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Abstract
Aims/hypothesis In rodents and humans, the rate of beta cell
proliferation declines rapidly after birth; formation of the
islets of Langerhans begins perinatally and continues after
birth. Here, we tested the hypothesis that increasing levels of
E-cadherin during islet formation mediate the decline in beta
cell proliferation rate by contributing to a reduction of
nuclear β-catenin and D-cyclins.
Methods We examined E-cadherin, nuclear β-catenin, and D-
cyclin levels, as well as cell proliferation during in vitro and in
vivo formation of islet cell aggregates, using β-TC6 cells and
transgenic mice with green fluorescent protein (GFP)-labelled
beta cells, respectively. We tested the role of E-cadherin using
antisense-mediated reductions of E-cadherin in β-TC6 cells,
and mice segregating for a beta cell-specific E-cadherin
knockout (Ecad [also known as Cdh1] βKO).
Results In vitro, pseudo-islets of β-TC6 cells displayed
increased E-cadherin but decreased nuclear β-catenin and
cyclin D2, and reduced rates of cell proliferation, compared

with monolayers. Antisense knockdown of E-cadherin in-
creased cell proliferation and levels of cyclins D1 and D2.
After birth, beta cells showed increased levels of E-
cadherin, but decreased levels of D-cyclin, whereas islets
of Ecad βKO mice showed increased levels of D-cyclins
and nuclear β-catenin, as well as increased beta cell prolif-
eration. These islets were significantly larger than those of
control mice and displayed reduced levels of connexin 36.
These changes correlated with reduced insulin response to
ambient glucose, both in vitro and in vivo.
Conclusions/interpretation The findings support our hy-
pothesis by indicating an important role of E-cadherin in
the control of beta cell mass and function.

Keywords Beta cell signal transduction . Genetics of type 2
diabetes . Islet development

Abbreviations
CDH2 Cadherin 2
CDH5 Cadherin 5, type 2 (vascular endothelium)
ChIP Chromatin immunoprecipitation
CX36 Connexin 36
E Embryonic day
Ecad βKO Beta cell-specific E-cadherin knockout
GFP Green fluorescent protein
GSIS Glucose-stimulated insulin secretion
IPGTT Intraperitoneal glucose tolerance test
PECAM Platelet/endothelial cell adhesion molecule 1
si Small interfering
Wnt Wingless-type MMTV integration site family
WT Wild-type

Introduction

Relative or absolute deficiency of pancreatic beta cell mass
underlies the pathogenesis of type 2 and type 1 diabetes [1].
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Among the factors affecting postnatal beta cell mass (i.e.
beta cell proliferation, beta cell size, beta cell apoptosis, islet
cell transdifferentiation and islet neogenesis) [2], prolifera-
tion is considered to be quantitatively the most significant in
both humans and mice [3, 4].

In each species, the rate of beta cell proliferation declines
after birth [2, 3], reflecting a decrease in the number of cells
going through the G1/S transition [5, 6]. Genes that control
this transition, such as cyclin D1/D2 and Cdk4, influence beta
cell proliferation in mouse models [5]. In murine islets, cyclin
D2 shows the highest levels compared with other D-cyclins,
and plays a primary role in regulating postnatal beta cell mass
[7]. From postnatal (P)4 to P10, the percentage of beta cells
producing cyclin D2 is reduced threefold, but how and why
this decrease occurs is unknown. In mice, formation of the
islets of Langerhans begins at embryonic day (E)17.5–E18 [8]
and continues after birth until at least P13 [9]. We hypothes-
ised that the cell adhesion molecule, E-cadherin, might be
upregulated in response to the cell–cell contacts that beta cells
establish during islet formation, contributing to the reduction
of cyclin D2, and consequently slowing beta cell replication.

E-cadherin is produced endogenously by beta cells, and
mediates most of the Ca2+-dependent cell adhesion between
all islet cell types [10]. Overexpression of a dominant-
negative form of E-cadherin in beta cells disrupts islet forma-
tion at E17.5 [11], and antibodies against E-cadherin prevent
pseudo-islet formation in MIN6 cells [12]. E-cadherin has
been reported to modify wingless-type MMTV integration
site family (Wnt) signalling by tethering β-catenin to the
plasma membrane, inhibiting its translocation to the nucleus
and thereby decreasing levels of D-cyclin [13].

We also tested the effect of E-cadherin on insulin secre-
tion, as the levels of E-cadherin at the beta cell membrane
correlate with insulin secretion [14] by a still-undetermined
mechanism that likely involves changes in the gap junction
protein connexin 36 (CX36) [15–17].

Here, we report that: (1) the levels of E-cadherin protein
increase during pseudo-islet formation in vitro and islet
morphogenesis in vivo, in parallel with a decrease in the
levels of D-cyclin; (2) loss of E-cadherin production in beta
cells, after conditional knockout, is associated with in-
creased beta cell proliferation and beta cell mass; and (3)
the increased mass of beta cells resulting from loss of E-
cadherin expression is associated with reduced glucose-
stimulated insulin release both in vivo and in vitro, consis-
tent with the parallel downregulation of CX36.

Methods

Tissue culture For details of tissue culture, pseudo-islet
formation, and transfection for β-TC6 cells, see the elec-
tronic supplementary material (ESM) Methods.

Mice The preparation of Ins2-Gfp knock-in mice, generated
to label beta cells with green fluorescent protein (GFP), is
described in the ESM Methods. To generate beta cell-
specific E-cadherin knockout mice, Ins-Cre mice on a
Black Swiss background [18] were crossed with mice with
LoxP sites flanking exons 6-10 of E-cadherin (B6.129-
Cdh1tm2Kem/J, Ecad [also known as Cdh1]fl/fl [19];
Jackson Laboratories, Bar Harbor, ME, USA). See the
ESM Methods for further details.

Histology Paraffin sections or cryosections of pancreases
were prepared using standard techniques. Histological sec-
tions and antibodies used for each histology analysis are
described in the ESM Methods.

Western blotting Proteins were extracted using mammalian
protein extraction reagents (M-PER) or nuclear and cyto-
plasmic extraction reagents (NE-PER) (Fisher, Waltham,
MA, USA) from whole-cell extracts and purified cytosolic
and nuclear fractions, and assayed as described previously
[20]. See the ESM Methods for further details.

RNA extraction, cDNA synthesis, quantitative PCR, chro-
matin immunoprecipitation for β-TC6 cells and isolated
islets Total RNA from β-TC6 cells and isolated islets was
extracted using the RNeasy kit (Life Technologies,
Carlsbad, CA, USA) and cDNA was prepared using
SuperScript III (Life Technologies). See the ESM Methods
for further details of chromatin immunoprecipitation (ChIP)
assay, quantitative PCR and primer sequences.

Cell proliferation assays Cell proliferation was assessed by
the following methods: (1) 5-ethylnyl-2′-deoxyuridine (EdU)
incorporation, using the Click-iT EdU Flow Cytometry Assay
Kit (Life Technologies); (2) fluorescein succinimidyl ester
(CFSE; Life Technologies) labelling; (3) BrDU incorporation,
quantified using a BrdU ELISA kit (Roche, Indianapolis, IN,
USA); and (4) Ki67 immunostaining of primary beta cells.
See the ESM Methods for further details.

Cx36 expression and function β-TC6 cells were co-
transfected with small interfering (si)RNA against E-
cadherin, and with either a green or red fluorescence siGLO
Transfection Indicator (Fisher), as described above. After
3 days, cells were either tested by microinjection of ethidium
bromide or Lucifer Yellow to assess the functions of CX36
channels, or FACS sorted and then extracted for protein anal-
ysis. Detailed methods are provided in the ESM Methods.

Quantification of E-cadherin and cyclin D1/D2 in beta cells
from mice of different ages Male mice homozygous for the
Ins2-Gfp allele were crossed with female C57BL/6J mice.
Pancreases of mice at different ages were dissociated into cells
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as previously described [21] to quantify E-cadherin and cyclin
D1/D2 per beta cell. See the ESMMethods for further details.

Islet isolation and glucose-stimulated insulin secretion Pancreatic
perfusion, islet collection, and glucose-stimulated insulin
secretion (GSIS) were performed as previously described
[20]. Media insulin concentration and the insulin content
of the islets were measured using an ultrasensitive mouse
insulin ELISA (Mercodia, Uppsala, Sweden). Islet insu-
lin release was expressed in relation to islet insulin con-
tent. Islet glucagon concentration was measured using a rat
glucagon ELISA (Wako, Richmond, VA, USA).

Islet morphometry Islet morphometric analysis was per-
formed as described by Dokmanovic-Chouinard et al [20].
The insulin-positive area was quantified using ImageProPlus
software version 6.3 (Media Cybernetics, Bethesda, MD,
USA) and Photoshop CS2 (Adobe, San Jose, CA, USA).
Beta cell mass was obtained by multiplying the total pancreas
mass (mg) by the mean proportion of insulin-positive area per
section and area. The platelet/endothelial cell adhesion mole-
cule 1 (PECAM)- and cadherin 5, type 2 (vascular endotheli-
um) (CDH5 [VE-cadherin])-positive area was expressed as a
percentage of total insulin-positive area.

Transmission electron microscopy Batches of 20–30 islets
isolated from four control and four beta cell-specific E-
cadherin knockout (Ecad βKO) mice were processed as de-
scribed in Stefan et al [22]. Some experiments also investigated
control and EcadβKO islets in situ, after similar processing of
fragments of intact pancreas (three mice per group). Three to
five islets were screened per animal, and about 50 isolated beta
cells were screened (three mice per group), under blinded
conditions, for potential differences in intercellular junctions
between control and Ecad βKO mice [23]. Organelles were
identified as previously reported [22, 23].

Studies of glucose homeostasis For studies of glucose ho-
meostasis, intraperitoneal glucose tolerance tests (IPGTTs),
capillary blood glucose and serum insulin assays, and insu-
lin tolerance tests (ITTs) were performed. See the ESM
Methods for further details.

Statistics Student’s t tests (two-tailed) were performed
using Microsoft Excel (Office 2007 and Office 2010).
A p value <0.05 was considered significant.

Results

E-cadherin negatively regulates D-cyclin levels and cell
proliferation in vitro To assess the effects of aggregation
of insulin-producing cells on their proliferation, we

generated in vitro islet-like aggregates (pseudo-islets) using
SV-40 transformed insulinoma β-TC6 cells. See ESM
Results for details. In β-TC6 pseudo-islets, the amount of
E-cadherin correlated negatively with the levels of cyclin
D2 and cell proliferation rates (ESM Fig. 1a–f). Monolayers
of β-TC6 cells treated with an siRNA that reduced Ecad
mRNA by 90% showed increased cyclin D1 and D2 mRNA
and cell proliferation (ESM. Fig. 2a–d). Chromatin immu-
noprecipitation (ChIP) in cells stably overexpressing E-
cadherin showed decreased levels of β-catenin binding to
the promoter regions of both cyclin D1 (−50%) and c-Myc
(also known as Myc) (−40%), compared with β-TC6 cells
stably transfected with an empty vector (ESM Fig. 2). These
observations indicate that the change in beta cell prolifera-
tion induced by E-cadherin may be mediated by alterations
in the binding of β-catenin to several target genes.

In vivo islet formation is accompanied by increased produc-
tion of E-cadherin, and decreased production of nuclear
β-catenin and cyclin D2 We generated a mouse co-
expressing gfp and Ins2 by homologous-recombination-
mediated knock-in of the fluorescent protein at the Ins2
locus (Fig. 1a). The immunoblot of proteins extracted from
islets of homozygous and heterozygous Ins2-Gfp mice with
an anti-GFP antibody showed a 27 kDa band that was not
detected in wild-type (WT) control mice (Fig. 1b). Nearly
all (96%) of the insulin-positive beta cells of the Ins2-gfp
homozygous mice showed GFP labelling (Fig. 1c). GFP
was not detected in the brain, kidneys or liver (data not
shown). At 1.5 months of age, both homozygous and het-
erozygous Ins2-gfp mice had normal glucose tolerance
(Fig. 1d).

The levels of E-cadherin per beta cell increased approx-
imately twofold between birth and P22, remaining constant
thereafter, while no such change was observed in non-beta
pancreatic cells (Fig. 1e). The mRNA levels of cyclins D1/
D2 decreased in parallel between P0 and P45 in FACS-
sorted beta cells (Fig. 1f). Compared with the levels ob-
served at birth, the levels of cyclin D2 were reduced by 65%
and 82% at P22 and P45, respectively. Transcript abundance
of cyclin D1 was ten- to 100-fold lower than that of cyclin
D2 [7], making it difficult to detect decreases in cyclin D1
levels.

At P1, almost all beta cells in C57BL6/J animals dis-
played nuclear staining for β-catenin. As the mice aged, the
proportion of beta cells with such staining decreased and
nuclear β-catenin was not detected in beta cells at P90
(Fig. 1g). These experiments indicate that, during postnatal
in vivo islet formation, E-cadherin abundance is negatively
correlated with levels of D-cyclins and nuclear β-catenin.

In vivo knockout of E-cadherin does not markedly affect
islet structure To examine the effects of E-cadherin on beta

858 Diabetologia (2013) 56:856–866



cell proliferation, we generated mice lacking E-cadherin in
beta cells by crossing Ins-Cre recombinase mice [18] with
Ecad fl/fl mice [19]. Immunofluorescence staining of pancre-
atic sections indicated that E-cadherin was not detectable in
beta cells of Ecad βKO mice (Fig. 2a). A threefold reduction
in E-cadherin protein was consistently observed in the islets of

Ecad βKO animals (Fig. 2b). Immunohistochemistry indi-
cated that the residual amounts of E-cadherin immunoblot-
ted in the islet extracts (Fig. 2b) could be attributed to
modest expression in non-beta cells in which Ins-Cre did
not excise the targeted region of the E-cadherin gene
(Fig. 2a).
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Fig. 1 Construction and analysis of the Ins2-gfp knock-in mice. (a)
Schematic view of the Ins2-gfp knock-in construct and Southern blot
of embryonic stem cell genomic DNA digested with NsiI, using as
probe a 1 kb DNA fragment outside of the 3′ arm of the described
construct (pink bars). The probe identifies a 4.8 kb fragment,
corresponding to the insert in the correct orientation. Red bar, Ins2
exon; green bar, GFP-coding region; green bar, kanamycin resistance
cassette; ATG, start codon. (b) Western blot of total protein extract of
isolated islets showing GFP production in the Ins2-gfp heterozygous
Ins2-gfp/+ (‘Het’) and homozygous Ins2-gfp/Ins2-gfp (‘GFP’) mouse
islets. Actin was used as loading control. (c) Fluorescence micrograph
of an islet from a 1-month-old Ins2-gfp knock-in mouse. Anti-GFP
antibody, green; insulin, red; and DAPI, blue. The black and white
images of anti-insulin and anti-GFP of the merged images are also

shown. Bar, 20 μm. (d) IPGTT in 1.5 month-old male mice: WT,
green; heterozygous, red curve; and homozygous Ins2-gfp mice, blue
curve. Data are mean±SEM values of five mice per genotype. (e)
Levels of E-cadherin from P1 to P22 in GFP-positive beta cells (grey
bars) and non-beta endocrine cells (white bars). Data are mean±SEM
levels of Cy5 fluorescence per beta cell of five mice per age; **p<0.01
and ***p<0.001 for P1 values vs the other time points. Cy5, cyanin 5.
(f) Quantitative PCR of mRNA for cyclin D1 (black bars) and D2
(white bars) in postnatal GFP-positive beta cells of heterozygous Ins2-
gfp mice. Data are mean±SEM values of relative expression for five
mice per age; *p<0.05 and **p<0.01 for samples at P0 vs other time
points. (g) Representative images of β-catenin (green) staining in islets
of 1, 10 and 90-day-old C57BL6/J animals. At all ages: insulin, red;
DAPI, blue. Bar, 10 μm. INS, insulin
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Body weights of Ins-Cre:Ecad+/+ (control) and Ecad
βKO mice were not significantly different (data not shown).
Islets of control and Ecad βKO mice did not differ in such
ultrastructural features of beta cells as closely apposed plas-
ma membranes (Fig. 2c), the mRNA and protein of beta cell
maturation markers (data not shown), and the mRNA of 18
other cadherin species (data not shown). There was no
visible change in either the configuration or number of alpha
cells (ESM Fig. 3), nor was there a change in islet glucagon
content ([mean±SEM]: 1 month-old Ecad βKO mice 0.56±
383 nmol/μg of DNA; control: 0.54±0.06 nmol/μg; n=4 for
each genotype), or mRNA of glucagon in islets (data not

shown). However, Cdh2 and Cdh5 mRNA increased by
nine- and fourfold, respectively, in the islets of Ecad βKO
animals (Fig. 3a). Immunofluorescence revealed cadherin 2
(CDH2 [N-cadherin]) in the beta cells of Ecad βKO mice
(Fig. 3b), whereas CDH5 was detected in the islet blood
vessels of both Ecad βKO and control mice (Fig. 3c).
CDH2 abundance was approximately threefold higher (3.0
±0.50, n=3) in islets of 1 month-old Ecad βKO animals
than in islets of age-matched controls (Fig. 3d). Consistent
with the increased mRNA expression of Cdh5 in 1 month-
old Ecad βKO animals, the area immunostained with CDH5
antibody was twofold larger in 1 month-old Ecad βKO
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Fig. 3 Loss of E-cadherin is associated with increased expression of
other cadherins in islets of 1 month-old Ecad βKO mice. (a) Quanti-
tative PCR of Ecad, Cdh2 mRNA and Cdh5 mRNA in islets of
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mean±SEM; ***p<0.001. (f) The area positively stained with PECAM,
expressed as percentage of insulin-positive area, in 1-month-old Ecad
βKO mice (white bar, n=4) and controls (black bar, n=4). Data are
presented as mean±SEM; *p<0.05
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animals than in control animals (Fig. 3e). Blood vessel
density measured by percentage of area immunostained for
PECAM within the insulin-positive area was increased ap-
proximately twofold in 1 month-old Ecad βKO animals
(Fig. 3f), suggesting that the increased level of CDH5 can
be accounted for by increased blood vessel density. These
observations indicate that in vivo knockout of E-cadherin in
beta cells did not markedly alter the organisation of beta
cells within the islets, possibly because of compensatory
changes in other cadherins.

In vivo knockout of E-cadherin increases beta cell
proliferation Immunoblots of islet proteins indicated that
cytoplasmic β-catenin was detectable only in Ecad βKO
islets, and that when these animals were 1 month of age,
nuclear β-catenin was increased approximately ninefold
(9.3±1.0, n=3) over control levels (Fig. 4a). In islets of
1 month-old Ecad βKO mice, cyclin D1 and cyclin D2
mRNA increased (p<0.05) four- and threefold, respectively,

vs controls (Fig. 4b). Cyclin D2 protein also increased in the
islets of 1 month-old Ecad βKO mice (Fig. 4c). These
results indicate that the increased beta cell proliferation in
Ecad βKO animals was associated with increased levels of
β-catenin and cyclins D1 and D2.

To estimate the proportions of dividing beta cells, the
number of Ki67-positive cells was related to the total num-
ber of insulin-positive beta cells [20]. Ecad βKO mice
showed higher rates of beta cell proliferation vs age-
matched control animals. The percentages of Ki67-positive
beta cells were 1.5-fold (p=0.05) and twofold (p<0.01)
higher in 7 day- and 1 month-old animals, respectively
(Fig. 4d). This difference did not reach statistical signifi-
cance in 3 month-old animals (Fig. 4d) that showed an
increase in beta cell mass (Fig. 4e).

E-cadherin knockout decreases glucose tolerance and
GSIS Although 1 month-old Ecad βKO and control animals
have similar glucose tolerance (Fig. 5a), 3 to 4 month-old
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Ecad βKO mice showed reduced glucose tolerance (Fig. 5b),
despite a 2.5-fold increase in beta cell mass and normal levels
of several beta cell markers (Fig. 4e and data not shown). Area
under the curve analysis confirmed the decreased glucose
tolerance in 3 to 4 month-old Ecad βKOmice compared with
control (Fig. 5c). No differences in insulin sensitivity (by
insulin tolerance testing) and fasting insulin levels were ap-
parent in either 1 or 4 month-old animals (Fig. 5d, e and ESM
Fig. 4a). In mice at 1 month of age, the serum insulin concen-
trations after intraperitoneal glucose administration were not
different between Ecad βKO and control animals (ESM
Fig. 4b, c). However, 4 month-old animals displayed lower

serum insulin concentrations at time point 15 min of the
IPGTT (ESM Fig. 4d, e). Islets isolated from 1- and 4-
month-old Ecad βKO mice secreted 40% and 50% less insu-
lin, respectively, (p<0.05) in response to 8.4 mmol/l glucose
(Fig. 5f, g). No difference was observed in the responses of
these islets to 2.8 mmol/l glucose, 16.8 mmol/l glucose or
16.8 mmol/l glucose plus 20 mmol/l KCl (Fig. 5f, g). Under
all of these conditions, islets of Ins-Cremice displayed insulin
secretion rates comparable with those of C57BL6/J controls
(ESM Fig. 5). The insulin content of islets from Ecad βKO
mice (1.7±0.3 μg/g DNA) was not different from that of
controls (2.0±0.2 μg/g DNA).
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Fig. 5 Adult Ecad βKO mice feature glucose intolerance caused by
reduced insulin secretion, in the absence of differences in systemic
insulin sensitivity. (a,b) IPGTT in (a) 1, and (b) 4 month-old Ins-Cre:
Ecad+/+ (black line) and Ecad βKO animals (grey line) fasted for 18 h.
Capillary blood glucose concentrations are presented as mean±SEM
for seven to ten mice per genotype and age; *p<0.05, **p<0.01 and
***p<0.001. (c) Area under the curve analysis for Ecad βKO animals
(white bars) and control Ins-Cre:Ecad+/+ animals (black bars) at 1 and
4 months of age from the experiments shown in Fig. 5a,b. Data are
presented as mean±SEM for seven to ten mice per genotype and age;

*p<0.05. (d,e) Capillary blood glucose after i.p. injection of insulin.
Ecad βKO (grey line) and control mice (Ins-Cre:Ecad+/+, black line) at
1 month (d) and 4 months of age (e). Capillary blood glucose con-
centrations are presented as mean±SEM for six to seven mice per
genotype and age. (f,g) GSIS and KCl-stimulated insulin secretion
from islets isolated from (f) 1, and (g) 4 month-old control (Ins-Cre:
Ecad+/+, black bars) and Ecad βKO animals (white bars). Data are
presented as mean±SEM % insulin release normalised by total
insulin contents; *p<0.05
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Response to ambient glucose is partly dependent on beta
cell to beta cell communication mediated by gap junctions
[24, 25]. In islets of Ecad βKO mice, there was an approx-
imately 2.5-fold (2.4±0.4, n=2) reduction in levels of CX36
protein (Fig. 6a, b), a critical functional component of beta
cell gap junctions [26, 27]. Three days after transfection of
β-TC6 cells with an siRNA against E-cadherin, these cells,
with an approximate fivefold reduction in E-cadherin levels
(5.0±0.22, n=2), also showed an approximate fivefold re-
duction (4.7±0.2, n=2) in abundance of CX36 protein
(Fig. 6c). Microinjection of two gap junction tracers,
Lucifer Yellow and ethidium bromide [28], further revealed
that the transfected cells containing reduced levels of E-
cadherin were also significantly less coupled than cells that
escaped transfection (Fig. 6d, Table 1).

Discussion

In mice and humans, beta cell proliferation rates decline
postnatally and, at least in mice, this change is associated
with a decline in the levels of cyclin D2 [29]. However, the

mechanisms that trigger these changes are still a matter of
debate. The aggregation of endocrine cells in the proto-islet
begins around E17.5, and islet formation continues in the
neonatal period [9, 11]. Because of the highly ordered
structure of the islets, the well-documented dependence of
coordinated endocrine function on both paracrine and
contact-dependent communication of the endocrine cells
[25, 30, 31], and the role of E-cadherin in mediating relevant
aspects of cellular architecture [10, 11], we examined the
role of this cell adhesion molecule in the in vivo develop-
ment and function of beta cells, with particular regard to
their insulin secretion and rates of proliferation.

We have found that the production of E-cadherin in beta
cells increases both in vivo and in vitro with the formation of
islet structures, and is accompanied by decreased levels of D-
cyclin, and decreased beta cell proliferation. Our analyses of
mice with a null beta cell E-cadherin allele (Ecad βKO), as
well as of insulin-producing cells with reduced E-cadherin
abundance through exposure to a specific siRNA, indicate that
E-cadherin negatively regulates beta cell proliferation by re-
ducing the levels of β-catenin in the nucleus, resulting in
decreased D-cyclin levels. This inference is consistent with a
scenario in which increased levels of E-cadherin, as a result of
establishment of cell contacts during islet formation, contrib-
utes to the postnatal reduction in beta cell proliferation.

Despite the loss of E-cadherin, beta cells retain apparent-
ly normal physical contacts with nearby cells within the
islets of Ecad βKO mice. Whereas disruption of beta cell
apposition has been reported to result from overexpression
of a dominant-negative isoform of E-cadherin [11], after
incubation of islets with antibodies to E-cadherin [32], or
after knockdown of E-cadherin in MIN6 cells [33], others
have found that beta cells could still adhere in clusters after
reduction of E-cadherin by siRNA or short hairpin (sh)RNA
[15, 16]. Presumably, these differences can be accounted for
by differences in the residual levels of other cell adhesion
molecules, the extent to which the level of E-cadherin is
reduced [16], and by compensatory changes in the many
proteins that participate in beta to beta cell contacts and
adherence. Our data show that these proteins may include
CDH2, a molecule that facilitates cell–cell adhesion [34],
and CDH5, a class II cadherin that does not heterodimerise
with type 1 cadherins such as CDH2. The changes in CDH2
were not observed in β-TC6 cells in which Ecad was
reduced by siRNA, suggesting that these responses are
highly dependent on the context of individual cell types.
The increased CDH5 abundance in endothelial cells was
associated with an increase in the density of the islet vessels
and could conceivably contribute to the sustaining of normal
architecture in Ecad βKO islets. The reasons for the in-
crease in blood vessel density remain to be determined. In
another system, the decrease in islet vascularisation ob-
served as a result of reduced expression of Sorcs (also
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known as Sorcs1) was indeed accompanied by disruption of
normal islet architecture [35].

The apparently structurally normal islets of Ecad βKO
mice contained a larger mass of beta cells than did the islets
of control mice. This change was associated with an in-
crease in the proliferation of primary beta cells, consistent
with the increased rate of replication observed in β-TC6
cells after reduction of E-cadherin expression by siRNA. In
rodents, most new islets form [9, 11] and increase in size [3]
during the early postnatal period (P0–P22), during which
time the levels of beta cell E-cadherin protein also increase
as a result of the establishment of increasing numbers of
cell-to-cell contacts within the forming islets [36]. During
this period the rate of beta cell proliferation also decelerates
[5, 6, 29]. We found that the levels of cyclins D1/D2 in beta
cells also decreased from P0 to P22, as did the proportion of
nuclear to cytoplasmic β-catenin.

The central question is whether these in vitro and in vivo
changes in E-cadherin, β-catenin and cyclins D1/D2 are
mechanistically related to the observed developmental
changes in beta cell replication rates and function. The data
are consistent with a scenario analogous to that of the
canonical Wnt pathway [13], in which increased expression
of E-cadherin decreases nuclear levels of β-catenin, result-
ing in downregulation of the key cell proliferation genes,
including cyclins D1/D2. These changes would be antici-
pated to reduce beta cell proliferation, and this prediction
was fulfilled by our experiments. Thus, reduced E-cadherin
expression, as a result of exposure to specific siRNAs, was
associated with increased proliferation of β-TC6 cells.
Conversely, increased E-cadherin abundance in β-TC6
pseudo-islets was associated with reduced cyclin D2 levels
and a reduced proportion of cells featuring detectable nu-
clear β-catenin. The latter observation was also made in
primary beta cells during the formation of islets between
P0 and P90. ChIP assays further showed that increased
E-cadherin levels resulted in decreased binding of β-catenin

to promoters of known Wnt targets, including cyclin D1 and
c-Myc.

Our data extend those of previous studies in which con-
ditional pancreas-specific disruption of β-catenin resulted in
decreased numbers of beta cells and total islet area at birth
[37], whereas levels of a constitutively activated β-catenin
in beta cells increased nuclear levels of β-catenin, resulting
in increased cyclin D2 levels and beta cell proliferation [38].
However, other studies testing the down- or upregulation of
β-catenin expression have suggested that, under some cir-
cumstances, this protein may be dispensable for endocrine
cell differentiation, proliferation and function [39].
Presumably, differences in the timing and efficiency of the
Cre recombinase-dependent activation of the different pro-
moters (pancreatic and duodenal homeobox 1 [PDX1], reg-
ulation of phenobarbital-inducible P450 [RIP]), which were
used in these studies, account for these somewhat different
observations.

It is equally possible that E-cadherin regulates beta cell
proliferation by a variety of pathways, only some of which
may be independent of β-catenin. We have observed, for
example, that increased production of E-cadherin in pseudo-
islets is associated with decreased expression of Ezh2 (data
not shown), which encodes a transcription factor involved in
the platelet-derived growth factor (PDGF) pathway that
enhances beta cell proliferation [40]. Whatever the mecha-
nism(s), it is relevant that the increased beta cell prolifera-
tion and mass that we observed in Ecad βKO mice was not
induced by increased insulin resistance, given that the sen-
sitivity of these animals to an acute insulin challenge was
unaffected throughout their postnatal life.

Despite the increased beta cell mass in the islets of Ecad
βKO mice, these animals were modestly glucose intolerant,
as a result of reduced glucose-stimulated release of insulin
by their islets. The mechanism of this unexpected functional
defect remains to be determined. A discrepancy in insulin
responses in 1 month-old Ecad βKO animals existed:

Table 1 Tracer microinjection indicates reduced intercellular coupling of β-TC6 cells when E-cadherin expression is suppressed

β-TC6 type Coupling incidence (% injections)a Coupling indexb

Lucifer Yellow Ethidium bromide Lucifer Yellow Ethidium bromide Totalc (103)

siGLO-positive, siEcad transfected 22 50 26 80 2

siGLO-negative control 70 77 175 285 50

β-TC6 cells were exposed to an siRNA against E-cadherin and to the siGLO fluorescent transfection indicator. After 3 days, successfully
transfected cells (siGLO positive) were separated by FACS from companion non-transfected cells (siGLO negative), and analysed for beta cell
coupling as described in the Methods; 10–14 microinjections were performed per group

Data are mean±SE
a Per cent of injections showing coupling
bMean coupling extent×coupling incidence
c Coupling index for Lucifer Yellow×coupling index for ethidium bromide

864 Diabetologia (2013) 56:856–866



normal in vivo and reduced in vitro. These results could
reflect an experimental artefact and/or physiologically rele-
vant compensations provided by the in vivo environment.
One possible explanation for the discrepancy in insulin
secretion in vitro vs in vivo could be that the increased
number of blood vessels in vivo facilitated in vivo insulin
secretion, compensating for a reduction in insulin secretion
per beta cell (reviewed in Eberhard et al [41]).

Our experiments show that the in vivo loss of Ecad was
associated with a marked decrease in the CX36 protein,
consistent with previous data obtained in an insulin-
producing cell line [15]. Given that our in vitro experiments
further document that such a loss significantly reduced the
functional coupling of β-TC6 cells, and that Cx36 (also
known as Gjd2) coupling is implicated in the control of
GSIS [17, 24, 26, 42], it is plausible that the secretory
defects of Ecad βKO mice are at least partly dependent on
loss of CX36 coupling. In addition, CX36 is required for the
effects of the Eph-ephrin pathway on insulin secretion [43].
Therefore, the decrease in insulin secretion in 1 and
4 month-old Ecad βKO animals could also be accounted
for, in part, by the reduction in the stimulatory activity of
Eph-ephrin pathway resulting from the reduced CX36 abun-
dance as a consequence of loss of E-cadherin. Furthermore,
the age-dependent phenotype of glucose intolerance ob-
served in 4 month-old Ecad βKO animals could also be
explained by the decreased stimulatory effect of Eph signal-
ling on GSIS caused by ageing in addition to the increased
metabolic ‘pressure’ on beta cells caused by increased body
mass. Increased penetrance of knockout phenotypes with
age is commonly observed [43]. At any rate, the observation
that the glucose intolerance and loss of glucose-sensitive
insulin release became apparent only in adult mice suggests
that the relevant mechanism becomes a limiting factor as
metabolic demand increases.

In summary, these studies provide evidence that E-
cadherin plays a significant physiological role in the post-
natal control of beta cell proliferation and function. As E-
cadherin is also found in human beta cells [44], it is possi-
ble, if not likely, that the cell adhesion molecule also plays a
similar role in human beta cells, thereby affecting suscepti-
bility to diabetes. CDH1, which encodes human E-cadherin,
is located at Chr. 16q22.1, a locus that has been implicated
in susceptibility to type 1 diabetes [45].
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