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Abstract

Aims/hypothesis We selected the most informative protein
biomarkers for the prediction of incident cardiovascular dis-
ease (CVD) in people with type 2 diabetes.

Methods In this nested case—control study we measured
42 candidate CVD biomarkers in 1,123 incident CVD
cases and 1,187 controls with type 2 diabetes selected
from five European centres. Combinations of biomarkers
were selected using cross-validated logistic regression
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models. Model prediction was assessed using the area
under the receiver operating characteristic curve
(AUROC).

Results Sixteen biomarkers showed univariate associations
with incident CVD. The most predictive subset selected by
forward selection methods contained six biomarkers: N-
terminal pro-B-type natriuretic peptide (OR 1.69 per 1 SD,
95% CI 1.47, 1.95), high-sensitivity troponin T (OR 1.29,
95% CI 1.11, 1.51), IL-6 (OR 1.13, 95% CI 1.02, 1.25), IL-
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15 (OR 1.15, 95% CI 1.01, 1.31), apolipoprotein C-III (OR
0.79, 95% CI 0.70, 0.88) and soluble receptor for AGE (OR
0.84, 95% CI 0.76, 0.94). The prediction of CVD beyond
clinical covariates improved from an AUROC of 0.66 to
0.72 (AUROC for Framingham Risk Score covariates 0.59).
In addition to the biomarkers, the most important clinical co-
variates for improving prediction beyond the Framingham
covariates were estimated GFR, insulin therapy and HbA ..
Conclusions/interpretation We identified six protein bio-
markers that in combination with clinical covariates improved
the prediction of our model beyond the Framingham Score
covariates. Biomarkers can contribute to improved prediction
of CVD in diabetes but clinical data including measures of
renal function and diabetes-specific factors not included in
the Framingham Risk Score are also needed.

Keywords Cardiovascular diseases - Epidemiology - Protein
biomarkers - Risk factors - Type 2 diabetes mellitus
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ADVANCE  Action in Diabetes and Vascular Disease:
Preterax and Diamicron Modified Release

Controlled Evaluation

apoCIII Apolipoprotein C-III

AUROC Area under the receiver operating characteris-
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CRP C-reactive protein

CVD Cardiovascular disease

EFPIA European Federation of Pharmaceutical In-
dustries and Associations

eGFR Estimated GFR

FDR False discovery rate

Go-DARTS  Genetics of Diabetes Audit and Research
Tayside Study

HDL-C HDL cholesterol

hsTnT High-sensitivity troponin T

IMPROVE  Carotid Intima—Media Thickness [IMT] and
IMT-Progression as Predictors of Vascular
Events in a High Risk European Population
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LASSO Least absolute shrinkage and selection
operator

LDL-C LDL cholesterol

MONICA/ MONItoring of trends and determinants in
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Research in the Region of Augsburg

NT-ProBNP  N-terminal pro-B-type natriuretic peptide

NRI Net reclassification improvement

SDR Scania Diabetes Registry

sRAGE Soluble receptor for AGE

SUMMIT SUrrogate markers for Micro- and Macro-

vascular hard endpoints for Innovative diabe-
tes Tools
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Introduction

Cardiovascular disease (CVD) is a major cause of morbidity
and mortality in people with diabetes. Prediction of CVD risk
among people with diabetes is important not only to tailor
clinical care but also to stratify higher risk patients in clinical
trials to maximise trial power [1]. Biomarkers may help im-
prove prediction, but whilst there are many reports on associ-
ations of single biomarkers with CVD risk in diabetes, there
are few joint assessments of large numbers of biomarkers.
Thus, there is little consensus on which subset of biomarkers
in the literature is most informative for CVD risk prediction in
diabetes.

The SUrrogate markers for Micro- and Macro-vascular
hard endpoints for Innovative diabetes Tools (SUMMIT) con-
sortium, funded by the European Union Innovative Medicines
Initiative, is a collaboration involving 19 academic centres
and six European Federation of Pharmaceutical Industries
and Associations (EFPIA) partners across Europe to identify
and characterise biomarkers for complications of diabetes [2].
We measured a panel of 42 candidate biomarkers with existing
evidence for association with CVD risk in 1,123 incident
CVD cases and 1,187 controls with type 2 diabetes from five
European cohorts. The aims of the analysis were to select
biomarkers predictive of CVD and assess the added value of
the biomarkers beyond Framingham and clinical factors to
prediction of CVD.

Methods
Data and sample sources

This study was a nested case—control design matched for sex
and age. Cases and controls were identified within five co-
horts: Genetics of Diabetes Audit and Research Tayside Study
(Go-DARTYS), Scania Diabetes Registry (SDR), MONItoring
of trends and determinants in CArdiovascular disease/
Cooperative Health Research in the Region of Augsburg
(MONICA/KORA) study, Carotid Intima Media Thickness
[IMT] and IMT-Progression as Predictors of Vascular Events
in a High Risk European Population (IMPROVE) study and
Stockholm 60-year Old Study [3—7] (electronic supplementa-
ry material [ESM] Table 1). For each cohort, participants with
type 2 diabetes and no clinical history of CVD when the blood
samples were taken were eligible for inclusion. A small num-
ber (n=65) of participants who were prediabetic (i.e. had non-
diabetic hyperglycaemia at the time of sampling and subse-
quently progressed to type 2 diabetes) were also eligible. In-
cident major CVD cases were defined as having acute CHD or
an ischaemic stroke event subsequent to the baseline sample
being taken. Detailed criteria are included in the ESM
(Methods: Data and sample source).
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Controls were free of CVD at the end of follow-up and
matched to cases within each cohort by sex and were
stratum-matched for age at the time of blood sampling (within
5 years). Overall 2,318 individuals were sampled, of whom
eight had insufficient sample volume, leaving serum samples
from 1,123 cases and 1,187 controls.

Biomarker selection process and laboratory analysis

Biomarker selection was based on existing evidence from the
literature (incorporating a text mining process [8] and a man-
ual literature review) and the availability of reliable validated
assays to measure biomarker concentrations in small volumes
of serum. We prioritised biomarkers of cardiac damage (high-
sensitivity troponin T [hsTnT] and N-terminal pro-B-type na-
triuretic peptide [NT-proBNP]), renal disease (cystatin C,
fetuin A), glucose-mediated damage in diabetes (soluble re-
ceptor for AGE [sRAGE]), matrix remodelling (matrix metal-
loproteinases and osteopontin) and coagulation (factor VII), as
well as a lipoprotein of particular interest in diabetes (apolipo-
protein C-1II [apoCIII]) [9, 10], and a large set of immune- and
inflammation-related proteins including interleukins and inter-
ferons. We measured 33 protein biomarkers (ESM Table 2) by
multiplex immunoassay on the Human DiscoveryMAP
customised panel using the Luminex 100/200 instrument by
RBM (Myriad Rules Based Medicine, Austin, TX, USA) [11]
and standard commercially available ELISAs and kits for nine
biomarkers. The included biomarkers are listed in ESM
Table 2 along with details of assays and assay metrics. For
most biomarkers the inter-assay CV was <10% with the
exception of apoClIII (16%), cathepsin S (17%), granulocyte-
macrophage colony-stimulating factor (23%) and TNF-«
(18%). (For more details on laboratory methods see ESM
Methods: Biomarker selection process and laboratory analysis
and ESM Table 2).

Statistical methods

Choice of covariates in the baseline model Clinical covariates
included in the models for biomarker selection were selected
based upon their inclusion in existing CVD risk engines [12,
13] or known associations with CVD in type 2 diabetes and
their availability for all cohorts. We also included baseline
medication data in case any biomarker measurements were
affected by drug use. All clinical covariates were measured
at or close to the time of sampling. The chosen covariates were
age, sex, smoking, systolic and diastolic blood pressure, LDL-
cholesterol (LDL-C), HDL-cholesterol (HDL-C), triacylglyc-
erol, diabetes duration, HbA |, BMI, height, estimated GFR
(eGFR) calculated using the Modification of Diet in Renal
Disease 4-variable (MDRD4) equation, cohort, and current
medication (including antihypertensive agents, aspirin, lipid-
lowering agents and insulin).

Pre-processing and imputation All continuous variables were
Gaussianised using the LambertW package version 0.5 in R
(http://cran.r-project.org/web/packages/LambertW) [14, 15].
Missing values of biomarkers and covariates were imputed
using a sparse iterative regression model. For six
biomarkers, >96% of participants had below detectable or
missing levels and these were not analysed further (ESM
Methods: Pre-processing and imputation). The impact of im-
putation on the analyses was explored.

Selection of predictive sets of biomarkers We applied two
complementary approaches for selecting which subsets of bio-
markers contributed most to prediction: forward selection
using logistic regression, and a top-down method based on
logistic regression with an L1 (least absolute shrinkage and
selection operator [LASSO]) regularisation penalty [16]. See
ESM for details (Methods: Selection of predictive sets of
biomarkers).

Predictive performance evaluation We evaluated predictive
performance of models by computing the area under the re-
ceiver operating characteristic curve (AUROC) on 50 folds of
test data, where the test folds were not used either for model
fitting or for biomarker selection. We used 30 inner folds to
iteratively select biomarkers (forward selection) or to learn the
penalty parameter (top-down approach). This nested cross-
validation procedure provides an unbiased estimate of the pre-
dictive performance of the considered models. We assessed
four models, two including only clinical covariates and two
including clinical covariates and biomarkers. The first model
considered is based on the Framingham Risk Score and was
limited to the clinical factors in that score along with the rel-
evant interaction terms for variables that have stratum-specific
coefficients in that equation; the main effects were age, sex,
total cholesterol, HDL-C, systolic blood pressure, antihyper-
tensive treatment and current smoking, and interaction terms
(sex x other variables, systolic blood pressure x antihyperten-
sive treatment) were also allowed to enter the model [12]. We
also considered a model including an extended set of clinical
factors that included clinical measures beyond the Framing-
ham Risk Score factors, including important diabetes mea-
sures such as diabetes duration, HbA ., eGFR and insulin
use. To the extended clinical covariate model we then added
selected biomarkers from either the forward selection or the
top-down selection models.

Net reclassification improvement To assess the clinical rele-
vance of the increment in predictive performance and for con-
sistency with other reports on biomarker performance we es-
timated the net reclassification improvement (NRI) with a
classification threshold of 10% risk at 5 years. Calculation of
the NRI from a nested case—control study requires the recon-
struction of the original cohort from the cases and controls that

@ Springer


http://cran.r-project.org/web/packages/LambertW

1366

Diabetologia (2015) 58:1363-1371

Table 1 Demographics and clinical characteristics at baseline

Clinical covariate Controls (n=1,187) Cases (n=1,123) p value®
Male 657 (55.35%) 660 (58.77%)
Age (years) 68.4 (61.3,74.4) 68.8 (61.3, 76.5)
Study 0.154

Go-DARTS 603 (50.8%) 601 (53.5%)

SDR 334 (28.1%) 332 (29.6%)

MONICA/KORA 180 (15.2%) 120 (10.7%)

IMPROVE 47 (4.0%) 47 (4.2%)

Stockholm 60-year old 23 (1.9%) 23 (2.0%)
Diabetes duration (years) 4.7(2.2,9.6) 6.2(2.5,124) <0.001
BMI (kg/m?) 29.3 (26.5,32.7) 29.2 (26.4, 32.6) 0.671
Height (m) 1.68 (1.61, 1.75) 1.68 (1.60, 1.75) 0.005
Systolic blood pressure (mmHg) 143.0 (135.0, 148.5) 143.3 (137.5, 151.5) 0.003
Diastolic blood pressure (mmHg) 77.5 (72.0, 82.7) 77.0 (71.5, 82.1) 0.318
HbA . (%) 6.9 (6.5,7.5) 7.0 (6.6, 7.8) <0.001
HbA . (mmol/mol) 52 (48, 58) 53 (49, 62) <0.001
Triacylglycerols (mmol/l) 1.83 (1.34,2.35) 1.85(1.37,2.55) <0.001
HDL-C (mmol/l) 1.24 (1.09, 1.48) 1.21 (1.04, 1.42) 0.018
LDL-C (mmol/l) 2.70 (1.91, 3.18) 2.74 (1.98, 3.30) 0.026
eGFR (ml/min) 72.2 (64.4, 83.7) 68.0 (57.4 76.5) <0.001
Smoking status <0.001

Current smoker 183 (15.4%) 235 (20.9%)

Ex-smoker 544 (45.8%) 540 (48.1%)

Never smoker 460 (38.8%) 348 (31.0%)
Insulin therapy 155 (13.8%) 248 (22.1%) <0.001
Antihypertensive therapy 870 (73.3%) 918 (81.8%) <0.001
Lipid lowering therapy 778 (65.5%) 758 (67.5%) 0.392
Aspirin therapy 311 (26.2%) 385 (34.3%) <0.001

Data are median (IQR) or frequency (%)
* Adjusted for age and sex

were sampled from this cohort [17]. This reconstruction was
done by weighting the observations on cases and controls so
that the proportion of cases equated to the risk at 5 years
computed from the annual event rate, and by using the logistic
regression model from the nested case—control study to calcu-
late the predictive probability of disease for individuals in this
reconstructed cohort. The event rates for the Go-DARTS co-
hort were used as a proxy for the rates in all cohorts.

Results

The final dataset consisted of 36 biomarkers in 2,310 individ-
uals (1,123 cases, of which 755 were acute CHD and 368
strokes, and 1,187 controls). Median time to event was
3.2 years (interquartile range [IQR] 1.5-4.9) for cases and
median follow-up for controls was 6.5 years (IQR 3.9-7.9).
Baseline clinical data are summarised in Table 1.

@ Springer

Forward selection of biomarkers using logistic regression

The distributions of biomarkers in cases and controls are
summarised in ESM Table 3. After adjustment for all clinical
covariates, 16 biomarkers showed association with CVD at
p<0.05 (shown in the first two data columns in Table 2).
The first iteration of the forward selection process fits a
cross-validated logistic regression model for each biomarker
singly, and evidence for association independently of all clin-
ical covariate data is given by the magnitude of the increment
in validation log-likelihood and by the false discovery rate
(FDR)—the lower the FDR the stronger the association
(Table 2). The strongest associations with CVD were for
NT-proBNP, hsTnT, IL-6, apoClIIl, cystatin C and IL-15
(»<0.001, and with increments in test log-likelihood >5 natu-
ral log units and FDR <0.1 in the cross-validated forward
selection models). Of these biomarkers, other than apoClIII,
levels were higher in cases than controls.
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Table 2 Single biomarker logistic regressions on the full dataset with results of first iteration of the nested k-fold cross-validated forward selection

model across outer folds

Normalised biomarker

Logistic regression model adjusted for

all clinical covariates

Comparison against all clinical covariates

OR per SD (95% CI) Wald p value Median (IQR) difference FDR
in test log-likelihood

apoClIII 0.79 (0.71, 0.87) <0.001 9.21(8.70, 9.79) 0.026 (0.012, 0.038)
Brain-derived neurotrophic factor 0.92 (0.84, 1.01) 0.088 0.28 (0.08, 0.53) 0.438 (0.372, 0.483)
Cathepsin S 1.07 (0.97, 1.20) 0.184 —0.25 (-0.42, 0.02) 0.569 (0.496, 0.626)
Cystatin C 1.35(1.18, 1.56) <0.001 8.02 (7.47, 8.58) 0.032 (0.016, 0.048)
Eotaxin-1 1.02 (0.93, 1.13) 0.679 —0.87 (-1.05,-0.74) 0.959 (0.924, 0.989)
Factor VII 1.02 (0.93, 1.13) 0.641 —0.97 (-1.15,-0.68) 0.954 (0.908, 0.989)
Fetuin A 1.01 (0.92, 1.12) 0.798 —0.94 (-1.08, —0.78) 0.993 (0.982, 0.998)
hsTnT 1.57 (1.40, 1.78) <0.001 27.40 (26.46, 28.33) 0.001 (0.000, 0.002)
Intercellular adhesion molecule 1 1.11 (1.01, 1.21) 0.036 1.08 (0.73, 1.44) 0.311 (0.230, 0.371)
IL-1ox 1.03 (0.94, 1.14) 0.497 —0.79 (-1.01, —0.65) 0.866 (0.809, 0.910)
IL-1 receptor antagonist 1.13 (1.02, 1.25) 0.016 1.92 (1.63, 2.31) 0.212 (0.175, 0.262)
IL-6 1.33 (1.20, 1.47) <0.001 15.19 (14.53, 15.67) 0.008 (0.004, 0.012)
IL-8 1.03 (0.94, 1.13) 0.496 —0.85 (—1.02, —0.60) 0.864 (0.802, 0.920)
IL-10 1.05 (0.95, 1.16) 0.348 —0.52 (-0.81, —0.38) 0.690 (0.640, 0.784)
IL-15 1.18 (1.08, 1.30) <0.001 5.35(4.88, 5.67) 0.085 (0.062, 0.114)
IL-17 1.03 (0.94, 1.12) 0.544 -0.86 (—-1.02, —0.71) 0.897 (0.851, 0.929)
IL-18 1.02 (0.93, 1.12) 0.616 -0.94 (-1.22,-0.77) 0.952 (0.902, 0.983)
1L-23 1.12 (1.02, 1.22) 0.018 1.83 (1.65, 2.18) 0.225 (0.165, 0.278)
Macrophage inflammatory protein-1c 1.15(1.04, 1.27) 0.004 3.04 (2.59, 3.30) 0.156 (0.128, 0.198)
Macrophage inflammatory protein-1[3 1.03 (0.95, 1.13) 0.451 —0.78 (=0.91, —0.64) 0.831 (0.769, 0.877)
Matrix metalloproteinase-2 1.25 (1.06, 1.48) 0.009 249 (2.19,2.78) 0.161 (0.115, 0.207)
Matrix metalloproteinase-3 1.08 (0.97, 1.20) 0.151 —0.11 (-0.33, 0.12) 0.530 (0.467, 0.589)
Matrix metalloproteinase-9 1.11 (1.00, 1.24) 0.046 0.89 (0.73, 1.10) 0.343 (0.297, 0.378)
Monocyte chemotactic protein 1 0.97 (0.89, 1.06) 0.537 —0.78 (—0.98, —0.65) 0.886 (0.822, 0.940)
NT-proBNP 1.89 (1.67, 2.16) <0.001 50.59 (49.63, 51.62) 0.000 (0.000, 0.000)
Osteopontin 1.04 (0.93, 1.16) 0.524 —0.80 (—1.02, —0.53) 0.885 (0.789, 0.928)
Osteoprotegerin 1.15 (1.04, 1.27) 0.008 2.36 (1.98,2.81) 0.197 (0.153, 0.232)
sRAGE 0.94 (0.85, 1.03) 0.186 —0.21 (-0.39, 0.03) 0.556 (0.491, 0.610)
Stem cell factor 1.05 (0.94, 1.18) 0.353 —0.61 (-0.81, -0.41) 0.748 (0.660, 0.808)
TNF-« 1.06 (0.96, 1.16) 0.239 —0.25 (-0.48, —0.10) 0.595 (0.534, 0.666)
Vascular endothelial growth factor 1.13 (1.03, 1.25) 0.011 2.18 (1.89, 2.52) 0.207 (0.164, 0.245)
Interferon-y —0.45 (-0.78, —0.17) 0.580 (0.531, 0.625)

Below median 0.68 (0.38, 1.20) 0.189

Above median 1.66 (0.84, 3.39) 0.149
IL-3 -1.47 (-1.71,-1.20) 0.875 (0.818,0.917)

Below median 0.98 (0.64, 1.51) 0.933

Above median 0.77 (0.50, 1.20) 0.258
IL-4 -1.70 (-2.11, -1.47) 0.948 (0.904, 0.973)

Below median 1.07 (0.72, 1.60) 0.718

Above median 1.22 (0.76, 1.97) 0.397
IL-7 —0.16 (—0.49, 0.25) 0.525 (0.449, 0.598)

Below median 1.34 (0.99, 1.82) 0.054

Above median 1.09 (0.80, 1.48) 0.597
TNF-$3 0.85(0.36, 1.28) 0.358 (0.311, 0.449)

@ Springer
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Table 2 (continued)

Normalised biomarker
all clinical covariates

Logistic regression model adjusted for

Comparison against all clinical covariates

OR per SD (95% CI) Wald p value Median (IQR) difference FDR
in test log-likelihood
Below median 0.59 (0.35,0.97) 0.041
Above median 1.41 (0.79, 2.58) 0.245

Data are OR per SD of the normalised variable except for interferon-y, IL-3, IL-4, IL-7 and TNF-3 where data are ORs relative to the ‘below detectable

limit” group

Many of the biomarkers studied showed strong correlations
with each other (ESM Fig. 1). Table 3 shows the selection of
biomarkers in the forward selection nested procedure and their
rank in the models (after all iterations) summarised over the 50
outer test/training folds. Six biomarkers were selected in
100% of the 50 outer training folds as improving prediction
of CVD beyond clinical covariates. The ORs for the final
model including these six biomarkers are also shown in
Table 3.

Five of the six selected biomarkers were those that showed
the strongest associations examined singly. Cystatin C, which
showed a strong univariate association, was not retained by
the forward regression due to its strong correlation with other
biomarkers including NT-proBNP. Conversely, SRAGE was
retained in the forward selection although its association with
CVD before adjustment for the other biomarkers was weak.
The biomarkers selected by forward selection were also
retained as the best predictive biomarkers by the top-down
method (data not shown). We used forward selection to

Table3 Biomarkers selected by forward selection and a simple logistic
regression model adjusted for all covariates and biomarkers selected at
least once by forward selection

Normalised
biomarker

Percentage of  Effect in model including all
outer foldsin ~ biomarkers selected in at least
which retained one outer training fold

OR per SD (95% CI) Wald p value

NT-proBNP 100 1.69 (1.47, 1.95) <0.001
apoClIIl 100 0.79 (0.70, 0.88) <0.001
hsTnT 100 1.29 (1.11, 1.51) 0.001
IL-6 100 1.13 (1.02, 1.25) 0.021
sRAGE 100 0.84 (0.76, 0.94) 0.001
IL-15 100 1.15(1.01, 1.31) 0.032
Factor VII 26

Osteopontin 18

TNF-B 8

Fetuin A 2

Stem cell factor 2

CI, confidence interval

@ Springer

identify which clinical covariates, beyond those included in
the Framingham Risk Score and the already selected bio-
markers, were important predictors of CVD. Three additional
clinical covariates were selected: (in order of selection in the
forward selection model) insulin therapy status, eGFR and
HbA .. See ESM (Results: Forward selection of biomarkers
using logistic regression) for evaluation of the impact of im-
putation, Gaussianisation and the deletion of outliers on the
biomarker selections.

Predictive value of models evaluated using AUROC

The impact of adding clinical covariates and biomarkers to the
Framingham Risk Score model is shown in Table 4. The ad-
dition of the extended clinical covariates to the Framingham
Risk Score model significantly increased the test log-
likelihood as did addition of the selected biomarkers. There
was also a significant impact of the addition of the biomarkers
to the full clinical covariate model. The Framingham Risk
Score model had the poorest predictive performance
(AUROC=0.59). However, in an age and sex stratum
matched design the predictive performance attributable to
the age and sex covariates is constrained by the matched de-
sign so the AUROC: for all the models will be less than if age
and sex are not matched. The AUROCs were 0.66 for models
including clinical covariates, only 0.72 for models with addi-
tion of biomarkers chosen by forward selection, and 0.71 for
models learned from all biomarkers by the top-down ap-
proach. The greatest increase in AUROC was seen on addition
of the first biomarker, which was always NT-proBNP (ESM
Fig. 2).

NRI

By use of a 5 year CVD risk threshold of 10% to define high
risk, adding the six biomarkers chosen by forward selection to
amodel based on clinical covariates only resulted in 3.67% of
cases and 4.40% of non-cases being reclassified with respect
to this threshold, giving a NRI of 8.07%.
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Table 4  Predictive performance for models assessed by AUROC

Model AUROC  Test log-likelihood  Difference in test log-likelihood
for model to Framingham model

Framingham covariates only 0.59 —1,580.5

Full clinical covariate set 0.66 —1,505.5 75.0

Full clinical covariate set plus forward selection biomarkers 0.72 —1,434.4 146.1

Full clinical covariate set plus LASSO penalised regression selected biomarkers  0.71 —1,439.0 141.5

Discussion

In this study of 42 potential CVD biomarkers we confirmed
associations with CVD independently of clinical covariates
for 16 biomarkers, and use of these biomarkers modestly im-
proved the prediction of CVD beyond that obtained by clinical
covariates with an increase in the AUROC from 0.66 to 0.72.
Based on the conventional decision threshold of a 5-year CVD
risk of 10%, we estimated that 8% of individuals would be
reclassified. This improvement was generated by six bio-
markers: NT-proBNP, hsTnT, IL-6, IL-15, apoCIII and
sRAGE.

Our analysis has confirmed previously reported associa-
tions as well as novel associations with CVD in diabetes.
There is increasing data on the importance of NT-proBNP
[18] and hsTnT [19] for CVD prediction in the general popu-
lation. Our data confirm their importance as predictive bio-
markers in diabetes independently of eGFR and the other bio-
markers. ApoCIII inhibits the catabolism of triacyglycerol-
rich lipoproteins, partly through inhibition of their hepatic
uptake and partly through inhibition of lipoprotein lipase ac-
tivity. ApoCIII non-specific gene deletion in animal models is
associated with premature atherosclerosis [20], and most stud-
ies suggest a likely pro-atherogenic role [21]. ApoCIII is
known to be an important link between glycaemia and
dyslipidaemia [22] as its expression is induced by high glu-
cose levels and is responsive to insulin. However, whilst sev-
eral studies have shown that higher apoCIII content on lipo-
proteins is associated with their atherogenicity [23, 24], the
association of total circulating apoCIII itself with CVD has
had less investigation [21]. One of the largest studies is the
Hoomn study [25]. In this study, participants who died of CVD
had higher baseline levels of apoClIIl, and the association was
mediated in part by the positive correlation of apoCIII levels
with dysglycaemia and triacylglycerol levels [25]. In another
analysis of two sex-specific cohorts, after adjustment for tri-
acylglycerol levels, no association was found between total
plasma apoClIII levels and incident CVD [24]. Our finding
of an inverse association with CVD that became even more
apparent on adjustment for HDL-C and triacylglycerol levels
is therefore unexpected. As the direction of association with
apoClIII was unexpected, we confirmed that apoCIII levels
correlated positively with triacylglycerol levels (»=0.25) but

had little correlation with LDL-C (#=—0.02) or HDL-C (r=
0.06). The intra- and inter-assay CVs were quite high at
14.56% and 15.84%, respectively (ESM Table 2), but we con-
firmed that the lower apoCIII levels in cases than controls was
found in all participating cohorts (data not shown). Thus, we
are confident that the assay performed as expected and that
this is a true finding that warrants further study. We note that
our analysis is in non-fasting frozen samples; however,
apoClII has been shown to be unaltered by fasting [26] and
by freezing [27]. One small study in patients with type 2
diabetes also found a lower level of apoCIIl in cases than
controls of CVD [27]. In view of the unexpected association
in our study and the elevated inter-run CV for the assay, we re-
ran all analyses excluding apoCIII and found that the selection
of the other five biomarkers was not affected, although the
total AUROC was somewhat lower (data not shown).

IL-15 is a proinflammatory cytokine for which there is
substantial cell and animal model evidence for a role in ath-
erosclerosis [28, 29], but its characteristics as a predictive
biomarker for CVD in diabetes have not been reported previ-
ously. IL-6 has been characterised as a risk factor for CVD in
several cohorts [30] and we confirm its importance here. In a
subanalysis of the MONICA/KORA samples that also includ-
ed C-reactive protein (CRP) measurement, the association be-
tween IL-6 and CVD was attenuated but the association of IL-
15 with CVD remained (data not shown). Thus, it is likely that
IL-6 will not add a great amount of information to a model in
the presence of CRP. sSRAGE has not been studied in many
prospective studies of type 2 diabetes; we previously showed
that higher levels were associated with an increased risk of
CHD but little difference in stroke risk in clinical trials [31].
The inverse association between sSRAGE and CVD found
here, which is only apparent once it has been adjusted for
eGFR and other biomarkers, is contradictory and requires fur-
ther exploration in other cohorts.

We have used a candidate biomarker approach in this study
rather than a global discovery approach using proteomics or
metabolomics platforms. Of the biomarkers included in our
study, osteopontin has also been identified as a biomarker in a
proteomics study of atherosclerotic plaques and then validated
in serum [32]. Other potential biomarkers, such as heat shock
protein 27, cathepsin D and transthyretin [33], which have
been identified by proteomics of atherosclerotic plaques, or
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the cytoskeletal protein vinculin from plasma proteomic pro-
filing [34], were not included in our study.

To compare biomarkers we used an approach that is com-
mon in the field of machine learning, i.e. N-fold cross-valida-
tion, in which the entire dataset from across cohorts is
partitioned into N test folds, models are fitted to each of the
corresponding training folds and the performance of these
models is evaluated by their ability to predict outcome in the
test folds. We consider that the advantages of this approach in
comparison with model fitting, for example on one half of the
available cohorts and performance assessment in the other half
are: (1) with N-fold cross-validation, model fitting uses a frac-
tion (1-1/N) of the observations rather than only half the ob-
servations so it is more powerful if N is large; (2) evaluation of
predictive performance on test data uses all the observations
because every observation appears once in a test fold; and (3)
all cohorts are represented in each training dataset and in each
test dataset, so we can expect that when the existing cohorts
are representative of new test patients the results should be
more widely generalisable than the conventional approach.

A recent systematic review examined 12 CVD-related
models developed for CVD prediction in diabetes and 33 that
included diabetes as a factor in the model [35]. Of those de-
veloped in patients with diabetes, four examined total CVD
risk, with two—one developed in the ADVANCE (Action in
Diabetes and Vascular Disease: Preterax and Diamicron Mod-
ified Release Controlled Evaluation) study [36] and a Swedish
study [37]—reporting the AUROC without any correction for
overfitting (0.70 in both). Both of these models included age,
sex, diabetes duration and HbA .. The ADVANCE model also
included albuminuria, retinopathy, non-HDL-cholesterol, atri-
al fibrillation and pulse pressure. The Swedish model included
smoking, BMI, lipid-lowering drug use and systolic blood
pressure but no measure of renal function. The United King-
dom Prospective Diabetes Study (UKPDS) risk engine for
CHD and the Framingham Risk Score for CVD are the models
most commonly recommended, but neither includes any mea-
sure of renal function, glycaemic control or stage or severity of
diabetes. Our analysis shows that inclusion of eGFR, HbA
and insulin therapy status is also important for CVD predic-
tion in diabetes.

The clinical utility of this work is somewhat limited at
present, in that the overall improvement in prediction due to
addition of biomarkers is modest over and above clinical co-
variates. However, this modest improvement may still be of
use when designing CVD endpoint trials as another means of
enriching trials for high-risk participants. We have also dem-
onstrated that inclusion of diabetes-specific CVD risk factors
does improve the prediction of the models and should be con-
sidered when assessing patient risk.

A limitation of our study was that all the cohorts included
were European and the extent to which our conclusions gen-
eralise to other populations remains to be established. A
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further issue was that low sample volumes precluded study
of a more comprehensive set of all candidate biomarkers. This
issue is a practical constraint for many epidemiologic cohorts.
Larger gains in prediction might be demonstrable through
measuring high dimensional metabolomic and lipidomic
panels evaluable on small volumes of serum and this approach
will be evaluated further. Finally, predictive performance is
also a function of assay method: where more sensitive or more
accurate assay methods are used these would be expected to
improve the performance of the biomarker. Whilst we found
that several of the cytokines on the Human DiscoveryMAP
panel were undetectable in 70% or more of samples, a high
level of missingness is to be expected for these low abundance
cytokines when acute inflammation is not present.

In conclusion, six biomarkers—NT-proBNP, hsTnT, IL-6,
IL-15, apoCIII and sSRAGE—captured most of the predictive
information about CVD from a panel of 42 biomarkers. By
use of these biomarkers and an extensive set of clinical covar-
iates, prediction was considerably improved compared with
using only the covariates included in the Framingham Risk
Score. For optimised prediction of CVD in diabetes, novel
biomarkers can contribute; however, measures of renal func-
tion and diabetes-specific factors, not currently commonly
used in risk scores, need to be included.
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