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Abstract
Aims/hypothesis The primary aim of this completed multi-
centre randomised, parallel, double-blind placebo-controlled
study was to elucidate the mechanisms of glucose-lowering
with colesevelam and secondarily to investigate its effects on
lipid metabolism (hepatic de novo lipogenesis, cholesterol
and bile acid synthesis).
Methods Participants with type 2 diabetes (HbA1c 6.7–
10.0% [50–86 mmol/mol], fasting glucose <16.7 mmol/l,
fasting triacylglycerols <3.9 mmol/l and LDL-cholesterol
>1.55 mmol/l) treated with diet and exercise, sulfonylurea,
metformin or a combination thereof, were randomised by a
central coordinator to either 3.75 g/day colesevelam (n=30)
or placebo (n=30) for 12 weeks at three clinical sites in the
USA. The primary measure was the change from baseline
in glucose kinetics with colesevelam compared to
placebo treatment. Fasting and postprandial glucose, lipid
and bile acid pathways were measured at baseline and
post-treatment using stable isotope techniques. Plasma
glucose, insulin, total glucagon-like peptide-1 (GLP-1),

total glucose-dependent insulinotropic polypeptide (GIP),
glucagon and fibroblast growth factor-19 (FGF-19)
concentrations were measured during the fasting state
and following a meal tolerance test. Data was collected
by people blinded to treatment.
Results Compared with placebo, colesevelam improved
HbA1c (mean change from baseline of 0.3 [SD 1.1]% for
placebo [n=28] and −0.3 [1.1]% for colesevelam [n=26]),
glucose concentrations, fasting plasma glucose clearance
and glycolytic disposal of oral glucose. Colesevelam did
not affect gluconeogenesis or appearance rate (absorption)
of oral glucose. Fasting endogenous glucose production and
glycogenolysis significantly increased with placebo but
were unchanged with colesevelam (treatment effect did not
reach statistical significance). Compared with placebo,
colesevelam increased total GLP-1 and GIP concentrations
and improved HOMA-beta cell function while insulin,
glucagon and HOMA-insulin resistance were unchanged.
Colesevelam increased cholesterol and bile acid synthesis
and decreased FGF-19 concentrations. However, no effect
was seen on fractional hepatic de novo lipogenesis.
Conclusions/interpretation Colesevelam, a non-absorbed
bile acid sequestrant, increased circulating incretins and
improved tissue glucose metabolism in both the fasting and
postprandial states in a manner different from other
approved oral agents.

Trial registration: ClinicalTrials.gov NCT00596427
Funding: The study was funded by Daiichi Sankyo.
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Abbreviations
BAS Bile acid sequestrants
CA Cholic acid
CDCA Chenodeoxycholic acid
DNCS De novo cholesterol synthesis
DNL De novo lipogenesis
EGP Endogenous glucose production
FGF-19 Fibroblast growth factor-19
FFM Fat-free mass
FXR Farnesoid X receptor
GIP Glucose-dependent insulinotropic polypeptide
GLP-1 Glucagon-like peptide 1
GNG Gluconeogenesis
HOMA-B HOMA-beta cell function
HOMA-IR HOMA-insulin resistance
MIDA Mass isotopomer distribution analysis
Ra Rate of appearance
Rd Disposal rate
TGR5 G-protein-coupled bile acid receptor

Introduction

Bile acid sequestrants (BAS) such as colesevelam, colestyr-
amine, colestipol and colestimide are effective therapies for
lowering LDL-cholesterol, and work by interrupting the
enterohepatic circulation of bile acids [1]. These agents
form non-absorbable complexes with bile acids, which
inhibits their reabsorption in the ileum [2] and increases
faecal excretion. In response, the nuclear receptor farnesoid
X receptor (FXR)-mediated inhibition of cholesterol 7α-
hydroxylase is reduced in the liver and bile acid synthesis
from cholesterol is upregulated [3] and the expression of
LDL receptors is upregulated and the clearance of LDL-
cholesterol from the blood is increased. BAS have also
been shown to improve glycaemic control in individuals
with type 2 diabetes mellitus [4].

The glucose-lowering mechanism(s) of BAS are not well
understood. It has been hypothesised that bile acids, via
activation of FXR and the G-protein-coupled bile acid receptor
(TGR5), have roles in glucose and energy homeostasis [5] and
that disruption of the normal bile acid flux may lead to
improved glycaemic control. BAS might modulate FXR-
dependent signalling pathways that regulate hepatic gluco-
neogenesis [6] and peripheral insulin sensitivity [7, 8].
Alternatively, BAS might promote secretion of glucagon-
like peptide 1 (GLP-1) [9] and increase energy expenditure
[10] via TGR5 activation. There are no data supporting these
hypotheses in humans and despite a consistent glucose
lowering effect, existing data suggest no change in insulin
sensitivity [11] with BAS, no association between glycaemic
control and bile acid metabolism [12] and no association
between bile acids and energy expenditure in humans [13].

Accordingly, the primary objective of this study was to
elucidate the mechanisms of glucose lowering by colese-
velam through in-depth examination of glucose metabolic
pathways in people with type 2 diabetes. We used stable
(non-radioactive) isotopic tracers to measure the effects of
colesevelam on endogenous glucose production (EGP),
gluconeogenesis (GNG), glycogenolysis, fasting plasma
glucose clearance, appearance of oral glucose (glucose
absorption), total glucose disposal and glycolytic disposal
of oral glucose. The secondary objectives were to measure
the effects of colesevelam on hepatic de novo lipogenesis
(DNL), de novo cholesterol synthesis (DNCS), de novo bile
acid synthesis, GLP-1 and glucose-dependent insulinotropic
polypeptide (GIP) concentrations.

Methods

Participants Sixty individuals (Fig. 1) with type 2 diabetes
treated with diet and exercise, metformin, a sulfonylurea, or
a combination of these treatments were enrolled. Exclusion
criteria included fasting plasma glucose >16.7 mmol/l,
fasting serum triacylglycerols≥3.9 mmol/l, LDL-
cholesterol <1.55 mmol/l, pregnancy or a history of liver,
biliary or intestinal diseases. Participants treated with
insulin or a lipid-lowering agent other than a statin at any
time or treated with a thiazolidinedione less than 6 months
prior to screening were excluded. All pre-existing treat-
ments were stable for a minimum of 3 months prior to
enrolment. Participants were studied at three sites: the
Diabetes and Glandular Disease Research Center (DGD,
San Antonio, TX, USA), Clinical Pharmacology of Miami
(Miami, FL, USA) and Diablo Clinical Research (Walnut
Creek, CA, USA). All participants gave written informed
consent. The study was approved for all sites by the
Biomedical Research Institute of America Institutional
Review Board (San Diego, CA, USA).

Drug administration and randomisation This was a rand-
omised double-blind placebo-controlled clinical trial. Par-
ticipants were studied at baseline and then randomised to
colesevelam or placebo for 12 weeks. Block randomisation
was used to achieve a balance of sexes between groups. A
central randomisation list was created by a statistician and
kept by a central coordinator who provided the group
allocation for each participant to an investigator at each site.
All investigators involved in the randomisation process
were not otherwise involved with the study. Participants
received six tablets a day of either colesevelam (3.75 g/day)
or matched placebo for 12 weeks: three tablets with lunch
and three tablets with dinner. Study drug compliance was
assessed at baseline and every 4 weeks thereafter by pill
counts. During the post-treatment visit, no study medication
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was administered with the breakfast test meals while three
tablets of study medication were administered with the
lunch test meal.

Stable-isotope studies Stable-isotope methods were used to
assess glucose, lipid (DNL and DNCS) and bile acid
metabolism in the fasting state and during meal tolerance
tests (Fig. 2) before and after 12 weeks of treatment. Stable-
isotope-labelled compounds from Isotec (Miamisburg,
OH, USA) or Cambridge Isotopes (Somerville, MA,
USA) were >99% enriched. Body composition was
assessed by bioelectrical impedance analysis (Tanita
TBF-300A, Arlington Heights, IL, USA). On the evening
of admission, participants received an ad libitum low-fat
meal (≤30% fat) at 18:00 hours. At 22:00 hours a
continuous 19.5 h infusion of [1-13C1]acetate (10 mg/min)
was started to assess fractional DNL, fractional DNCS and
the fraction of cholic acid (CA) and chenodeoxycholic acid
(CDCA) derived from newly synthesised cholesterol. At
00:30 hours of day 2, a primed/continuous 6 h [2-13C1]
glycerol infusion (15 mg/kg fat-free mass [FFM] prime,
0.25 mg [kg FFM]−1min−1) was started to assess GNG in
the fasting state. At 02.30 hours a primed/continuous
infusion of [U-13C6]glucose (1.2 mg/kg body weight prime,
0.02 mg [kg body weight]−1min−1) was started to assess the
rate of appearance (Ra) of glucose in the fasting state (this
low tracer infusion rate was chosen to avoid isotopic
interference by label derived from [U-13C6]glucose with the
GNG measurement from [2-13C1]glycerol [14]). At
06:30 hours the [U-13C6]glucose infusion rate was
increased to 0.08 mg [kg body weight]−1min−1 to calculate
total glucose Ra during a breakfast meal (the infusion rate
was increased to maintain sufficient enrichments of blood
[U-13C6]glucose in the presence of dilution from the
breakfast meal). At 08:30 hours a standardised breakfast
meal (2,531 kJ with 51% carbohydrate, 33% fat and 16%
protein) was administered consisting of 70 g egg, 70 g
mozzarella cheese and 75 g glucose, of which 15 g was
[6,6-2H2]glucose given as a flavoured aqueous solution to
measure the kinetics of exogenous glucose appearance in
blood (referred to as glucose absorption) [15] and to
measure whole-body glycolytic disposal of the glucose
load [16]. Participants consumed the egg and cheese
within the first 5 min followed by the glucose drink in
the next 5 min. A standardised lunch meal (3,539 kJ, 51%
carbohydrate, 26% fat and 23% protein) was given at
13:30 hours and consumed within 30 min.

Blood was drawn at 05:30, 06:00, 06:15, 06:30, and
08:30 hours of day 2 to assess fasting variables. Blood
samples were also obtained 15, 30, 45, 60, 90, 120, 150,
180, 210, 240, 270, 300 (lunch meal was administered
immediately after 300 min blood sample), 360, 420, 480
and 540 min after the breakfast meal.

Assay methods Blood was collected in tubes containing
EDTA (bile acids, lipids and insulin), sodium fluoride
potassium oxalate (glucose and 2H2O) and dipeptidyl
peptidase-4 inhibitor plus aprotinin (incretins and glucagon).
Plasma was stored at −80°C. Glucose concentrations were
determined with an YSI glucose analyser (YSI 2700).
Lipid profiles were assayed using an automated chemistry
immunoanalyser by a central laboratory (DGD, San
Antonio, TX, USA). HbA1c was determined by each site’s
local clinical laboratory. Plasma insulin (human specific),
total GLP-1 and glucagon concentrations were analysed by
radioimmunoassay (Millipore, St Charles, MO, USA). Total
GIP, active GLP-1 (Millipore, St Charles, MO, USA) and
fibroblast growth factor-19 (FGF-19) concentrations (R&D
Systems, Minneapolis, MN, USA) were determined by
ELISA. Plasma NEFA concentrations were analysed with
an enzymatic colorimetric method (Wako, Richmond, VA,
USA). Plasma 2H2O content was analysed as a measure of
the glycolytic disposal of the oral [6,6-2H2]glucose, as
described by Beysen et al. [16]. This involved distillation of
50 μl plasma in the cap of an inverted vial, in a 45°C glass
bead-filled heating block placed for 3 h in refrigerator to
ensure prevention of in vitro 2H2O production from
labelled glucose.

GC/MS analysis [U-13C6]glucose and [6,6-2H2]glucose
enrichment was analysed from deproteinized plasma and
converted to the aldonitrile penta-acetate derivative for
GC/MS analysis [17]. VLDL were isolated from plasma by
sequential ultracentrifugation; total lipids were extracted
from VLDL particles with chloroform:methanol (2:1); and
VLDL-triacylglycerols were then isolated via thin layer
chromatography [18]. VLDL-triacylglycerol fatty acids
were then trans-esterified to fatty acid-methyl esters for
GC/MS [19]. Plasma total bile acids collected at 17:30
hours (4 h after the lunch test meal) were deconjugated with
choloylglycine hydrolase (1 U/μl) and converted to the
pentafluoro-benzyl ester trimethylsilyl ether derivative for
GC/MS analysis [20]. Both the primary bile acids, CA and
CDCA, were analysed. Cholesterol was extracted from
plasma with 95% ethanol-acetone and non-esterified cho-
lesterol was converted to its acetyl derivative for GC/MS
analysis [21].

Calculations In the steady or fasting state, EGP was
calculated as follows:

EGP ¼ U�13C6½ �glucose infusion rate
U�13C6½ �glucose enrichment

� U�13C6

� �
glucose infusion rate

The fraction of plasma glucose that was synthesised
by GNG was calculated by mass isotopomer distribution
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analysis (MIDA) [22] and absolute GNG was calculated
as EGP×fractional GNG. The absolute contribution to
plasma glucose from glycogen (glycogenolysis) was
calculated as EGP—absolute GNG. Fasting plasma glu-
cose clearance was calculated as the rate of disappearance
of glucose (identical to Ra glucose under steady-state
conditions) divided by the fasting plasma glucose concen-
tration [23]. HOMA-insulin resistance (HOMA-IR) and
HOMA-beta cell function (HOMA-B) were calculated as
previously described [24]. Glucose fluxes during the
mixed breakfast meal were measured using a dual tracer
method [25] and calculated using non-steady state equa-
tions of Steele et al. [25] and a total distribution volume of
160 ml/kg. Fractional DNL, DNCS, CA and CDCA
synthesis were calculated using MIDA [26, 27]. Fractional
DNC represents the fraction of newly synthesised non-
esterified cholesterol in plasma. Fractional CA and
CDCA represent the relative amounts of CA and CDCA
made from newly synthesised cholesterol. Fractional
DNL represents the fraction of palmitate in VLDL-
triacylglycerol that was newly synthesised during the
period of the [1-13C1]acetate infusion. Glycolytic disposal
of oral glucose was measured 5 h after the administration
of the breakfast meal and calculated as the total amount
of 2H2O released from 15 g of [6,6-2H2]glucose admin-
istered with the breakfast test meal [16]. Total AUC
values were calculated by the trapezoid method using all
results measured between 0 and 300 min (fasting
concentrations included).

Statistical analysis Baseline differences between the two
groups were evaluated using independent groups t tests.
Treatment differences and within-group effects were eval-
uated using mixed-effects regression models. These models
had fixed effects of treatment, visit and treatment by visit
interaction and a random subject effect. Variables with
markedly non-normal residual distributions were re-
analysed using estimates from 2,000 bootstrap samples.
Baseline values of fasting plasma GLP-1 were added to the
model to correct for GLP-1 differences at baseline.
Spearman correlations were used to look at associations
between variables. Data are means±SE, except for treat-
ment differences which are expressed as least squares
means±SE or unless stated otherwise. p values <0.05 were
considered statistically significant.

Results

Participant characteristics One participant withdrew
because of increased fasting triacylglycerol (>5.65 mmol/l)
in the colesevelam group and four withdrew voluntarily.
Data from one individual was excluded because of non-

compliance with the protocol (Fig. 2). The baseline
characteristics were not different between groups, with the
exception of fasting total GLP-1 which was higher in the
placebo group (Table 1). Usage of glucose-lowering
medications was similar between groups.

Fasting metabolic variables After 12 weeks of treatment,
there was a reduction in HbA1c and fasting plasma
glucose concentrations with colesevelam and a non-
significant increase in the placebo group resulting in
treatment differences of −0.6±0.2% (−7±2 mmol/mol; p<
0.01) for HbA1c (Fig. 3a) and −1.28±0.61 mmol/l (p<0.05)
for fasting glucose (Fig. 3b). Of interest, colesevelam
increased fasting plasma total GLP-1 concentrations com-
pared with placebo, resulting in a treatment difference of
10±4 pmol/l (p<0.05, Fig. 3c). The treatment difference
remained significant after correcting for the baseline
difference in fasting total GLP-1 levels by covariance
analysis (9.2±2.6 pmol/l, p<0.001). No treatment differences
were seen for fasting insulin, GIP and glucagon concen-
trations or glucagon to insulin ratio (data not shown).
Compared with placebo, colesevelam treatment improved
beta cell function (HOMA-B treatment difference: +18%±4,
p<0.01, Fig. 3d) but not insulin sensitivity (HOMA-IR,
Fig. 3e). Within the colesevelam group fasting LDL-
cholesterol decreased (Fig. 3f) and fasting triacylglycerol
increased (Fig. 3g) but these changes were not significant
when compared to changes in the placebo group. No
treatment effects were seen for fasting total cholesterol,
HDL-cholesterol, and NEFA concentrations (data not
shown).

Assessed for eligibility (n=159)

Randomised (n=60)

Allocated to placebo group (n=30) Allocated to colesevelam group (n=30)

Discontinued intervention
voluntarily (n=2)

Discontinued intervention voluntarily
(n=2) and due to increased fasting
triacylglycerol level (n=1)

Analysed (n=28)

Analysed  (n=26)

Excluded from analysis due to non-
compliance with protocol (n=1)

Fig. 1 Participant disposition chart
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Table 1 Baseline participant
characteristics and fasting
metabolic variables

Data are mean±SD (range)

*p<0.01 vs colesevelam group

SU, sulfonylurea

Characteristic Colesevelam Placebo

n 26 28

Sex (female/male) 11/15 13/15

Age (years) 59±9 (40–69) 56±9 (33–70)

Weight (kg) 84±16 (55–112) 88±19 (60–133)

BMI (kg/m2) 30±5 (23–41) 31±5 (22–40)

HbA1c (%) 8.5±1.2 (6.8–11.0) 8.0±0.9 (6.6–9.7)

HbA1c (mmol/mol) 69±2.6 (51–97) 64±1.8 (49–83)

Glucose (mmol/l) 9.2±2.3 (6.4–14.4) 8.4±2.4 (4.0–14.5)

Insulin (pmol/l) 76±42 (28–215) 97±42 (35–208)

HOMA-IR 4.6±3.2 (1.3–14.7) 5.0±2.2 (1.7–10.8)

HOMA-B (%) 39±28 (8–115) 55±40 (10–181)

Total cholesterol (mmol/l) 4.6±1.2 (2.7–7.3) 4.6±1.3 (1.4–7.8)

LDL-cholesterol (mmol/l) 2.8±0.8 (1.7–5.0) 2.8±1.0 (1.0–5.1)

HDL-cholesterol (mmol/l) 0.9±0.2 (0.4–1.2) 1.0±0.2 (0.4–1.5)

Triacylglycerol (mmol/l) 2.2±0.8 (1.0–4.2) 2.0±0.9 (0.5–3.9)

NEFA (μmol/l) 441±127 (181–680) 468±87 (292–619)

Total GLP-1 (pmol/l) 8.3±5.4 (2–21) 16.7±13.5 (2–57)*

Active GLP-1 (pmol/l) 3.2±1.8 (2.0–8.1) 3.4±2.3 (2.0–10.3)

Total GIP (pmol/l) 9.9±4.3 (4.2–19.9) 10.6±7.2 (4.9–43.4)

Glucagon (pg/ml) 82±34 (23–196) 92±37 (52–193)

Fasting glucose kinetics

Plasma glucose clearance (ml [kg FFM]−1min−1) 2.8±0.6 (2.5–2.9) 3.0±0.9 (2.1–5.7)

EGP (μmol [kg FFM]−1min−1) 24.1±4.9 (17.0–35.8) 22.4±4.4 (16.0–34.6)

Glycogenolysis (μmol [kg FFM]−1min−1) 16.2±3.9 (11.90–20.2) 14.6±3.3 (9.0–23.6)

GNG (μmol [kg FFM]−1min−1) 8.0±1.9 (3.7–12.3) 7.8±2.0 (4.8–11.5)

Concomitant oral anti-diabetic drug

SU alone 4 2

Metformin alone 16 20

SU plus metformin 5 5

Diet alone 1 1

22.00 hours 02:30 hours 06:30 hours 13:30 hours 17:30 hours08:30 hours00:30 hours

[2-13C1]glycerol prime
(15 mg/kg FFM)

[U-13C6]glucose prime
(1.2 mg/kg BW)

[1-13C1]acetate infusion for DNL, DNCS and bile acid synthesis (10 mg/min)

[U-13C6]glucose infusion for EGP

[2-13C1]glycerol infusion for GNG
0.25 mg (kg FFM)−1 min−1 

Mixed breakfast meal + 
15g [6,6-2H2]glucose

for rates of glucose appearance
and glycolytic disposal

Mixed lunch meal

05:30−
Sampling

0.08 mg (kg BW)−1 min−1 0.02 mg (kg BW)−1 min−1 

Fig. 2 Stable isotope infusion and meal protocol. BW, body weight. Thin upward arrows indicate a blood draw
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Postprandial metabolic variables The effects of treatment
on postprandial glycaemic variables were evaluated during
a standardised breakfast test meal (Table 2). Relative to
placebo, colesevelam treatment reduced glucose AUC over
5 h although when glucose AUC was adjusted for fasting
concentrations it did not differ between the groups.
Colesevelam increased total GLP-1 and GIP AUCs and
the active GLP-1 AUC showed a trend to increase. No
treatment differences were found for postprandial insulin,
glucagon or glucagon:insulin AUCs.

Fasting and postprandial glucose kinetics Glucose kinetic
variables measured at baseline did not differ between the
two groups (Table 1). Colesevelam treatment significantly
increased fasting plasma glucose clearance (Fig. 4a), but
did not affect EGP, glycogenolysis or GNG in the fasting
state (Fig. 4b–d) when compared with placebo. Despite the
lack of a significant treatment effect, fasting EGP signifi-
cantly increased in the untreated group (Fig. 4b) because of
an increase in glycogenolysis (Fig. 4c); this increase was
not seen in the colesevelam group. Following a test meal,

Table 2 Effect of treatment
on postprandial glucose
and hormone variables

Data are mean±SE

Least squares means±SE
were calculated for treatment
differences

*p<0.05 significantly different
from colesevelam group;
†p<0.05, ††p<0.01 significantly
different from baseline visit

Variable Baseline Week 12 Change Treatment difference
(p value)

Glucose AUC (mmol/l × min)

Colesevelam 12.9±0.6 12.0±0.6 −0.8±0.4 −1.3±0.7 (<0.05)

Placebo 11.8±0.5 12.4±0.6 0.5±0.4

Insulin AUC (pmol/l × min)

Colesevelam 333±35 347±35 14±14 382±243 (NS)

Placebo 479±69* 444±56 −42±27
Total GLP-1 AUC (pmol/l × min)

Colesevelam 19±2 23±2 5±2† 8±3 (<0.01)

Placebo 25±3 22±2 −3±1
Active GLP-1 AUC (pmol/l × min)

Colesevelam 7.2±0.9 7.9±1.1 1.0±.8 0.9±0.8 (NS)

Placebo 7.5±0.8 7.0±0.6 −0.6±0.5
Total GIP AUC (pmol/l × min)

Colesevelam 47±3 53±4 7±2†† 13±3 (<0.001)

Placebo 46±3 41±3 −6±2††

Glucagon AUC (pg/ml × min)

Colesevelam 89±6 93±6 4±3 8±5 (NS)

Placebo 95±7 91±6 −4±4

Colesevelam Placebo
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Fig. 3 Mean changes from baseline after 12 weeks of colesevelam or
placebo: (a) HbA1c (−0.6±0.2; p<0.01); (b) fasting plasma glucose
(−1.3±0.6; p<0.05); (c) fasting total GLP-1 (10.3±4.2; p<0.05);
(d) HOMA-B (18±4; p<0.01); (e) HOMA-IR (NS); (f) fasting

LDL-cholesterol (−0.3±0.2; NS); and (g) fasting triacylglycerol
(−0.4±0.2; NS) Data are means±SE. *p<0.05, **p<0.01, ***p<
0.001 for pre- vs post-treatment
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colesevelam treatment had no effect on the appearance rate
(absorption) of meal glucose, EGP, Ra total glucose or total
glucose disposal rate (Rd; Fig. 5a–h) but did increase
glycolytic disposal of the oral glucose load (Fig. 6),
implying an effect on the partitioning of the meal between
glycolysis and glycogen storage or on entry into tissues
from the extravascular space, compared with placebo.

Fibroblast growth factor-19 (FGF-19) At baseline, fasting
FGF-19 concentrations were 126±20 pg/ml for the placebo
group and 175±24 pg/ml for the colesevelam group (no
significant difference between groups) and 2 h after the
administration of the lunch meal increased to 269±30 pg/ml
in the placebo group (p<0.0001 vs fasting) and to 419±
63 pg/ml in the colesevelam group (p<0.0001 vs fasting).
Fasting and postprandial FGF-19 concentrations did not
change after placebo treatment while colesevelam treatment
reduced both, resulting in significant placebo-corrected
reductions with colesevelam treatment for both fasting
(−119±33 pg/ml, p<0.001) and postprandial (−251±67 pg/ml,
p<0.001) FGF-19 concentrations.

De novo lipogenesis, cholesterol and bile acid kinetics
Baseline fractional contribution of DNL to fasting VLDL-
triacylglycerol was 6.2±0.4% for the placebo group and
6.4±0.5% for the colesevelam group (not significant).
Fractional DNL increased steadily in the postprandial
state after an approximately 2 h delay (Fig. 7a,b). This
delay presumably represents the time required for newly
synthesised fatty acids to be assembled into VLDL and
released into the circulation. Fasting and postprandial
fractional DNL increased in the placebo group (Fig. 7a)
and did not change after colesevelam treatment (Fig. 7b),
although the treatment effect did not reach statistical
significance. Baseline DNCS was 4–6% in both groups
(Fig. 7c,d). There was an approximately twofold increase in
fractional DNCS with colesevelam (Fig. 7d) and no change
with placebo treatment (Fig. 7c), resulting in a treatment
difference of 3.7±0.2% (p<0.0001, mean difference of all
time points). At baseline, the contribution of newly
synthesised cholesterol to CA (2.5±0.7% for placebo and
2.5±0.6% for colesevelam) and to CDCA (2.5±0.5% for
placebo and 1.6±0.3% for colesevelam) were not different
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Fig. 5 Effect of treatment on the following variables measured during
a breakfast test meal before and following 12 weeks of treatment: Ra

for meal glucose with (a) placebo and (b) colesevelam; EGP with (c)
placebo and (d) colesevelam; Ra for total glucose with (e) placebo and

(f) colesevelam; and total glucose Rd with (g) placebo and (h)
colesevelam. Data are means±SE. Black circles, pre-treatment; white
circles, post-treatment
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Fig. 4 Mean changes from baseline of fasting plasma glucose
clearance (p<0.01 between treatments) (a), fasting EGP (NS difference
between treatments) (b), fasting glycogenolysis (NS difference between

treatments) (c) and fasting GNG (NS difference between treatments)
(d) after 12 weeks of placebo or colesevelam treatment. Data are
means±SE. *p<0.05, **p<0.01 for pre- vs post-treatment
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between groups. Colesevelam treatment increased the
contribution of de novo synthesised cholesterol to both
CA and CDCA while no change was seen with placebo
treatment (Fig. 7e,f). The placebo-adjusted increase in
CDCA synthesis from new cholesterol was significantly
higher than the increase in CA synthesis from new
cholesterol (p<0.05) after colesevelam treatment.

Correlations At baseline, the fraction of bile acids synthes-
ised from new cholesterol was significantly correlated with
fasting FGF-19 (r=−0.32, p<0.05 for CDCA) and post-
prandial FGF-19 concentrations (r=−0.31, p<0.05 for CA
and r=−0.39, p<0.01 for CDCA). Within the colesevelam
group, changes in fasting plasma glucose clearance and
glycolytic disposal of oral glucose were not correlated with
changes in fractional DNCS, or the fractional contribution
of DNCS to bile acids.

Discussion

This study was undertaken to explore the mechanisms of
action for the glucose-lowering effect of colesevelam. As
previously shown, this study confirmed that colesevelam
lowers HbA1c levels and fasting and postprandial glucose
concentrations in participants with type 2 diabetes [28–30].
Using in vivo stable isotope-mass spectrometric techniques,
we found that the improvement in glycaemic control with
colesevelam was associated with an increase in plasma
glucose clearance in the fasting state and by an increase in
the glycolytic disposal of oral glucose in the postprandial
state. Plasma glucose clearance reflects the ability of whole-
body tissues to take up glucose in the fasting state, and
could involve the liver or peripheral tissues. Plasma glucose
clearance continued to be improved in the postprandial state
(Rd unchanged but at lower glucose concentrations with

colesevelam) and this was reflected in the improvement
seen in glycolytic disposal of oral glucose with colesevelam
treatment. Glycolytic disposal of oral glucose occurs
primarily in peripheral tissues and could reflect improved
insulin sensitivity or insulin secretion. Previous investiga-
tions [11], using hyperinsulinaemic–euglycaemic glucose
clamps, have shown that there is no effect of colesevelam
on whole-body insulin sensitivity. Accordingly, the increase
in the glycolytic disposal of oral glucose with colesevelam
is most likely a result of improved beta cell function rather
than a direct insulin-sensitising effect on peripheral tissues.
Although plasma insulin concentrations did not change, we
did find that colesevelam treatment resulted in a more
robust beta cell response (as assessed by HOMA-β) for the
degree of insulin resistance present, consistent with a role
of improved beta cell function.

The improvement in glucose clearance and beta cell
response with colesevelam might be the result of altered
secretion of the incretin hormones GLP-1 and GIP, which
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improve insulin secretion in the fasting [31, 33] and
postprandial [32, 33] states. In support of this hypothesis,
animal studies have shown an improvement in beta cell
response [34, 35] and increased GLP-1 concentrations [34,
36] with treatment by BAS.

We show here for the first time in humans that
colesevelam treatment increases plasma GLP-1 and GIP
concentrations. An increase in GLP-1 concentrations (2 h
postprandial) in humans had previously been reported with
colestimide [37]. Bile acids activate the cell surface G-
protein-coupled receptor TGR5, which is expressed in
enteroendocrine L cells and stimulates the secretion of
GLP-1 [9]. It is not clear how BAS increase incretin
secretion. It is possible that changes in the composition of
the bile-acid pool or a change to a more hydrophilic bile
acid pool with colesevelam [12] are involved in its incretin-
increasing effect.

In addition to possible effects of colesevelam on
peripheral tissues and beta cell response, colesevelam might
also improve glucose control through an improvement in
hepatic glucose metabolism. We observed a significant
increase in fasting EGP in untreated participants through an
increase in fasting glycogenolysis; this was not observed
with colesevelam treatment. Weight did not change and
participants were instructed to maintain their habitual diet
and exercise regimens during the study, suggesting that the
increase in EGP seen in the placebo group represents the
natural disease progression. In addition, increased fasting
glucose clearance with colesevelam treatment could reflect
direct uptake of glucose by the liver for storage in glycogen
(the direct pathway [38, 39]), which in turn could account
for the apparent stabilisation of hepatic glycogenolysis. The
significance of this stabilising effect of colesevelam on
EGP and glycogenolysis must be interpreted with caution
because the treatment effect did not reach statistical
significance. Nonetheless, evidence from the literature
suggests that the increased GLP-1 levels reported with
colesevelam treatment could mediate these effects. In type 2
diabetes, liraglutide, a long-acting GLP-1 derivative,
decreased fasting EGP as a result of reduced glycogenolysis
[40], and increasing GLP-1 concentrations by dipeptidyl
peptidase-4 inhibition with vildagliptin increased hepatic
glucose disposal [41]. In healthy people, the infusion of
GLP-1 decreased fasting EGP and tended to increase
plasma glucose clearance independent of changes in insulin
and glucagon concentrations [42].

The lack of effect of colesevelam on GNG is interesting
as activation of FXR has been shown to reduce expression
of genes involved in gluconeogenesis in mice [43]. FXR
has also been indicated to delay plasma appearance of
orally administered glucose [44], but we did not find that
colesevelam affects the Ra of oral glucose (absorption). We
did not administer colesevelam with the test meal and

cannot rule out that acute depletion of the bile acid pool
with colesevelam may alter GNG and glucose absorption,
however. In addition, although FGF-19 treatment has been
shown to improve glucose control, the decrease in FGF-19
concentrations with BAS in this study did not result in
increases in glucose concentrations.

These findings may indicate that changes in glucose
metabolism with long-term colesevelam treatment are
mediated through TGR5 activation and its subsequent
increase in GLP-1 secretion rather than by effects on FXR
activity. In support of this model, the glucose-lowering
effects of colestyramine in Zucker diabetic fatty rats were
not affected by the addition of an FXR agonist [34]. The
effects of colesevelam on hepatic glucose metabolism
without effects on GNG give it a different profile of
metabolic actions than metformin [45] or other oral
hypoglycaemic agents.

In addition to effects of colesevelam on glycaemic
control, we also observed the well-known effects of BAS
on bile acid and cholesterol synthesis [46]. Colesevelam
treatment doubled the fractional contribution of endogenous
synthesis to the non-esterified cholesterol pool. Colesevelam
increased the fractional synthesis of CDCA and CA from
newly synthesised cholesterol, although the main source for
CA and CDCA remained pre-formed cholesterol. While it
has been shown by others [12, 47] that increases in total BA
synthesis for CA are greater than for CDCA, new
cholesterol contributed more to the fractional synthesis of
CDCA than to CA after colesevelam treatment. This may
suggest that individual bile acids respond differently to
BAS but also that the percentage contribution of newly
synthesised cholesterol to CA vs CDCA may not depend on
the total bile acid production rate. As shown previously
[12], colesevelam treatment significantly reduced FGF-19
concentrations in both the fasting and the postprandial
states. We also found that fasting and postprandial FGF-19
concentrations were negatively correlated with CDCA and
CA synthesis in type 2 diabetes before treatment. Studies in
healthy participants have suggested that BA synthesis is
regulated in part by FGF-19 [12, 48], but a similar
relationship in type 2 diabetes was not seen in a previous
study [12].

FGF-19 has been shown to inhibit fatty acid
synthesis in cultured hepatocytes [49] and bile acid
sequestration in diabetic db/db mice resulted in an
increase in DNL [3]. We did not, however, see an
increase in DNL with colesevelam treatment in patients
with type 2 diabetes. Thus, the defect in leptin signalling
in the db/db mice may cause a metabolic shift toward
fatty acid synthesis that colesevelam treatment exacer-
bates and that is unique to leptin deficiency. The lack of
increase in DNL with colesevelam also suggests that any
increase in plasma triacylglycerol seen with long-term
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colesevelam treatment in people with type 2 diabetes
does not occur because of an increased contribution of
newly synthesised fatty acids to circulating lipids.

In summary, the improvement in glucose control in type
2 diabetes with colesevelam was mediated through an
increase in fasting plasma glucose clearance and an increase
in glycolytic disposal of oral glucose. Colesevelam treat-
ment also suppressed the rise in EGP and glycogenolysis
seen in the placebo group in the fasting state. The
improvement in glucose control with colesevelam was
associated with increased GLP-1 and GIP concentrations.
These effects suggest a predominant action of colesevelam
on glucose homeostasis in the liver, distinct from the
metabolic actions of metformin. Colesevelam also
increased cholesterol synthesis and the proportion of
bile acids derived from newly synthesised cholesterol,
as expected, but unexpectedly had no effect on
fractional DNL. The changes in glucose kinetics with
colesevelam did not correlate with changes in bile acid
and cholesterol kinetics, consistent with a previous
report [12]. This suggests that effects on glucose control
may be regulated independently from effects of colesevelam
on lipid control.
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