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Abstract

Aims/hypothesis Vitamin D is necessary for normal insulin
action and suppresses renin production. Increased renin—an-
giotensin system (RAS) activity causes islet damage, including
reduced insulin secretion. We therefore sought to determine
whether hypovitaminosis D-induced upregulation of islet RAS
in vivo impairs islet cell function and increases insulin resis-
tance, and whether pharmacological suppression of the RAS
during continuing vitamin D deficiency might correct this.
Methods C57BL/6 mice were rendered vitamin D-deficient
by diet, and glucose and insulin tolerance was assessed. The
expression and translation of islet functional, and islet RAS,
genes were measured and the effects of pharmacological
renin suppression examined.

Results Mice with diet-induced hypovitaminosis D devel-
oped impaired glucose tolerance, increased RAS component
expression and impaired islet function gene transcription.
Treatment with pharmacological renin inhibition (aliskiren),
without vitamin D status correction, reduced islet RAS over-
reactivity, islet dysfunction and insulin resistance, and im-
proved glucose tolerance.

Conclusions/interpretation Upregulation of islet RAS genes
can contribute to hypovitaminosis D-induced impairment of
islet function and increase insulin resistance independently
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of vitamin D status. Thus, our findings support the use of
RAS inhibitors in impaired glucose homeostasis or early
diabetes. They also suggest that combining RAS inhibition
with correction of hypovitaminosis D might be useful in
treating impaired glycaemic control and also in type 2
diabetes prevention. However, the use of aliskiren in estab-
lished diabetes is contraindicated due to the increased risk of
side effects such as hyperkalaemia, so other more suitable
RAS blockers need to be identified.
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Abbreviations

AT, Angiotensin II type 1

FOXO1 Forkhead box O1

GSIS Glucose-stimulated insulin secretion
HOMA-B HOMA of beta cell function
HOMA-IR HOMA of insulin resistance

IPGTT Intraperitoneal glucose tolerance test
ITT Insulin tolerance test

KO Knockout

1,25(OH),D;  Calcitriol

25(0OH)D; 25-Hydroxyvitamin D

PDK1 Phosphoinositide-dependent kinase 1
PTH Parathyroid hormone

RAS Renin—angiotensin system
Introduction

Accumulating evidence has demonstrated many functions of
vitamin D beyond its classical roles in calcium homeostasis
and bone health. Experimental and clinical studies have im-
plicated poor vitamin D repletion as a risk factor for numerous
diseases, including metabolic syndrome [1]. Low serum
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25-hydroxyvitamin D (25[OH]D3) concentrations lead to de-
fective insulin secretion, reduced glucose homeostasis, and
increased risk of metabolic syndrome and type 2 diabetes,
both experimentally and in cross-sectional studies in humans
[2, 3]. These risks reflect increases in insulin resistance as well
as islet beta cell dysfunction [4]. Higher baseline vitamin D
status can predict better islet function, better glucose tolerance
and reduced risk of hyperglycaemia prospectively [5]. How-
ever, observations from clinical studies remain inconclusive
with regard to the causality of associations between vitamin D
status and diabetes risk, as both conditions are associated with
factors such as obesity and sodium intake, and there is also
variation between studies [6]. Vitamin D supplementation can
reduce insulin resistance in human deficiency [1], but it is not
clear whether it can reduce insulin resistance or improve islet
function in established diabetes; thus, further investigation of
the underlying mechanisms is warranted.

VDR polymorphisms are common and contribute to the
modulation of serum 25(OH)D; concentrations and to the
determination of some relevant aspects of vitamin D func-
tion affecting the renin—angiotensin system (RAS) in
humans [7]; moreover, in some human studies, polymor-
phism, gene expression and formation of the VDR were
associated with variation in insulin secretion [8]. Vitamin
D status is also associated directly with insulin secretion in
murine islets [9], and mice with mutant Vdr have impaired
insulin gene expression and secretion [10]. However, it
remains uncertain whether there are mechanisms by which
vitamin D affects islet function and insulin sensitivity, other
than through direct effects on calcium metabolism [11].

Many clinical studies suggest that treatment with RAS
blockade is associated with a reduced type 2 diabetes risk
and fewer diabetic complications [12]. Our previous work
has demonstrated: (1) the existence of a local pancreatic islet
RAS [13]; (2) that islet function is improved in mouse
models of diabetes by angiotensin II type 1 (AT;) receptors
antagonism [14, 15]; and (3) that local islet RAS can regu-
late islet cell proliferation and apoptosis, while modulating
oxidative stress and beta cell mass [14, 16]. Moreover,
clinical and basic studies implicate additional factors regu-
lated by or affecting, directly or indirectly, the islet RAS [14,
17]. Overall, suppression of islet RAS presents a potential
target for the reduction of type 2 diabetes risk and, poten-
tially, for the protection of islet function in type 2 diabetes.

The RAS is recognised to be a major blood pressure regu-
lation system, and associations between hypertension and vi-
tamin D deficiency have been suggested by several clinical
studies [18]. The rate-limiting RAS component, renin, was
shown to be suppressed by vitamin D in a study on Vdr-
knockout (KO) mice, which develop elevated renin expression
[19]. Mice without the vitamin D-activating 1«-hydroxylase
develop hyperreninaemia, independently of calcium levels
[20]. The administration of calcitriol (1,25[OH],Ds), the active
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hormonal metabolite of vitamin D, or its analogues, reduces
plasma renin activity and angiotensin II levels in experiments
and in humans [21, 22]. Vitamin D status has shown inverse
relationships with plasma renin activity in humans [23, 24],
while activated vitamin D and AT receptor antagonism have
synergistic beneficial effects on RAS regulation and on out-
comes in diabetic nephropathy [25].

Since pancreatic islet RAS components are involved in the
regulation of whole-body glycaemic control, vitamin D avail-
ability can be expected to contribute to modulation of this
process. Recently, we found that in isolated islets 1,25
(OH),Dj; provided potential protection against and ameliorat-
ed RAS component overabundance induced by hyperglycae-
mic conditions, as well as increasing insulin synthesis and
secretion as expected [26]. However, it remains to be deter-
mined whether islet RAS mediates the effects of vitamin D
deficiency on glycaemic control in vivo.

The present study is therefore based on the hypothesis
that vitamin D deficiency may lead to increased islet RAS
activity in vivo, contributing to abnormal glucose homeo-
stasis. To test this hypothesis, we examined glucose toler-
ance, insulin sensitivity, islet architecture and RAS
component activity, islet insulin secretion and related gene
activity in genetically normal mice with diet-induced vita-
min D deficiency, with and without pharmaceutical RAS
inhibition. Our aim was to determine whether RAS blockade
can reduce hypovitaminosis D-induced disorders of glucose
homeostasis in animals with untreated vitamin D deficiency.

Methods

Animals Vitamin D deficiency was induced by feeding
4-week-old male C57BL/6 mice with a vitamin D-
deficient diet (TD89123; Harlan Teklad, Madison, WI,
USA) for 8 weeks and control groups with a normal, vitamin
D-containing diet (TD89124; Harlan Teklad). Mice were
housed under ultraviolet B-free incandescent light to mini-
mise endogenous vitamin D production. Blood glucose and
body weight were recorded regularly. Mice were killed for
further study when aged 12 weeks. The animal studies were
approved by the Laboratory Animal Services Center of the
Chinese University of Hong Kong (Ref No. 08/049/ERG).

Measurement of serum 25(0OH)D; and 1,25(0OH),Dj;
concentrations Retro-orbital blood samples were collected
from mice, centrifuged at 1,000 g for 10 min and serum aliquots
stored at —80°C until assay for 25(OH)D5 and 1,25(0OH),D3
using IDS-EIA kits (Immunodiagnostics-Systems, Boldon,
UK) according to the manufacturer’s protocol (CV<10%).

Treatment with a renin inhibitor Aliskiren (CGP060536)
was provided by Novartis Pharma, Basel, Switzerland. After
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8 weeks of vitamin D-deficient diet treatment, 12-week-old
mice that had been fasted for 6 h and had fasting blood
glucose >9 mmol/l were treated for 7 days with aliskiren
(30 mgkg 'day ") by daily gavage. Pancreatic islets were
then isolated for further study.

Isolation of pancreatic islets Pancreatic islets were isolated
as described previously in our laboratory [26]. Briefly, pan-
creatic islets were isolated from the pancreases from the
different groups of mice by intra-ductal injection with
0.3 mg/ml collagenase-P (Roche Diagnostics, Mannheim,
Germany) in Hanks’-balanced-salt-solution (Sigma-Aldrich,
St Louis, MO, USA). After washing and gradient centrifu-
gation (500g), isolated islets were hand-picked under a
stereomicroscope.

Pancreatic islet staining Immunohistochemistry was used
for morphological assessments, and to locate pancreatic islet
proteins and gene expression [14, 26]. Briefly, air-dried
cryo-sections were rinsed with PBS, followed by 1 h of
blocking using 6% (wt/vol.) normal donkey serum (Jack-
son-ImmunoResearch, West-Grove, PA, USA). Primary
antibodies against insulin (Invitrogen Life Technologies,
Carlsbad, CA, USA) and/or glucagon (Abcam, Cambridge,
MA, USA) and/or Ki67 (Abcam) were added and incubated
on the slides overnight at 4°C. After three washes with PBS,
appropriate fluorescent-conjugated secondary antibodies
were added to the slides, which were then incubated at room
temperature for 1 h. After counterstaining with DAPI, slides
were washed three times with PBS and mounted using a
medium (VectaShield; Vector-Laboratories, Burlingame, CA,
USA). Signals were then detected by fluorescent microscopy
(DMLB digital camera; Leica, Heidelberg, Germany).

Haematoxylin—eosin staining was used to examine islet
morphology and size. Briefly, freshly cut, air-dried pan-
creatic sections were rinsed with PBS and washed twice
with double distilled H,O before haematoxylin staining
for 1 min and rinsing in Scott’s tap water for colour
development. Slides were then counterstained with eosin.
After washing with water and graded dehydration using
ethanol and xylene, slides were mounted using entellan
(Merck, Darmstadt, Germany). Islet size was then mea-
sured by automatic histomorphometry (Imagel software;
http://rsb.info.nih.gov/ij) [27].

Islet mRNA expression Total islet mRNA was extracted by
TRIzol reagent (GIBCO/BRL-Invitrogen, Carlsbad, CA,
USA) using the manufacture’s protocol. Also using the
manufacture’s protocol (Invitrogen), first-strand cDNA was
generated from 3 pg mRNA in 20 pl volume system using
SuperScript II reverse transcriptase with oligo (dT) 12-18
primers. Real-time-PCR was used to quantify mRNA
expression. A real-time PCR detection system (iCycler;

Bio-Rad Laboratories, Richmond, CA, USA) was used to
perform real-time-PCR in amplification using 1 pl undiluted
cDNA as template, with SYBR-Green-I-mix (Bio-Rad).
mRNA expression was detected and Gapdh mRNA co-
amplified as an internal control. Results were calculated
using the 27**“" method, while melting curve analysis was
used to confirm PCR amplification specificity [26]. The
primers used are listed in electronic supplementary material
(ESM) Table. 1.

Western blot analysis Pancreatic islets isolated from mice in
each of the different groups were used for western blotting.
Total protein was extracted from 100 size-matched islets per
group using CytoBuster Protein Extraction Reagent (Nova-
gen, Darmstadt, Germany). After electrophoresis on 10%
(wt/vol.) polyacrylamide gels, blotted protein was trans-
ferred to nitrocellulose membranes (Bio-Rad) and blocked
for 1 h at room temperature with 5% (wt/vol.) skimmed milk
in PBS with 0.1% (vol/vol.) Tween-20. Blotted membranes
were then incubated overnight at 4°C with primary anti-
bodies against renin, renin receptor, ACE and AT receptor;
appropriate horseradish peroxide-conjugated secondary
antibodies were then added and incubated at room tem-
perature for 1 h. Labelled protein bands were revealed
by western blotting detection reagents (ECLPS; GE-
Healthcare, Piscataway, NJ, USA) on autoradiography
films (Fuji Film, Tokyo, Japan). Signals were measured
using ImageJ software and expressed as fold change of
the target protein:actin intensity ratios [26]. The antibodies
used are listed in ESM Table 2.

Measurement of growth, glucose homeostasis and islet function
Mouse body weight was recorded during growth and glu-
cose homeostasis assessed as previously described [14]. In
brief, for random blood glucose measurement mouse-tail
vein blood was collected weekly between 10.00 and
11.00 h during growth. Fasting blood glucose and serum
insulin concentrations were measured after 6 h of fasting.
Glucose tolerance was assessed by an intraperitoneal glu-
cose tolerance test (IPGTT). Briefly, after 6 h fasting, mice
were given 1.5 g/kg body weight of glucose by intraperito-
neal injection. Blood glucose concentrations were measured
in tail blood samples taken before and at 15, 30, 60, 90 and
120 min after glucose administration. Insulin sensitivity was
assessed by an insulin tolerance test (ITT). After 4 h of fasting,
mice were given an i.p. injection of insulin (0.75 U/kg body
weight), and blood glucose was measured in samples taken at
0, 15, 30 and 60 min after insulin injection. To assess islet beta
cell function, glucose-stimulated insulin secretion (GSIS) was
examined as previously described [15]. Briefly, for each set of
experiments, ten size-matched islets isolated from each differ-
ent mouse group were incubated (1 h, 37°C, 95:5 O,/CO,) in
KRB (supplemented with 10 mmol/l HEPES and 2 mg/ml
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BSA) with 1.7 mmol/l glucose, before transfer to KRB with
16.7 mmol/l glucose for a further hour in the same conditions.
After incubation, the KRB supernatant fraction was col-
lected for measurement of the insulin secreted using com-
mercial mouse insulin ELISA kits (Mercodia, Uppsala,
Sweden) (CV<10%). Data were expressed as the change
of insulin released by each ten-islet group at 16.7 mmol/l glu-
cose compared with 1.7 mmol/l glucose incubation (A insulin
secretion). The HOMA of beta cell function (HOMA-B) was
used to assess pancreatic beta cell function, calculated as
described [28].

Measurements of serum calcium and parathyroid hormone
levels Blood was collected from the heart immediately after
death and random serum calcium levels measured by a
calcium assay kit (Biovision, Mountain View, CA, USA).
Serum parathyroid hormone (PTH) concentrations were
measured by mouse PTH(1-84) ELISA (Immunotopics,
San Clemente, CA, USA) (CV <10%).

Statistical analysis Results are expressed as mean = SEM
for all groups of normally distributed data and as medians
for non-normally distributed data. One-way ANOVA fol-
lowed by Tukey’s post-hoc test was used for multiple com-
parisons between groups. Two-tailed Student’s ¢ tests or
Mann—Whitney tests were used to compare parametric and
non-parametric data respectively. A value of p<0.05 was
considered statistically significant.

Results

25(0OH)D;3; and 1,25(OH),D; concentrations in vitamin
D-deficient diet-fed mice and the effects of this diet on
growth The body weight of mice on vitamin D-deficient
diets was similar to that of control-fed mice (Fig. 1a), while
serum 25(OH)D; and 1,25(OH),D; concentrations were
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Fig. 1 Growth and vitamin D metabolite concentrations in vitamin
D-deficient mice. (a) Body weight during growth from the age of 4 to
12 weeks in mice on the vitamin D-deficient diet (squares) and in those
on a normal diet (circles). At the age of 12 weeks, after 8 weeks of

@ Springer

Normal

greatly decreased after 8 weeks on the diet, confirming the
establishment of vitamin D-deficiency (Fig. 1b, c).

Glucose homeostasis in vitamin D-deficient mice Mice fed
the vitamin D-deficient diet exhibited higher blood glucose
concentrations than control-fed mice from the age of 6 to
12 weeks (Fig. 2a, b). By 8 weeks (4 weeks after starting on
the vitamin D-deficient diet), random blood glucose con-
centrations were already higher in vitamin D-deficient mice
(8.22+0.479 mmol/l [mean = SEM]) than in normal-diet-fed
controls (6.675+0.5721 mmol/l). At 12 weeks of age
(8 weeks after starting on vitamin D-deficient diets), random
blood glucose concentrations in vitamin D-deficient mice
were significantly higher than in control-fed mice (10.28+
0.587 vs 7.925+0.701 mmol/l) (Fig. 2a) and fasting glucose
was also significantly increased (9.673+0.425 mmol/l) vs
normal-diet-fed mice (6.9+0.609 mmol/l) (Fig. 2b). Glucose
intolerance developed by 12 weeks of age in vitamin
D-deficient mice (increased AUC vs normal-diet-fed mice)
(Fig. 2c, d). Insulin tolerance was impaired in vitamin
D-deficient mice, with abnormally high glucose concentra-
tions at 15 and 30 min compared with those in control-fed
mice after insulin injection (Fig. 2e). Serum insulin after 6 h
fasting and the insulin resistance index (HOMA-IR) were
also increased, the former significantly, in vitamin D-
deficient mice compared with controls (Fig. 2f, g). Islet
function assessment showed that GSIS was blunted in vita-
min D-deficient mouse islets (Fig. 2h), while the HOMA-B
index, representing beta cell function, was decreased in
islets from that mouse group (Fig. 2i).

Islet histomorphology in vitamin D-deficient mice The islet
glucagon:insulin expression ratio in actively labelled areas
of pancreas from vitamin D-deficient mice was similar to
that in normal-diet-fed control mice (Fig. 3a). However,
vitamin D-deficient mouse islets were larger (median
20,217.7 um?) than normal-diet-fed control mouse islets
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vitamin D-deficient or normal diet, serum 25(OH)D; (b) and 1,25
(OH),D;5 (¢) concentrations were measured by specific ELISA Kkits.
**p<0.01 and ***p<0.001 vs normal diet
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Fig. 2 Glucose homeostasis in vitamin D-deficient vs normal-diet-fed
mice. (a) Random blood glucose concentrations during growth in mice
treated with vitamin D-deficient (squares) or normal (circles) diet from
6 to 12 weeks of age. (b) Blood glucose after 6 h fast, (¢) glucose
tolerance by IPGTT and (d) glucose profiles calculated from IPGTT

(median 13,766.3 um?; p<0.0001 by Mann—Whitney test)
(Fig. 3b).

Regulation of islet RAS component levels in vitamin
D-deficient mice The effects of hypovitaminosis D on islet
RAS activity were examined through the profiles of several
RAS components, including renin and the renin receptor.
Protein levels of major islet RAS components, i.e. renin
(Fig. 4a), renin receptor (Fig. 4b), ACE (Fig. 4c) and
AT, receptor (Fig. 4d), were all upregulated in islets
from vitamin D-deficient vs those from islets of normal-diet-
fed mice.

Islet function-related gene expression in vitamin D-deficient
mice Several genes related to islet function were significant-
ly downregulated in vitamin D-deficient mouse islets, in-
cluding Pdkl (Fig. 5a), Foxol (Fig. 5b), Tcf712 (Fig. 5c) and
Glut2 (also known as Slc2a2) (Fig. 5d). Among islet insulin-
signalling-related genes, Irs/ mRNA expression and the
expression of the anti-oxidative stress-related gene catalase
were downregulated in islets of vitamin D-deficient mice
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data as AUC in 12-week-old mice. (e) ITT, (f) 6 h fasting serum insulin
concentration, (g) insulin sensitivity by HOMA-IR, (h) islet glucose-
induced insulin release during GSIS and (i) the HOMA-B index, all
assessed in 12-week-old mouse/islet groups as above (a). *p<0.05,
**p<0.01 and ***p<0.001 vs normal-diet-fed mice

(ESM Fig. la, b), although expression of the NADPH
oxidase subunits p22 (also known as Cyba) and p47 (also
known as Ncf1) was unchanged (ESM Fig. 1c, d). Consistent
with the mRNA expression data, protein production of total
IRS1, forkhead box Ol (FOXO1) and phosphoinositide-
dependent kinase 1 (PDK1) was decreased in vitamin
D-deficient vs control mice islets (ESM Fig. 2a—c).

The effect of the renin inhibitor aliskiren on glucose homeostasis
in vitamin D-deficient mice After 7 days of treatment with the
renin inhibitor aliskiren, random and 6 h fasting blood
glucose values in 12-week-old vitamin D-deficient mice
were unchanged (Fig. 6a, b), while fasting serum insulin
concentrations and HOMA-IR tended towards an increase
(Fig. 6f, g). Impaired glucose tolerance in vitamin
D-deficient mice was improved by aliskiren (Fig. 6¢, d), as
was insulin tolerance (assessed 15 min after insulin admin-
istration during an ITT) (Fig. 6e), i.e. postprandial, but not
fasting insulin resistance was improved by RAS blockade.
Islet beta cell function was significantly increased in
aliskiren-treated vitamin D-deficient mice, as evidenced by
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Fig. 3 Pancreatic islet histomorphology in 12-week-old normal-diet-
fed and vitamin D-deficient diet-fed mice. (a) Islets were immunos-
tained with insulin (red) and glucagon (green) fluorescent-labelled
specific antibodies and the glucagon:insulin ratio calculated automat-
ically from data for areas that stained positive. Original magnification
(a) x200. (b) Islets were stained with haematoxylin and eosin, and the
measurement of islet cross-sectional areas was performed. Scale bar
100 pm

the increased GSIS (Fig. 6h) and HOMA-B index (Fig. 6i).
However, serum 25(OH)D; concentrations remained low in
aliskiren-treated mice (Fig. 6j).

The effects of aliskiren on islet renin, renin receptor levels,
islet function-related gene expression, islet cell proliferation,
and on serum calcium and PTH levels in vitamin D-deficient
mice In vitamin D-deficient mice, renin protein levels were
not altered by aliskiren treatment (Fig. 7a), but renin recep-
tor protein levels were reduced (Fig. 7b). Among genes
relevant to islet function, no obvious changes were observed
in Irs] mRNA expression after aliskiren treatment (ESM
Fig. 3a). Increases in Gl/ut2 mRNA expression were mar-
ginal (Fig. 7c), while the decreased Pdk! mRNA expression
(Fig. 7d) seen in vitamin D-deficient mice was reversed after
aliskiren treatment. Islet expression of the oxidative stress-
related genes, NADPH oxidase subunits p22 and p47, was
unaltered by aliskiren treatment (ESM Fig. 3¢, d). However,
and significantly, the decrease in catalase mRNA expression
seen in vitamin D-deficient animals was reversed by aliskiren
(ESM Fig. 3b).

Islet size and morphology were unchanged by aliski-
ren treatment (data not shown), but the increase in islet
alpha cell proliferation seen in vitamin D-deficiency (i.e.
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increases in Ki67-labelled cells) was decreased by alis-
kiren treatment (ESM Fig. 4a, b), suggesting that renin
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Fig. 5 Islet function-related gene expression in vitamin D-deficient
mouse islets. (a) Transcription levels of Pdkl, (b) Foxol, (¢) Tcf712 and
(d) Glut2 in islets from vitamin D-deficient diet-fed mice compared
with normal-diet-fed mice. *p<0.05 vs normal diet
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Fig. 6 The effect of aliskiren treatment on glucose homeostasis in
vitamin D-deficient mice. (a) Random and (b) fasting (6 h) blood
glucose in vitamin D-deficient mice and in vitamin D-deficient mice
treated with aliskiren. (¢) IPGTT and (d) the glucose profile calculated
as AUC. (e) Blood glucose during an ITT at 0, 15, 30 and 60 min after
insulin administration, and (f) fasting (6 h) serum insulin levels and (g)

inhibition exerts protective effects against increased glu-
cagon action. We found no explanation for the increased
islet size in vitamin D-deficient mice and this requires
further study, as it may reflect increased cell proliferation
or cell junction. Random calcium and PTH concentra-
tions were similar in normal, vitamin D-deficient and
vitamin D-deficient, aliskiren-treated groups of mice (ESM
Fig. 4c, d).

Discussion

The present study confirms our earlier finding that chronic
hypovitaminosis D increases local pancreatic islet RAS gene
expression in vivo, and decreases islet beta cell function and
insulin sensitivity, thereby contributing to loss of glycaemic
control, with increased islet RAS component expression
occurring independently of glycaemia (as also seen in Vdr-
KO mice) [26]. However, stunted growth and the short life-
span of Vdr-KO mice limit their use in this research. Fur-
thermore, in human studies, the associations between vita-
min D status and insulin sensitivity are often lost in obesity

the HOMA-IR index in animal groups as indicated. (h) Insulin release
during GSIS in islets and (i) beta cell function by HOMA-B. (j) Mean
serum 25(OH)Dj; concentrations in vitamin D-deficient mice, with or
without aliskiren treatment. Squares, vitamin D-deficient diet; triangles,
vitamin D-deficient diet + aliskiren. *p<0.05 and **p<0.01 vs vitamin
D-deficient diet only

[29], while vitamin D supplementation did not improve
glucose homeostasis in non-deficient patients with type 2
diabetes [30]. We therefore extended these studies in vivo
using a genetically normal mouse model, which was healthy
apart from dietary vitamin D deficiency. This allowed us to
demonstrate that the increased RAS activity induced by
vitamin D deficiency can be ameliorated by renin blockade,
with improvements in islet function, postprandial insulin
sensitivity and glucose homeostasis, in vivo, despite con-
tinuing vitamin D deficiency. These findings support the
proposal that RAS overactivity can contribute, mechanisti-
cally, to hyperglycaemia related to vitamin D deficiency and
suggest that renin inhibition may protect islet function and
reduce insulin resistance, thereby improving glycaemic control
in vivo.

In addition to well-known effects on the circulatory sys-
tem, clinical trials of RAS blockade/inhibition have demon-
strated a reduction in risk of diabetes [31]. Key to the
development of type 2 diabetes is the combination of insulin
resistance and islet dysfunction; a reduction of these effects
can reduce diabetes risk and glycaemia. Chronic RAS over-
activation (systemic and local) is known to contribute to
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Fig. 7 The effects of aliskiren on islet RAS components and islet
function-related gene expression in vitamin D-deficient mice. (a) Islet
renin and (b) renin receptor protein content in mice on normal diet,
vitamin D-deficient diet and vitamin-D deficient diet + aliskiren treat-
ment. (¢) Islet expression of Glut2 and (d) Pdkl mRNA in vitamin
D-deficient mice with or without aliskiren treatment. *p<0.5 and
**p<0.01 vs vitamin D-deficient diet

insulin resistance, and RAS component blockade improves
insulin sensitivity [32]. Angiotensin II regulates insulin
actions in several peripheral tissues by modulating down-
stream signalling of the insulin receptor [33]. Inhibition of
renin, the rate-limiting enzyme of the RAS, improves insulin
sensitivity in adipocytes and skeletal muscles through
effects on insulin action and glucose transport [34]. With
the development of insulin resistance, reduced insulin se-
cretion in response to glucose (GSIS) is a major hallmark of
type 2 diabetes risk and it has been suggested that RAS
blockade may prevent the beta cell loss that leads to overt
diabetes. Isolated islets develop increased RAS component
abundance in prolonged hyperglycaemia, with reduced
GSIS and (pro)insulin synthesis [26, 35]. Indeed, our earlier
studies showed that RAS blockade in pancreatic islets from
diabetic animals improved islet function and glucose ho-
meostasis, increased islet proliferation, reduced oxidative
stress and inflammation in islets, and also reduced beta cell
apoptosis [14, 15], thereby helping to prevent beta cell loss.

Elevated renin levels have been found in mutant Vdr-KO
mice [19]. Furthermore, inverse relationships between vita-
min D status and RAS activity help explain the beneficial
effects of optimal vitamin D replacement therapy in chronic
renal failure and cardiovascular disorders [36, 37]. Since
vitamin D suppresses renin and RAS activity, but RAS
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activity increases with hyperglycaemia (aggravating islet
damage and insulin resistance), vitamin D deficiency may
aggravate loss of glycaemic control through increased RAS
activity. Thus, the reduction of RAS overactivity, whether
by vitamin D replacement (as we recently showed in isolat-
ed islets) [26] or by pharmacological means, could improve
islet function and insulin sensitivity.

Although our young, genetically intact, but vitamin
D-deficient, mouse model showed no changes in body weight,
serum total PTH or calcium, the increased islet RAS compo-
nent expression we found was consistent with the known
upregulation of human RAS activity by the common problem
of hypovitaminosis D (low circulating 25[OH]D;) [38]. Gly-
caemia increased over time in our mouse model, with de-
creased GSIS and HOMA-B index by 3 months of age, and
with glucose intolerance, impaired insulin sensitivity and fast-
ing hyperglycaemia, which we suggest is due to the combina-
tion of increased islet RAS activity and decreased vitamin D
availability (since vitamin D reduces RAS overactivity and
improves GSIS in hyperglycaemia) [26]. Although aliskiren-
induced renin inhibition improved glycaemia, insulin sensi-
tivity and islet function despite continuing vitamin D deficien-
cy, the improvement in GSIS was only partial (by 25%),
suggesting that the reduction of insulin resistance was an
important contributor to the beneficial effects of renin inhibi-
tion on glycaemic control. Reductions in overall insulin resis-
tance (as seen in the ITT) and in glucose tolerance (in OGTT)
were marked, while fasting HOMA-IR increased, suggesting
that RAS blockade reduces postprandial, but not fasting,
insulin resistance. Increased serum insulin levels were ob-
served, suggesting that the improved islet insulin secretory
ability may also partially contribute to glycaemic control.

Overall, our findings support the proposition that control of
RAS overactivity could help counteract the adverse effects of
hyperglycaemia and hypovitaminosis D, through partially
reducing insulin resistance, as well as by protecting islet beta
cells. Additional support for this postulate is provided by
several other aspects of our study. Islet FOXO1 abundance
decreases in vitamin D-deficient states and FOXO1 normally
increases beta cell mass, reduces insulin signalling [39] and
signals islet enlargement, as in other models of type 2 diabetes
[40]. Vitamin D deficiency-related Tcf7I2 downregulation, as
in the present study, may aggravate hyperglycaemia, as 7cf712
variants and expression are associated with diabetic renal
disease [41] and reduced insulin secretion [42]. Islets are
themselves insulin-sensitive, through signalling pathways, in-
cluding IRS1 and IRS2 [43]. Our finding of decreased Irs/
transcription in the presence of vitamin D deficiency could
contribute to reduced insulin action on islets, in turn impairing
islet growth and function through increased islet insulin resis-
tance [44]. Adverse angiotensin II-induced effects on the
vasculature have been reported [45, 46]. These effects nor-
mally regulate the maintenance of islet function and beta cell
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mass, probably due to similar effects on smooth muscle in
vessel walls acting through target genes like Pdk!. Indeed, we
found that the reduced Pdkl expression seen in vitamin D
deficiency was corrected by RAS blockade, implying RAS
involvement in PDK1 regulation.

Insulin-signalling is impaired by glucagon [47]; thus the
reversal of vitamin D deficiency-induced proliferation of
glucagon-secreting alpha cells that we found with aliskiren
treatment may reduce or prevent potential overactivation of
glucagon actions in vitamin D-deficient states. Islet GLUT2,
the major islet glucose transporter, is reduced in type 2
diabetes and by hyperglycaemia in the presence of increased
insulin resistance [48], but aliskiren is unlikely to improve
glucose homeostasis through this mechanism, as GLUT2
was not affected by RAS blockade.

In contrast to data from genetically modified mouse
models of diabetes [16], our vitamin D-deficient mouse
model showed no gene defects related to reactive oxygen
species, but the reduced islet catalase activity seen in vita-
min D-deficient islets may worsen islet oxidative stress in
vitamin D deficiency. Since we found that renin blockade
increased catalase expression, therapeutic RAS blockade
may increase antioxidant protection in the islets.

Our findings are relevant to reported reductions in the
risk of diabetes with RAS blockade [12]. However, aliskiren
can increase the risk of hypotension and hyperkalaemia in
clinical use. Indeed, the US Federal Drugs Authority recent-
ly advised that aliskiren should not be given to patients with
renal dysfunction or diabetes, due to the risk of diabetic
nephropathy [49, 50]. Other RAS-modulating medication
that proves to be safe in patients with diabetes may have
similar protective effects and, if so, may help protect against
diabetes progression, as well as reducing the risk of diabe-
tes. Further investigations are also needed to determine the
detailed relationships between hypovitaminosis D and insulin
resistance, as well as the underlying mechanisms.
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