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Abstract

Aims/hypothesis More than 40 regions of the human genome
confer susceptibility for type 1 diabetes and could be used to
establish population screening strategies. The aim of our study
was to identify weighted sets of SNP combinations for type 1
diabetes prediction.

Christiane Winkler and Jan Krumsiek are joint first authors.

Anette-Gabriele Ziegler and Ezio Bonifacio are joint senior authors.

Electronic supplementary material The online version of this article
(doi:10.1007/s00125-014-3362-1) contains peer-reviewed but
unedited supplementary material, which is available to authorised users.

C. Winkler - E. Z. Giannopoulou - A.-G. Ziegler (><])

Institute of Diabetes Research, Helmholtz Zentrum Miinchen, and
Forschergruppe Diabetes, Klinikum rechts der Isar, Technische
Universitdt Miinchen, Ingolstaedter Landstr. 1, 85764 Neuherberg,
Germany

e-mail: anette-g.ziegler@helmholtz-muenchen.de

C. Winkler + E. Z. Giannopoulou * A.-G. Ziegler
Forschergruppe Diabetes e.V., Neuherberg, Germany

J. Krumsiek - F. Buettner + C. Angermiiller - F. J. Theis
Institute of Computational Biology, Helmholtz Zentrum Miinchen,
Neuherberg, Germany

F. J. Theis
Department of Mathematics, Technische Universitit Miinchen,
Garching, Germany

E. Bonifacio (D<)

Center for Regenerative Therapies - Dresden, Technische
Universitét, Fetscherstrasse 105, 01307 Dresden, Germany
e-mail: ezio.bonifacio@crt-dresden.de

E. Bonifacio
Paul Langerhans Institute Dresden, German Center for Diabetes
Research (DZD), Dresden, Germany

E. Bonifacio
Institute of Diabetes and Obesity, Helmholtz Zentrum Miinchen,
Neuherberg, Germany

Methods We applied multivariable logistic regression and
Bayesian feature selection to the Type 1 Diabetes Genetics
Consortium (T1DGC) dataset with genotyping of HLA plus
40 SNPs within other type 1 diabetes-associated gene regions
in 4,574 cases and 1,207 controls. We tested the weighted
models in an independent validation set (765 cases, 423
controls), and assessed their performance in 1,772 prospec-
tively followed children.

Results The inclusion of 40 non-HLA gene SNPs significantly
improved the prediction of type 1 diabetes over that provided
by HLA alone (p=3.1x10 %), with a receiver operating char-
acteristic AUC of 0.87 in the TIDGC set, and 0.84 in the
validation set. Feature selection identified HLA plus nine
SNPs from the PTPN22, INS, IL2RA, ERBB3, ORMDLS3,
BACH?2, IL27, GLIS3 and RNLS genes that could achieve
similar prediction accuracy as the total SNP set. Application
of this ten SNP model to prospectively followed children was
able to improve risk stratification over that achieved by HLA
genotype alone.

Conclusions We provided a weighted risk model with select-
ed SNPs that could be considered for recruitment of infants
into studies of early type 1 diabetes natural history or appro-
priately safe prevention.

Keywords Type 1 diabetes - Type 1 diabetes susceptibility
genes

Abbreviations

IDI Integrated discrimination index

RBF Radial basis function

jMCMC  Reversible-jump Markov Chain Monte Carlo
ROC Receiver operating characteristic

SNP Single-nucleotide polymorphism

SVM Support vector machines

TIDGC  Type 1 Diabetes Genetics Consortium
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Introduction

The incidence of type 1 diabetes is increasing, particularly in
children [1]. Much of the aetiology of type 1 diabetes is
accounted for by genetic predisposition [2, 3] and, in particu-
lar, by genes within the HLA class II region. HLA class II
genotypes are used to select neonates for recruitment into
natural history studies and primary prevention trials [3] and,
together with islet autoantibody status, are used for recruiting
children into secondary prevention trials [3]. However,
screening is limited by low specificity of the genetic screen
when applied to the general population or low sensitivity
when screening is confined to children with a family history
of type 1 diabetes.

Besides the HLA class II gene region, more than 40 regions
of the human genome confer susceptibility to type 1 diabetes
[4, 5]. The additional contribution of any single non-HLA
region to risk stratification is small [5], but simple combina-
tion of multiple genes has been shown to aid the stratification
of type 1 diabetes risk [6]. We reasoned that improvement in
prediction might be achieved with an expanded susceptibility
gene set and by weighting gene contributions. A previous
attempt to combine the genes in weighted logistic regression
models suggested that combination approaches should have
modest expectations [7]. Advanced machine learning models
that include model selection and feature ranking have been
recently used to improve genetic prediction in other diseases
[8—10]. Similar approaches have yet to be used for type 1
diabetes.

In this study, we applied multivariable logistic regression
and Bayesian feature selection for 41 genetic susceptibility
markers on data from the Type 1 Diabetes Genetics
Consortium (T1DGC) containing over 4,500 cases and over
1,000 controls [11]. We used the TIDGC dataset to
train our models and identify weighted single-
nucleotide polymorphism (SNP) combinations affecting
the development of type 1 diabetes. We quantified how
well the models could generalise to unseen datasets by
testing their performance on an independent validation
set, subsequently assessed their predictive power for
screening in families and performed simulated projec-
tions of risk for the general population.

Methods

Study population Data from 4,574 people with type 1 diabetes
and from 1,207 non-related control persons from the TIDGC
dataset were used for analysis [11]. Results were validated in a
second set from Germany [12—14].

TIDGC set The TIDGC study protocol has been described
in detail previously [11]. For the present analysis, we used
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data from the TIDGC.2011.03 Tagman dataset consisting
of individuals from multiple populations. Only people with
European ancestry were included in the analyses. The
mean age of diabetes onset was 7.9 years (SD 3.9,
Table 1). Control persons had no family history of type 1
diabetes [11].

German validation set The German validation set consisted
of parents from the BABYDIAB study, including 437 indi-
viduals with type 1 diabetes and 423 non-related spouses as
controls, and 328 children and adolescents with newly diag-
nosed type 1 diabetes from the DiMelli Bavarian diabetes
register [12—-14]. The mean age at diabetes onset was
14.2 years (SD 7.6, Table 1).

BABYDIAB/BABYDIET cohort The BABYDIAB and
BABYDIET studies prospectively follow infants for islet au-
toimmunity and type 1 diabetes [14, 15]. Between 1989 and
2000, BABYDIAB recruited 1,650 offspring of patients from
Germany who had type 1 diabetes [14]. Between 2000 and
2006, 792 offspring or siblings of patients from Germany who
had type 1 diabetes were enrolled in the BABYDIET study.
Islet autoantibodies were measured in samples taken at visits
at age 9 months and 2 years and every 3 years thereafter, and
every 6 months in children who were once tested positive for
any of the islet autoantibodies. A subgroup of 150 children
participated in the BABYDIET gluten intervention study and
had 3-monthly follow-up visits from age 3 months to 3 years,
and yearly thereafter [15]. The studies were approved by the
ethical committees of Bavaria, Germany (Bayerische
Landesérztekammer No. 95357) and the Ludwig Maximilian
University (No. 329/00). Informed, written consent was ob-
tained from all parents. The studies were carried out in accor-
dance with the Declaration of Helsinki, as revised in 2000.

Genotyping Typing for HLA class II alleles at HLA-DRBI,
HLA-DQAI and HLA-DQBI, performed according to the
T1DGC protocol with a sequence-specific olignonucleotide-
based linear assay [16], was available for 1,814 individuals
from the TIDGC set. For the remainder, the SNPs rs2187668
and rs7454108 were used within the TIDGC set to tag the
DR3-DQAI1*05:01-DQBI1*02:01 (DR3-DQ2) and DR4-
DQAI1*03:01-DQB1*03:02 (DR4-DQS8). HLA class 11 alleles
HLA-DRBI1, HLA-DQAI and HLA-DQBI within the valida-
tion set were determined using PCR-amplified DNA and non-
radioactive sequence-specific oligonucleotide probes [11].
Genotyping of 40 non-HLA SNPs (electronic supplementary
material [ESM] Table 1) within the TIDGC set was performed
in the Tagman Laboratory, Cambridge, UK using TagMan 5'
nuclease assay (Applied Biosystems, Warrington, UK).
Genotyping of 40 non-HLA SNPs within the validation set
was performed using TagMan Open Array SNP Genotyping
(Applied Biosystems).
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Table 1 Characteristics of the study sets

Characteristic T1DGC set

German validation set

Patients (n1=4,574)

Controls (n=1,207)

Patients (n=765) Controls (n=423)

7.943.9
2,407 (52.6)

Diagnosis age, years (mean+SD)
Men, n (%)
Type 1 diabetes relative, n (%)

14.2+7.6
549 (45.5) 322 (42.0) 265 (62.6)
108 (14) 11(2.6)

HLA risk genotypes were categorised as 6=DR3/DR4-
DQ8; 5=DR4-DQ8/DR4-DQS8; 4=DR3/DR3; 3=DR4-DQ8/
x; 2=DR3/DRx; 1=DRx/DRx (where x represents the non-
DR3 and non-DR4-DQS8 alleles). For other SNPs, a score of
2 was given to persons homozygous for the susceptibility
allele, 1 when heterozygous and 0 when homozygous for the
non-susceptibility allele.

Statistical analyses A multivariable logistic regression with
SNPs as independent variables and type 1 diabetes as the
dependent variable was performed. Log odds ratios 3; were
derived from the regression model

ogi(p) = o8, (1) = 6, + Bus + e + o+ s

with p = P(D = 1]s1,...,s,) the probability of developing
diabetes, 3, the intercept (baseline diabetes risk), s; state of
SNP i (0,1 or2), §; the log odds ratio of SNP and » the
number of SNPs. The risk score p corresponds to the risk of
each individual for developing diabetes according to the model.
The log odds ratios can be regarded as weights (i.e. the higher
the log odds, the more the SNP contributes to the risk score
used for diabetes prediction). HLA was categorised into five
variables (DR3/DR4-DQ8, DR4-DQ8/DR4-DQ8, DR3/DR3,
DR4-DQ8/x, DR3/DRx), according to the above-mentioned
six categories, where each variable contains a 1/0 indicator as
to whether an individual belongs to that class. The sixth class is
implicitly accounted for when all other five HLA indicators are
zero. The multivariable logistic regression provides the contri-
bution of the single SNPs to the total model and in this way
differs from analyses of individual SNPs. Regression analysis
was performed using the ‘glm’ function implemented in the R
computing environment 3.0.2 (http://r-project.org).

To test for interaction effects, two complementary ap-
proaches were used. First, second-order interaction terms
between all pairs of SNPs were introduced, resulting in the
extended regression model

logit(D) = B, + 5151 + ... + Busu + B1as152 + 5135183

+ oo+ B1uS1Sn + Bo3S283 + e

Since this model contains too many parameters for the

study training dataset, second-order interaction terms, ﬁij s

were selected using forward model selection [17]. Second,
support vector machines (SVM) with radial basis function
(RBF) kernels and a Random Forest classifier [18, 19] were
used as implemented in the R CRAN packages ‘€e1071” and
‘randomForest’, respectively (see also ESM Methods 1 and
2). All 41 features were provided to the classifiers, and the
type 1 diabetes outcome was used as the outcome to be
learned. Both classifiers are able to capture non-linearity and
thus inherently account for interaction effects. Model quality
was assessed using receiver operating characteristic (ROC)
analysis [20]. To this end, all possible values of the risk score p
were considered as thresholds to compute the sensitivity and
specificity. The ROC AUC was derived as follows: (1) for the
training dataset; (2) using tenfold cross-validation and (3) for a
validation set. For cross-validation [21], the dataset was
subdivided into ten fixed stratified folds (i.e. each fold
contained the same ratio of cases and controls as the original
dataset) and the average AUC over the ten folds was
computed.

The increase in predictive power by adding minor suscep-
tibility SNPs was computed using the integrated discrimina-
tion index (IDI) according to Pencina et al [22]. The IDI
describes the difference between increase of average sensitiv-
ity and decrease of average specificity of the model. Model
calibration was assessed using calibration plots as implement-
ed in the ‘predictABEL’ R package.

Cumulative risk of multiple islet autoantibodies and/or type
1 diabetes development was estimated by Kaplan—Meier anal-
ysis. The p values were calculated by a logrank test. Follow-
up was calculated from birth to the age when multiple islet
autoantibodies developed or the age of type 1 diabetes diag-
nosis, or to the last contact.

Model selection and feature ranking

A Bayesian model selection algorithm to explore the model
space spanned by all possible combinations of SNPs was used
[9, 10]. Since the model space is prohibitively large (around
10'? potential models), efficient sampling based on reversible-
jump Markov Chain Monte Carlo (jMCMC) was used [9], an
approach related to Bayesian penalised regression models
[23]. This algorithm allows analysis of trans-dimensional
models by randomly selecting a variable and then proposing
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either addition or deletion from the model. This results in
calculations of a posterior probability for each model to be
the best model (ESM Methods 3).

Based on results from the fMCMC, marginal probabilities
were computed for each SNP. These marginal probabilities
were then used to generate a feature ranking. An alternative
feature ranking based on the log odds from the full multivar-
iable logistic regression was generated. Moreover, we gener-
ated 500 random rankings for comparison, where a
randomised order of SNPs was used instead of ranking them
by a statistical approach. For all rankings, the predictors were
then used in a multivariable logistic regression model, where
the predictive power of the model was assessed using ROC
analysis in a tenfold cross-validation.

Results

Prediction of type 1 diabetes using HLA class II genotypes
and minor susceptibility genes Building a multivariable lo-
gistic regression model that included HLA risk stratification
into six categories without additional susceptibility SNPs
yielded a ROC AUC of 0.82 (95% CI 0.80, 0.83) in the
T1DGC set, a tenfold cross-validation AUC of 0.81 (95%
CI 0.79, 0.82) and an AUC of 0.78 (95% CI 0.75, 0.80) in
the validation set (Table 2, Fig. 1a). Higher discrimination was
achieved when SNP genotyping of the 40 minor susceptibility
genes was added to the HLA risk model, with an AUC of 0.87
(95% C1 0.86, 0.88) in the TIDGC set, an AUC of 0.87 (95%
CI1 0.85, 0.88) in the tenfold cross-validation and an AUC of
0.84 (95% CI 0.81, 0.86) in the validation set (Table 2,
Fig. 1a). The IDI for the increase in prediction accuracy from
the HLA-only model to the model including all SNPs was
0.0986 (p=3.1x10"%). All models showed good calibration
properties (ESM Methods 4). Log odds ratios for each SNP in
the multiple logistic regression model are displayed in Fig. 1b,
and the genetic risk score distributions in patients and control
sets are visualised in Fig. 2.

To account for possible interaction effects between vari-
ables, we constructed extended logistic regression models
with second-order interaction terms between all pairs of
SNPs as well as logistic regression models with interaction
terms between HLA and non-HLA SNPs. Moreover, we

applied a support vector machine classifier with RBF kernel
and a Random Forest classifier, which are predictive models
inherently considering interactions between variables. We did
not observe any improvement in AUC over the logistic re-
gression model (test AUC 0.74 for logistic regression with
SNP-SNP interaction terms, 0.83 for logistic regression with
SNP-HLA interaction, 0.75 for the SVM, 0.82 for random
forests) compared with the reference AUC value of 0.84 from
standard logistic regression. This indicated that interaction
effects for the genetic factors analysed did not play sufficient
a role to be considered in prediction models.

Selection of a reduced set of SNPs with comparable prediction
quality We investigated whether a smaller set of SNPs could
achieve similar discrimination to that provided by the full 41
features using a model-selection and feature-ranking method
based on jMCMC sampling. This stochastic method explores
all potential logistic regression models (i.e. all combinations
of SNPs). Figure 3 illustrates the selection results, showing
both gene combinations and model probabilities, and also
which combinations of SNPs should be selected for discrim-
ination. SNP combinations (models) ranked highest contained
similar sets of only a few SNPs. For example, the top ten
models included HLA, a core set of seven SNPs from
PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH?2 and IL27
genes and between one and five additional SNPs. This indi-
cated that HLA and the core set of seven SNPs were essential
for a good performance, while the performance could be
improved by adding interchangeable SNPs from a larger pool
of additional SNPs.

To select an optimal number of SNPs to be used, we
derived a feature ranking based on the marginal inclusion
probabilities of each SNP. Ranking the features either by the
jMCMC model selection approach or by log odds (high to
low) from the multivariable logistic regression model yielded
almost identical feature rankings. To further demonstrate the
benefit of our variable ranking, we also generated 500
randomised variable orderings (Fig. 4). The plot allowed us
to choose a customised trade-off between the number of genes
in the model and model performance. For example, if the first
ten SNPs were selected (HLA, PTPN22, INS, IL2RA, ERBB3,
ORMDL3, BACH?2, IL27, GLIS3 and RNLS), the discriminat-
ing value was an AUC of 0.86 (95% CI 0.84, 0.88) in the

Table 2 AUC values from the ROC analysis for the prediction of type 1 diabetes based on genetic markers in the TIDGC set and the validation set

Model

T1DGC set AUC (95% CI) Tenfold cross-validation AUC (95% CI) Validation set AUC (95% CI)

HLA-DRBI-DQBI genotypes®

HLA-DRBI-DQBI genotypes” and 40 minor
susceptibility SNPs

0.82 (0.80, 0.83)
0.87 (0.86, 0.88)

0.81 (0.79, 0.82)
0.87 (0.85, 0.88)

0.78 (0.75, 0.80)
0.84 (0.81, 0.86)

*6=HLA-DR3/DR4-DQS8; 5=HLA-DR4-DQ8/DR4-DQ8; 4=HLA-DR3/DR3; 3=HLA-DR4-DQ8/x; 2=HLA-DR3/DRx; 1=HLA-DRx/DRx (where x

represents the non-DR3 and non-DR4-DQ8 alleles)

@ Springer
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Fig.1 Prediction of type 1 diabetes based on HLA class II genotypes and
minor susceptibility genes. (a) ROC curve for the prediction of type 1
diabetes using HLA class II genotypes and HLA plus 40 SNPs based on
multivariable logistic regression. The predictive power of the model is
shown in the training set (pink line), tenfold cross-validation (green line)

T1DGC set, 0.86 (95% CI 0.84, 0.88) in the tenfold cross-
validation and 0.82 (95% CI 0.79, 0.84) in the validation set.
This was only slightly worse than the full model containing all
SNPs (0.84; 95% CI1 0.81, 0.86 in the validation cohort).

Application of model to screening in families The perfor-
mance of the reduced model was assessed in longitudinal data
from the German BABYDIAB and BABYDIET studies [14,
15]. Genetic data for the ten SNPs in our reduced model were
available for 1,772 children, including 99 who developed
multiple islet autoantibodies and/or type 1 diabetes during
follow-up. As expected for first-degree relatives of patients,
the distribution of risk scores derived from our ten-SNP model
in the BABYDIAB and BABYDIET children was slightly
shifted away from the distribution in the validation set
(p=0.0003, Fig. 5a). The 1,772 children were post hoc

200+

100

Number of children

0.50 0.75

Risk score

0 0.25 1.00

Fig. 2 Risk score histogram on the validation set. Probabilities from the
logistic regression model are shown for patients with type 1 diabetes and
controls. White bars, controls; dark grey bars, cases; light grey bars,
overlap
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and in the validation set (blue line). Solid lines represent the HLA plus 40
SNPs model, dashed lines mark the ROC curves for HLA only. (b) Effect
sizes of all variables quantified by log odds ratios. Error bars indicate 95%
Cls. *p<0.05 and **p<0.005

stratified into four risk score centiles (<10th centile, 10th to
50th centile, 50th to 90th centile, > 90th centile). Markedly
increased risk of multiple islet autoantibodies or type 1 diabe-
tes was observed in children with scores above the 90th centile
(5 year risk, 18.2%; 95% CI 12.3, 24.1; n=177) as compared
with children with intermediate scores in the 50th to 90th
centile (3.5%, 95% CI 2.1, 4.9; p<10~'" vs >90th
centile; n=708) and 10th to 50th centile (2.5%, 95%
CI 1.3, 3.7; p<10'° vs >90th centile; n=710), or
scores below the 10th centile (0%, p<10~'% vs >90th
centile; n=177; Fig. 5b). Children with scores above the
90th centile included 39 (40%) of the 99 children who devel-
oped multiple islet autoantibodies or diabetes.

We previously showed that HLA DR-DQ genotyping alone
can stratify risk of multiple islet autoantibodies and that chil-
dren with HLA-DR3/DR4-DQS8 or HLA-DR4-DQ8/DR4-DQ8
genotypes had substantially increased risk [24]. We therefore
examined whether the ten-SNP score was able to discriminate
risk in children who had HLA-DR3/DR4-DQ8 or HLA-DR4-
DQ8/DR4-DQS8 genotypes (Fig. Sc). Of the 153 children with
high-risk HLA genotypes, 109 children had a feature model
risk score above the 90th centile of all 1,772 BABYDIAB and
BABYDIET children. The 5 year risk for multiple islet auto-
antibodies or type | diabetes was 22.7% (95% CI 14.6, 30.8,
n=109) in the HLA high-risk children with risk scores >90th
centile and 7.4% (95% CI 0.1, 15.6, n=44) in the remaining
44 HLA risk children with risk scores below the 90th centile.
Of the 32 HLA high-risk children who developed multiple
islet autoantibodies or type 1 diabetes, 29 (91%) had risk
scores >90th centile.

Simulated application of model to population screening We
subsequently asked how the genetic selection might perform

@ Springer
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Fig. 3 Feature ranking using 5jMCMC, showing 285 accepted models
from the fMCMC algorithm. The plot visualises how often and in which
combinations discriminative SNP sets are selected. (a) Coloured rectan-
gles indicate that a SNP was included in the respective model. The colour
codes refer to the log odds of the SNP in the model. The frequency with

in general population screening using simulated projections of
risk. We calculated hypothetical population-based positive
predictive values at different specificities, assuming a disease

which a SNP appears in these models can be interpreted as the importance
of the SNP for classification. (b) Posterior probabilities of the models.
Note that all models displayed here can be regarded as viable in the model
selection process

prevalence of 0.5% by the age of 20 years (Table 3). For high
sensitivity, the simulated model proposes a threshold that
would identify >50% of future cases and would require

e .
0.8 1 o
1.
7’
°”
Qorq s
< R
0.6 1
0.5 1
s 1 e 2026 P U e AR 69 AR R 0 Q
IR % 0”»%\” RIS KNG w‘\ SRS swoe
Rat's ‘?“?‘ @ %(\)(o‘b N\ «\A/L \ \{:Lq\/g/ %,\

Fig. 4 Performance evaluation of ranked SNPs. Model performance for
cumulative SNPs included in the model is shown, illustrating the trade-off
between the number of genes in a model and model performance. The
order of the SNPs corresponds to the jMCMC-based feature ranking,
wherein SNPs are included in a cumulative fashion from left to right,
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starting with HLA category 6. Cross-validation performance (dashed line)
as well as performance in the validation set (dotted line) are shown,
together with a performance curve for multiple rounds of feature inclusion
at random (no feature ranking, solid line; error bars indicate SDs over 500
randomisations)
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Fig. 5 Performance of risk model in a prospectively followed cohort of
children. (a) Distribution of the risk score derived from our ten-SNP set
(HLA, PTPN22, INS, IL2RA, ERBB3, ORMDL3, BACH2, IL27, GLIS3,
RNLS) in children from the BABYDIAB and BABYDIET studies. (b)
Cumulative risk for the development of multiple islet autoantibodies or
diabetes based on the risk score derived from the top-ten-SNP set. The
number of children still followed in each of the categories (black solid
line, above the 90th centile; dashed line, 50th to 90th centile; dotted line,
10th to 50th centile; grey solid line, below the 10th centile) is shown,
»<0.001 overall. (¢) Cumulative risk for the development of multiple islet
autoantibodies or diabetes in children from the BABYDIAB and
BABYIET studies with HLA-DR3/DR4-DQ8 or HLA-DR4-DQ8/DR4-
DQ8 genotypes based on the risk score derived from the ten-SNP set, p=
0.007. The number of children still followed in both categories (black
solid line, above the 90th centile; dashed line, below the 90th centile) is
shown

selection of 10% of the population; these children will have an
estimated 2.6% risk for type 1 diabetes. For high specificity,

selection of children with up to 20% risk might be achieved
using a threshold that selected 0.5% of the population and
identifies 24.1% of cases (e.g. for 99.5% specificity; Table 3).
Using the latter example, if 200,000 children were screened,
of whom 1,000 (0.5%) are expected to develop diabetes, we
would select 1,236 with a risk score >0.97. Of these 1,236 chil-
dren, 241 are simulated to develop type 1 diabetes before age
20 years. In comparison, the highest HLA risk genotype
(DR3/DR4-DQ8) alone is simulated to have a specificity of
98.8% (2,672 selected) and a risk of 10.7% (284 developing
diabetes; Table 3).

Discussion

The use of weighted models incorporating genotype informa-
tion for HLA class II genes and SNPs from 40 minor suscep-
tibility genes provided a relatively high discrimination for
type 1 diabetes. Although HLA genes provided the major
contribution to prediction, the addition of SNP genotypes
from minor genes significantly improved prediction models.
There was no further improvement observed by considering
interactions between the 41 genetic markers. Feature selection
identified HLA plus seven SNPs from the PTPN22, INS,
IL2RA, ERBB3, ORMDL3, BACH2 and IL27 genes as the
minimal set of genetic markers to include in high-
performing weighted risk models and incorporating these plus
two other SNPs could achieve similar prediction accuracy as
the total set of analysed genes.

Our study was based on a large training set that included
SNPs covering validated type 1 diabetes susceptible genes.
The robustness of the findings was confirmed on a second
independent set. Novel aspects of the analysis include the use
of multivariable logistic regression that examined the contri-
bution of SNPs collectively rather than individually. The
resulting value was a weighted score indicating the genetic
risk of developing disease for each person. An additional
novel aspect was the use of feature selection as a tool to
identify a limited set of SNPs for prediction. This is an
extension and sophistication of our previous approach with a
limited SNP set performed on a small cohort [6]. Some of the
non-HLA SNPs selected in the high-performance models
from the previous study (P7TPN22 and ERBB3) were also
selected by the current model. There were important differ-
ences between this and our previous study that are likely to
have limited the overlap in the identified SNP sets. First, the
previous study did not include genotyping for the majority of
the seven non-HLA SNPs, which were essential for highly
predictive models in the current analysis. Second, the previous
study selected individuals with HLA risk genotypes instead of
using HLA as a factor in the model. Third, the previous study
was performed only on children who had a family history of
type 1 diabetes. Fourth, SNP sets were previously selected
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Table 3 Performance of our ten genetic marker model in general population screening

Specificity in validation set® Risk score p value

Sensitivity in validation set (%)°

Disease probability given positive test (%)°

99.5% 0.97 24.1
99% 0.96 27.3
97.5% 0.95 334
95% 0.92 42.6
90% 0.87 53.7
Max. specificity for HLA alone 98.8%° 28.4

19.5
12.1
6.3
4.1
2.6
10.7

*100 — specificity is the approximate prevalence expected in the general population

® Proportion of patients with type 1 diabetes that would be identified

¢ Probability of developing type 1 diabetes given positive test result, based on the respective sensitivity and specificity in the general population with

0.5% disease prevalence
9 Highest HLA risk genotype

without allowing different weights for the SNPs. Finally, it is
theoretically possible that more SNPs could improve our
model if a larger dataset was used.

A potential limitation of our study is that the analysis was
performed on cross-sectional data rather than on a prospective
dataset. Application to the BABYDIAB and BABYDIET
cohorts provided some appreciation of how the model could
perform in a prospectively followed population. If selection
into the BABDIET study had been based on a ten-SNP risk
score that identified the upper 10th centile of the children
screened, we would have enrolled 130 children, 21 of whom
developed diabetes during follow-up. In comparison, the ac-
tual selection that was based on HLA typing alone identified
169 children, of who 12 developed diabetes. This example is
limited to children who have both a family history and high
genetic risk score. Familial cases may be enriched for unusual
cases such as those associated with rare variants. Thus, it will
be important that the model is properly validated in prospec-
tive studies within the general population where absolute risk
is substantially lower than in relatives. It is also likely that the
models we have identified are not optimised for all ethnic and
regional groups [25].

Our analysis has relevance to ongoing and future natural
history and prevention studies performed in children who are
genetically at risk for type 1 diabetes [26-28]. Selection is
currently based on type 1 diabetes family history and/or HLA
risk genotypes. We simulated a broader application of a
weighted model for the set of ten genetic markers identified
in the present study to general population screening. In the
simulated example, we could select children with around 20%
risk, and include nearly a quarter of future cases when thresh-
olds were set to select 0.5% of the general population
(Table 3). Typing could be achieved with two or three SNPs
from the HLA region as recently shown [29, 30] and the nine
SNPs from the additional genes. True performance will re-
quire actual validation, but screening based on these ten

@ Springer

genetic markers may provide a more efficient selection of risk
children than screening with HLA alone.

In conclusion, we were able to improve prediction for type
1 diabetes by multiple logistic regression and feature ranking
analysis methods on large susceptibility SNP sets. We suggest
that these approaches and weighted SNP genotype models
similar to those that we have identified could be used for
selection of cohorts of at-risk children in natural history and
appropriately safe prevention studies.
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