state (which
reflects VLDL and IDL content) does not add to the predictive
discrimination of TG and HDL-cholesterol levels. However,
the type of remnant cholesterol that has been associated with
both chronic inflammation and cardiovascular disease is the
one estimated in the non-fasting state (which also reflects chy-
lomicron remnants) [11]. We cannot assess whether or not this
type of remnant cholesterol adds predictive discrimination to
TG and HDL-cholesterol because the IRAS only has lipopro-
tein data in the fasting state.

Our study has several strengths. The IRAS is a well-
characterised large, and ethnically diverse population.
Sophisticated measures of insulin sensitivity (derived from
the FSIGTT) and lipoprotein heterogeneity (acquired by
NMR spectroscopy and gradient-gel electrophoresis) were
obtained [17, 30]. Using decision curve analysis [24], the ad-
dition of NMR lipoproteins to TG and HDL-cholesterol im-
proved the detection of insulin resistance across a broad range
of a person’s predictive probability of insulin resistance. The
relationships between lipoproteins and apolipoproteins and
insulin sensitivity was comparable across categories of ethnic
groups; these relationships hold even though African-
Americans tend to have both more insulin resistance and less
lipoprotein abnormalities (lower TG concentration, higher
HDL-cholesterol concentration and larger LDL particle size)
than non-Hispanic whites [38–40]. A higher predictive

Table 4 Added predictive value
of NMR lipoproteins to a clinical
model that included TG and
HDL-cholesterol for detecting
insulin resistance

Clinical model Clinical model+NMR lipoproteins

AUC (95% CI) 0.840 (0.810, 0.870) 0.860 (0.832, 0.888); p=0.002

Hosmer–Lemeshow χ2 statistic 3.0; p=0.934 7.7; p=0.456

NRI, %

Overall Referent 14.0% (95% CI 6.2, 21.9); p<0.001

For insulin-resistant persons Referent 9%; p=0.013

For non-insulin-resistant persons Referent 5%; p=0.008

Category-free NRI, %

Overall Referent 46.1% (95% CI 31.1, 61.1); p<0.001

For insulin-resistant persons Referent 19%; p=0.005

For non-insulin-resistant persons Referent 27%; p<0.001

IDI

Overall Referent 0.045 (95% CI 0.029, 0.61); p<0.001

For insulin-resistant persons Referent 0.034

For non-insulin-resistant persons Referent −0.011
Integrated sensitivity 0.480 0.514; p<0.001

Integrated 1 – specificity 0.170 0.159; p<0.001

Clinical model included age, sex, ethnicity, clinic, BMI, fasting glucose, log TG and HDL-cholesterol as inde-
pendent variables

NRI, NRI for persons with events+NRI for persons without events; Category-free NRI, category-free NRI for
persons with events+category-free NRI for persons without events
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discrimination of NMR lipoproteins as compared with HDL-
cholesterol plus TG concentrations was demonstrated across
categories of ethnicity, sex, adiposity and glucose tolerance.
A potential limitation is that we assessed lipoprotein hetero-
geneity by only NMR spectroscopy. Other methods, such as
gradient-gel electrophoresis and density gradient ultracentri-
fugation [12, 14], were not used in the IRAS.

In summary, as previously shown [8, 10], the
TG-to-HDL-cholesterol ratio does predict insulin resistance
status in non-diabetic individuals. ApoA-I and apoB do not
improve the predictive discrimination of TG and HDL-
cholesterol levels. However, a more comprehensive assess-
ment of lipoprotein composition (using NMR spectroscopy)
adds discriminative value to conventionallymeasured lipopro-
teins. NMR lipoproteins allow for the correct reclassification
of an additional 14–40% of individuals, depending on which
other risk factors of insulin resistance are also considered, and

add information across a broad range of insulin resistance.
This tool can be applied to fasting blood samples. Therefore,
our results may be important for detecting insulin resistance in
intervention and epidemiological studies.
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