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Abstract Obesity is a major risk factor for a variety of
chronic diseases, including diabetes mellitus, and comor-
bidities such as cardiovascular disorders. Despite recom-
mended alterations in lifestyle, including physical activity
and energy restriction, being the foundation of any anti-
obesity therapy, this approach has so far proved to be of
little success in tackling this major public health concern.
Because of this, alternative means of tackling this problem
are currently being investigated, including pharmacother-
apeutic intervention. Consequently, much attention has
been directed towards elucidating the molecular mecha-
nisms underlying the development of insulin resistance.
This review discusses some of these potential mechanisms,
with particular focus on the involvement of the sphingolipid
ceramide. Various factors associated with obesity, such as
saturated fatty acids and inflammatory cytokines, promote
the synthesis of ceramide and other intermediates. Further-
more, studies performed in cultured cells and in vivo
associate these sphingolipids with impaired insulin action.
In light of this, we provide an account of the research
investigating how pharmacological inhibition or genetic
manipulation of enzymes involved in regulating sphingoli-
pid synthesis can attenuate the insulin-desensitising effects
of these obesity-related factors. By doing so, we outline
potential therapeutic targets that may prove useful in the
treatment of metabolic disorders.
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Abbreviations

aPKC  Atypical protein kinase C

AMPK  AMP-activated protein kinase

CEM Cholesterol-enriched (membrane) microdomain

DRM  Detergent-resistant (membrane) microdomain

GM3 Ganglioside monosialo 3

IMTG  Intramuscular triacylglycerol

LCFA  Long-chain saturated fatty acid

PIP, Phosphatidylinositol (3,4,5)-trisphosphate

PKB Protein kinase B

PKC Protein kinase C

PP2A  Protein phosphatase 2A

PTEN  Phosphatase and tensin homologue deleted
on chromosome ten

SPT Serine palmitoyltransferase

TLR Toll-like receptor

Introduction

The increasing occurrence of obesity and type 2 diabetes
mellitus, attributable to a large extent to sedentary living
and excess energy intake, has fuelled a rapidly expanding
area of research examining the link between lipid
metabolism and the pathogenesis of insulin resistance.
Evidence for such a relationship has been acquired from
numerous studies involving obese and diabetic humans as
well as rodent models exhibiting metabolic dysfunction
[1-4]. What has become clear from these investigations is
that obesity is a major contributing factor towards the
development of the metabolic syndrome and that impair-
ment of insulin action is associated with excess lipid
accumulation [3-7].
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At the molecular level, a key mediator of insulin action is
protein kinase B (PKB; also known as Akt), which acts to
regulate a number of physiological processes, resulting in an
overall hypoglycaemic response [8, 9]. Insulin promotes a
reduction in circulating glucose, to a large extent by
accelerating its uptake into peripheral tissues such as skeletal
muscle and adipose tissue, as well as by stimulating its
conversion into energy storage molecules such as glycogen.
It is well documented that insulin-stimulated glucose
transport into these tissues is significantly attenuated in
obese individuals and people with type 2 diabetes [10, 11].

Mechanistically, activation of PKB in response to insulin
involves its phosphorylation on two regulatory sites,
namely Thr308 in the activation loop and Ser473 in the
hydrophobic C-terminal regulatory domain (both sites
corresponding to PKBa/Aktl). Phosphorylation of both
residues is required for full activation [12]. This process
relies upon the generation of the membrane phospholipid
phosphatidylinositol (3,4,5)-trisphosphate (PIP3) by the
enzyme phosphoinositide 3-kinase, resulting in the pleck-
strin homology domain-dependent translocation of PKB to
the plasma membrane. The high-affinity binding of the N-
terminal pleckstrin homology domain of PKB to PIP;
facilitates a conformational change that allows subsequent
phosphorylation at Thr308 by 3-phosphoinositide-dependent
protein kinase 1 (PDKI1) [13]. The mechanism mediating
Serd73 phosphorylation remains controversial although
several distinct kinases, including mammalian target of
rapamycin complex 2 (mTORC2), have been proposed to
be involved, depending on cell type and stimulus [14].

The activation of PKB in response to insulin can be
markedly impaired by stimuli such as TNFe, glucocorti-
coids or prolonged exposure to long-chain saturated fatty
acids (LCFAs; e.g. palmitate), all of which have been
implicated in the development of insulin resistance [15, 16].
A common feature of these insulin-desensitising agents is
their ability to promote the accumulation of sphingolipids
such as ceramide [16—18]. Through the use of cell-permeant
analogues of ceramide or inhibition of its intracellular
synthesis, it is now widely acknowledged that this
particular sphingolipid intermediate can regulate a diverse
array of cellular processes, including cell survival and
apoptosis, inflammatory responses, mitochondrial function
and insulin sensitivity [19-21]. It is the last of these, that is,
the ability of ceramide to modulate insulin-mediated
responses and the potential mechanisms involved, that will
be the focus of this review.

Intracellular ceramide synthesis

Ceramides belong to a group of lipid-derived molecules
that consist of a sphingosine base linked to a fatty acid

moiety. Although previously thought of as purely
structural elements of the membrane lipid bilayer, it is
now clear that they also act as important signalling
molecules and are implicated in a variety of cellular and
physiological processes [22—24]. Ceramides can accumu-
late in cells via two main routes: the hydrolysis of the
membrane phospholipid sphingomyelin, which is coordi-
nated by the enzyme sphingomyelinase [22], or its de
novo synthesis from LCFAs such as palmitate, which
involves a multi-step biosynthetic pathway, as illustrated
in Fig. 1 [22, 23]. A number of different factors, including
TNF«, endotoxins and various stress stimuli, have been
reported to activate sphingomyelinase leading to the
generation of ceramide [22, 25].

The rate-limiting step of de novo synthesis of ceramide
is the condensation of a fatty acyl-CoA, usually palmitoyl-
CoA, with serine, which is catalysed by the enzyme serine
palmitoyltransferase (SPT), to form 3-ketosphinganine
(Fig. 1). The activity of SPT is stimulated in the presence
of LCFAs but not unsaturated fatty acids [16, 26]. The final
two steps of the pathway involve the generation of
dihydroceramide from sphinganine by the enzyme dihy-
droceramide synthase and its subsequent conversion into
ceramide by dihydroceramide desaturase (Fig. 1). Enhanced
ceramide production arising from de novo synthesis has
been reported in response to the stimulation of SPT and/or
dihydroceramide synthase [27-29]. In addition, ceramide
can be further modified into alternative forms, including
glucosylceramide and ceramide 1-phosphate, or converted
into other metabolites such as sphingosine 1-phosphate
(Fig. 1), some of which can induce distinct or even opposite
biological effects [22, 30, 31].

The role of ceramide in the pathogenesis of insulin
resistance

So why is ceramide considered to be a contributing
factor in the development of insulin resistance? The
evidence underpinning this view originates from several
important observations. First, sustained exposure of
skeletal muscle to non-esterified fatty acids results in
the accumulation of intramuscular triacylglycerol (IMTG)
and fatty acid-derived molecules such as diacylglycerol
and ceramide [3, 5, 19, 29, 32]. However, although the
accumulation of IMTG is normally associated with a loss
in skeletal muscle insulin sensitivity, the observation that
muscle from endurance-trained athletes remains insulin
sensitive despite elevated IMTG content (known as the
athlete’s paradox), initially suggested that increases in
intramuscular lipid alone may not be sufficient to explain
lipid-induced insulin resistance [7, 33]. Importantly, with
respect to this finding, we and others have shown that
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Fig. 1 An overview of the major pathways involved in the synthesis
of ceramide and its derivatives. Ceramide can be generated in a
number of different ways, including its de novo synthesis involving
several key enzymes, such as serine palmitoyl transferase (SPT), or by
the hydrolysis of sphingomyelin by the action of sphingomyelinases.

sustained exposure of skeletal muscle to palmitate, the
predominant circulating saturated fatty acid, results in
markedly impaired insulin-stimulated PKB activation
concomitant with inhibition of associated processes such
as glucose uptake and glycogen synthesis [8, 34, 35].
Second, given the fact that the de novo synthesis of
ceramide can be driven solely by the availability of
LCFAs, it has now been demonstrated in a variety of cell
lines and in isolated human myoblasts that the insulin-
desensitising effects of palmitate can also be mimicked by
the acute application of ceramide analogues [15, 17-19,
36, 37]. In addition, under those circumstances whereby
elevating levels of circulating lipids in rodents either by
lipid infusion or high-fat feeding causes insulin resistance, a
number of studies have now demonstrated an associated
increase in ceramide content within peripheral tissues such
as skeletal muscle and adipose tissue [20, 23, 38, 39].
Consistent with this, prolonged incubation of cultured
skeletal muscle C2C12 and L6 myotubes or human
myoblasts with palmitate also leads to an increase in
ceramide content in accordance with impaired insulin-
stimulated PKB activity [17, 19, 29, 37, 40]. With regards
to human physiology, elevations in skeletal muscle ceram-
ide and/or plasma ceramide levels have been reported in
obese insulin-resistant and diabetic individuals, as well as
in response to lipid infusion [20, 40, 41]. Furthermore,
intramuscular ceramide accumulation is also known to
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Both these processes, which take place at the plasma membrane, can
be induced in response to various stimuli (as discussed in the text).
The modification of ceramide (e.g. by its phosphorylation or
glucosylation) produces molecular species with similar or distinct
biological activities. Gal, galactose; Glc, glucose; SA, sialic acid

occur in certain animal models of insulin resistance,
including Zucker (fa/fa) rats [42, 43].

Third, in line with being a measure of obesity preven-
tion, the participation of insulin-resistant rodents and
humans in prolonged exercise regimens has been shown
to markedly improve insulin sensitivity in association with
reduced intramuscular ceramide [7, 20, 44]. Finally, and
perhaps most importantly, the inhibition of ceramide
synthesis can counteract the antagonistic effects of saturated
fatty acids on insulin-regulated PKB signalling (discussed
below) [15, 17, 20]. Collectively, these observations
strongly suggest that ceramide plays a key role in the
development of insulin resistance, primarily through its
ability to inhibit PKB [17, 19, 34].

Since initial work demonstrated that ceramide does not
directly interact with PKB or inhibit upstream signalling
events such as the activation of phosphoinositide 3-kinase by
hormonal stimuli [19, 20, 45], researchers undertook alterna-
tive approaches in an attempt to explain its suppressive
effect. Studies performed over the past decade have identified
two distinct mechanisms that may be involved. The
evidential basis of these proposed mechanisms, as well as
the potential involvement of ceramide-rich membrane lipid
rafts known as caveolae, will be discussed in the following
sections. It must be noted, however, that although the
mechanisms are treated separately (as depicted in Fig. 2b),
their occurrence may not necessarily be mutually exclusive.
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Fig. 2 Proposed mechanisms by which ceramide inhibits PKB.
Normally, insulin binds to its receptor at the plasma membrane
promoting the activation of PKB through the tyrosine phosphorylation
of IRS proteins and the subsequent activation of phosphoinositide 3-
kinase (PI3K). The associated increase in PIP; levels leads to the
recruitment of PKB to the plasma membrane, where it is activated by
the upstream kinases 3-phosphoinositide-dependent protein kinase 1
(PDK1) and TORC2. a The activation of PKB results in the
stimulation of insulin-regulated processes such as glucose transport
and glycogen synthesis. b In the presence of increased intracellular
levels of ceramide, the ability of insulin to stimulate PKB is impaired

Involvement of phosphatase activity
in ceramide-mediated inhibition of PKB

Initial evidence implicating a role for protein phosphatases
in mediating the inhibitory effects of ceramide on insulin-
stimulated PKB activity was obtained from studies per-
formed using C2C12 myotubes and brown adipocytes
treated with the protein phosphatase inhibitor okadaic acid
[18, 46]. Although okadaic acid does not selectively target
one particular protein phosphatase isoform (i.e. inhibits
protein phosphatases 1 [PP1] and 2A [PP2A]), it has
subsequently been demonstrated, through use of small t
antigen (which displaces regulatory subunits of PP2A), that
this inhibitor can prevent ceramide-mediated inhibition of
PKB by specifically inhibiting PP2A, a serine/threonine
phosphatase implicated in the dephosphorylation of PKB
[20]. To support this, ceramide has been shown to act as a
positive allosteric activator of PP2A [47, 48]. Therefore,
one way that ceramide can act to inhibit PKB activity is by
promoting its dephosphorylation at Thr308 and Ser473
through activation of PP2A (see Fig. 2b). However, in
certain cell types, such as L6 myotubes and white adipose,

by one of two established mechanisms. In the first scenario (1), the
increase in caveolar ceramide content results in the activation of
aPKCA/C and promotes the association of aPKCA/C and PKB within
these membrane microdomains. As a result of this interaction, PKB
remains in a repressed state and is unable to transduce signalling to
downstream components. Alternatively (2), the intracellular ceramide
generated leads to the direct activation of PP2A, causing the
dephosphorylation and inactivation of PKB. In both cases (1 and 2),
the inhibition of PKB is associated with the impairment of key insulin-
regulated responses

the ceramide-mediated inhibition of PKB cannot be
antagonised by co-treatment with okadaic acid alone,
thereby suggesting the involvement of an alternative
mechanism(s) [19, 34].

The role of atypical protein kinase C isoforms
in ceramide-induced insulin resistance

The second way that ceramide is known to promote
insulin resistance involves the disruption in membrane
translocation and reduced phosphorylation of PKB by a
process dependent on the activation of atypical protein
kinase C (aPKC) A/C isoforms. A reciprocal relationship
between PKC activity and insulin action was initially estab-
lished in human muscle strips that were incubated in the
presence of pharmacological PKC activators or inhibitors [49].
From this study and others, it has emerged that whilst
activation of aPKCA/{ may be involved in suppressing
insulin-stimulated PKB activity and associated processes,
inhibition of aPKCs is able to promote an insulin-sensitising
effect [49-52]. In addition, pharmacological inhibition of PKC
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activity has also been shown to prevent the ceramide-induced
loss of insulin-stimulated PKB activation in both isolated
human adipocytes and L6 myotubes [S1, 53].

To investigate how ceramide blocks the translocation of
PKB to the plasma membrane, initial work by Summers’
group demonstrated that whilst ceramide analogues prevent
the membrane localisation of the pleckstrin homology
domain of PKB, they do not alter the accumulation of 3'-
phosphoinositides [45]. This therefore suggested that the
inhibitory effect of ceramide occurs independently of 3'-
phosphoinositide production.

Subsequent studies demonstrated that ceramide can
directly activate aPKCA/{ isoforms in vitro by binding to
the putative ceramide-binding region of the protein, also
known as the cysteine-rich domain [50]. Importantly,
aPKCA/C also interacts with and suppresses the activity of
PKB [50, 51, 54]. Follow-up work from our group
established that the interaction between PKCA/{ and PKB
requires the PKB pleckstrin homology domain, and that
ceramide-activated PKCA/C phosphorylates a threonine or
serine residue at site 34 (dependent on PKB isoform) within
this region [51]. As a result, reduced affinity of the
pleckstrin homology domain towards PIP; prevents the
recruitment of PKB to the plasma membrane and its
subsequent activation. Based on these observations it has
been proposed that increases in intracellular ceramide
leading to the activation of aPKCA/{ promotes the
stabilisation of the aPKCA/{-PKB complex and attenuates
the recruitment of PKB to the plasma membrane as a result
of disrupted PIP; binding (Fig. 2b) [51, 53].

Influence of caveolae in mediating the effects
of ceramide

It is now widely acknowledged that the plasma membrane
is not a homogenous structure but instead consists of
microdomains (or rafts), each with their own characteristic
lipid composition [55]. Indeed, lipid-derived molecules
such as cholesterol or sphingolipids can segregate into
such microdomains, which are more ordered and less fluid
in nature compared with the rest of the plasma membrane
[56]. Detergent treatment of cell membranes allows the
isolation of detergent-resistant microdomains (DRMs) that
are enriched in sphingolipids, including ceramide [57]. This
particular subset of lipid rafts, termed cholesterol-enriched
membrane microdomains (CEMs), are characterised by the
presence of integral membrane proteins termed caveolins
(namely, caveolin-1, -2, -3 and —4) [57].

The caveolins themselves are cholesterol-binding pro-
teins that associate to form the flask-like invaginations that
characterise caveolae and, importantly, are capable of acting
as scaffolding proteins onto which signalling complexes
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assemble. For this reason, CEMs play an important role in
numerous signalling pathways, including insulin-mediated
responses [57, 58]. Our previous work has demonstrated
that acute ceramide treatment (or prolonged incubation with
palmitate) promotes the recruitment of both aPKCA/C and
PKB to these CEMs [53]. By doing so, aPKCA/{ would not
only be exposed to a ceramide-enriched environment,
rendering it active, but would simultaneously be co-
localised with PKB, thereby suppressing its activity.

Intriguingly, disrupting these microdomains using a
cholesterol-depleting agent prevents the recruitment of these
kinases to DRMs and ameliorates ceramide-mediated loss in
PKB activity [53]. Although a direct physical association
between aPKCA/{ and PKB has yet to be established within
CEMs, ceramide has been shown to promote both aPKCA/C—
PKB and caveolin-1-aPKCA/C interactions in 3T3-L1
adipocytes, suggesting that caveolins may act to bridge the
association between aPKCA/{ and PKB [53]. This may be at
least partly due to regions within caveolin proteins, known as
caveolin scaffolding domains, that allow them to interact
directly with aPKCA/C [59].

In addition to promoting the recruitment of PKB and
aPKCA/E, ceramide exposure can also significantly elevate
levels of phosphatase and tensin homologue deleted on
chromosome ten (PTEN) in caveolin-enriched DRM
fractions [53, 60]. The tumour suppressor PTEN acts as a
phosphoinositide phosphatase and its increased abun-
dance in CEMs would likely result in reduced localised
levels of 3'-phosphoinositides. Together with the presence
of activated aPKCMA/C, the CEMs create a highly repressive
environment for PKB under such circumstances. Further-
more, the fact that ceramide does not suppress total insulin-
stimulated production of 3'-phosphoinositides at the plasma
membrane further supports the idea that this repressive
environment is unlikely to be extended to the bulk planar
membrane and is rather more focused in nature [51].

Intriguingly, a recent study by Blouin et al. demon-
strated that the mechanism by which ceramide inhibits
PKB may itself depend on cellular CEM abundance [48].
In cells that are abundant in caveolae, such as differenti-
ated 3T3-L1 adipocytes, ceramide predominantly acts to
inhibit PKB by recruiting aPKCA/C and PKB to these
membrane domains. In contrast, in CEM-deficient 3T3-L1
preadipocytes, a mechanism dependent on PP2A activity
occurs, and this can be prevented by cotreatment with
okadaic acid [48]. Furthermore, it has been shown that
ceramide-activated PP2A is able to dephosphorylate a
cytosolic insulin-stimulated PKB construct lacking its
pleckstrin homology domain, thereby excluding a role
for the membrane translocation of PKB in this process
[20]. To complement these findings, the study by Blouin
et al. also demonstrated that the ceramide-activated PP2A
pathway is found to dominate in fibroblasts with a low
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CEM abundance but switches to a aPKCA/{-dependent
pathway following overproduction of caveolin-1 [48]. Al-
though the mechanism responsible for promoting this switch
is not fully understood, work performed in prostate cancer
cells determined that caveolin-1 can interact with and
suppress PP2A [61]. This observation suggests that disruption
of caveolae or suppressed caveolin abundance may cause the
‘release’ of PP2A into an unbound state in the cytosol where
it would be more susceptible to activation by ceramide.
Despite the implication of caveolins and caveolae in the
development of insulin resistance, the reader must also bear
in mind the important role that these membrane proteins
play in maintaining proper signal transduction. For exam-
ple, because caveolins act as scaffolding proteins involved
in organising the assembly of signalling complexes, it
comes as no surprise that caveolin deficiency causes
impaired insulin responses as well as a wide range of
phenotypes and disorders [62]. In addition, a recent study
has shown that caveolins may also confer a protective effect
against elevated fatty acid levels [63]. Consequently, the
role of caveolins and caveolae in insulin signalling can be
viewed in two different ways—either as an aid to
preserving insulin-regulated processes or as membrane
microstructures, which, under certain circumstances, may
contribute to the development of impaired insulin action.

The potential of modulating sphingolipid/
ceramide-associated signalling
as a therapeutic intervention

(1) Inhibition of SPT activity Work investigating the
mechanisms involved in ceramide-induced insulin resis-
tance has led to a number of potential therapeutic targets
being proposed to tackle obesity-related diseases. However,
it would be reasonable to speculate that preventing
ceramide accumulation in response to elevated levels of
circulating lipids or other stimuli that promote insulin
resistance may be beneficial in ameliorating any insulin-
desensitising effects. With this in mind, the most commonly
studied molecular target involved in suppressing ceramide
production is the enzyme SPT which, as mentioned above,
catalyses the initial rate-limiting step in de novo ceramide
synthesis (Fig. 1) [64]. Several potent inhibitors of SPT
have been documented, although the most widely used is
myriocin, a naturally occurring fungal metabolite isolated
from Myriococcum albomyces [64]. Studies performed by
our group and others have demonstrated that acute
inhibition of SPT using myriocin ameliorates the loss in
insulin-stimulated PKB activation in cultured L6 or C2C12
myotubes caused by palmitate-driven ceramide synthesis
[15, 29, 35, 37]. With regards to equivalent studies carried
out in vivo, administration of myriocin is also found to

attenuate PKB inhibition in response to lipid infusion or
high-fat feeding, as well as improving glucose tolerance
and peripheral insulin sensitivity in obese ob/ob mice and
Zucker Diabetic Fatty rats [16, 23, 65]. As expected, these
beneficial effects of myriocin are associated with reduced
levels of circulating ceramide and are reproduced when
alternative inhibitors of de novo ceramide synthesis such as
L-cycloserine (which also inhibits SPT) and fumonisin Bl
(dihydroceramide synthase inhibitor) are used [15, 16, 35].

Surprisingly, however, a recent study demonstrated that,
in contrast to acute inhibition of SPT, its chronic suppres-
sion in L6 myotubes by pharmacological means or short-
hairpin RNA-mediated silencing, fails to prevent the
insulin-desensitising effects of palmitate [29]. Although
initially unexpected, a possible explanation for this appar-
ent lack of effect may involve the channelling of palmitate
into other lipid intermediates that can contribute towards
insulin resistance. Consistent with this idea, the same study
was able to show a comparable significant increase in
diacylglycerol content, which was coupled with a loss in
insulin sensitivity, in palmitate-treated L6 cells containing a
stable loss of SPT expression and in L6 cells treated over a
longer period (7 days) with myriocin. Intracellular diac-
ylglycerol accumulation itself has been linked to the
activation of novel and conventional PKCs (such as PKC0)
that are implicated in lipid-induced insulin resistance [66].
Although the full spectrum of serine sites that may be
targeted by different PKC isoforms on IRS proteins remains
poorly defined, PKCO has been suggested to directly
promote phosphorylation of Ser1101 of IRS-1, resulting in
reduced insulin sensitivity [67]. Therefore, in this case a
PKC-mediated increase in IRS-1 or insulin receptor serine
phosphorylation may underlie palmitate-induced insulin
resistance under conditions where SPT expression/activity
becomes chronically suppressed [29].

Importantly, based on the observations made in this
particular study, although inhibiting SPT with pharmaco-
logical inhibitors can improve insulin sensitivity, at least in
the short term, any apparent long-term benefits would need
to be carefully assessed in light of the possible accumula-
tion of other fatty acid-derived metabolites with the
potential to induce insulin resistance. The fact that these
observations regarding the sustained inhibition of SPT
activity are not fully consistent with studies performed in
vivo, the possibility of greater efficacy of SPT inhibitors in
tissues other than skeletal muscle cannot be discounted and
requires further investigation. In addition, there is the
possibility that myriocin treatment may act to simulta-
neously reduce levels of other sphingolipids derived from
ceramide (e.g. glycosphingolipids), thereby contributing to
its beneficial effects. However, such consequential
responses of myriocin administration have not yet been
reported. Furthermore, although such studies commonly
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support a role for SPT in modulating insulin sensitivity, its
effect on the regulation of body weight and energy
expenditure still remain unclear based on discrepancies
presented in literature [16, 23, 65].

As well as targeting SPT directly, there is also evidence
to suggest that manipulating the activity of molecular
targets or pathways that do not directly participate in the
de novo synthesis of ceramide, may also result in the
modulation of SPT activity and/or ceramide production. For
example, overproduction of stearoyl-CoA desaturase, an
enzyme involved in the conversion of saturated fatty acids
into monounsaturated fatty acids in L6 myotubes leads to
both improved insulin sensitivity and the attenuation of
ceramide accumulation in response to palmitate exposure
[68]. Furthermore, it has recently been demonstrated that
adiponectin, an insulin-sensitising adipocyte-derived secre-
tory factor, can act through its receptors (AdipoR1 and
AdipoR2) to lower ceramide levels by stimulating the
activity of ceramidase, an enzyme that catalyses the
degradation of ceramide [69].

It is widely acknowledged that certain exercise regimens
can alleviate diet-induced obesity and insulin resistance.
Indeed, a number of independent studies have demonstrated
that exercise training is associated with suppression of
circulating and/or tissue ceramide content [33, 44, 70]. For
example, in a study by Bruce et al., obese humans who
participated in 8 weeks of exercise training showed a
decrease of approximately 40% in skeletal muscle ceramide
content and an associated improvement in insulin sensitiv-
ity [44]. One potential contributing factor to exercise-
induced suppression of ceramide generation may involve
the activation of AMP-activated protein kinase (AMPK)
[71]. AMPK activation by pharmacological means has been
shown to prevent palmitate-induced SPT activity [72],
thereby suggesting the possibility of a similar response to
exercise-stimulated AMPK in vivo [73]. Furthermore, the
activation of AMPK, which has a stimulatory effect on
mitochondrial (3-oxidation of fatty acids, acts to shunt
palmitate away from ceramide synthesis towards oxidation
[44, 74, 75]. Indeed, accelerating the rate of fatty acid
import into and its subsequent oxidation in mitochondria
can alleviate high-fat diet-induced insulin resistance [76].
Consistent with this idea, a recent study showed that pre-
incubating C2C12 myotubes with the monounsaturated
fatty acid oleate or introducing a mutant active form of
carnitine palmitoyltransferase 1 (a key positive regulator of
LCFA (3-oxidation), can prevent palmitate-induced ceram-
ide accumulation and insulin resistance by increased
channelling of the saturated fatty acid towards triacylgly-
cerol and/or through its enhanced oxidation [75]. This
therefore raises the possibility that glucose-lowering phar-
macological activators of AMPK (or exercise mimetics)
and/or consumption of diets with a higher proportion of
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unsaturated fatty acids, may act to prevent diet-induced
obesity and impaired metabolic function, at least in part by
restricting ceramide generation.

(2) Inhibition of sphingomyelinase As well as through de
novo synthesis, ceramide can also be produced by the
action of sphingomyelinase enzymes that are activated in
response to stimuli such as TNF« [77]. Sphingomyelinase
generates ceramide through the hydrolysis of sphingomyelin
(Fig. 1). Interestingly, the abundance and/or activity of
either neutral or acid sphingomyelinases has been reported
to be elevated in the adipose tissue of ob/ob and high-fat
diet-induced obese mice as well as in liver in response to
high-fat feeding [38, 78, 79]. Furthermore, a recent study
demonstrated that exposure of C2C12 myotubes to exoge-
nous sphingomyelinase can elevate intracellular ceramide
levels; however, effects on insulin sensitivity were not
determined in this particular study [80].

It is therefore plausible that increased levels and/or
activity of sphingomyelinase-stimulating stimuli or secreted
serum sphingomyelinase may also contribute to ceramide
accumulation in peripheral tissues [80, 81]. Indeed, it has
been shown that genetic loss of acid sphingomyelinase can
prevent diet-induced obesity, hyperglycaemia and insulin
resistance in mice lacking the LDL receptor (Ldlr "),
which are prone to metabolic disease when placed on high-
fat diets [82]. Furthermore, a recent study by Bioni et al.
demonstrated that treatment of mice with the acidic
sphingomyelinase inhibitor amitriptyline attenuates high-
fat diet-induced elevations in plasma ceramide and
improves insulin sensitivity [78].

An alternative mechanism by which saturated fatty acids
may lead to the activation of sphingomyelinase could
involve Toll-like receptor (TLR) signalling. Toll-like
receptors are a family of proteins that play an important
role in the innate immune system [83]. Although normally
activated in response to pathogens and cell stress, it is now
apparent that saturated fatty acids may themselves act as
ligands for two TLR isoforms in particular, namely TLR2
and TLR4, both of which have been linked to the
development of obesity and insulin resistance [84, 85].
Intriguingly, activation of TLR2/4-mediated signalling by
lipopolysaccharide, an endotoxin isolated from Gram-
negative bacteria, has been shown to promote the accumu-
lation of ceramide [86]. Therefore, together with its
involvement in the production of cytokines such as TNFx
and IL-6, regulation of TLR2/4-mediated signalling may
play an additional role in modulating ceramide generation.

To summarise, although studies determining the effects
of sphingomyelinase activity on insulin sensitivity and
metabolic efficiency are still comparatively few in number,
the findings from them so far hold promise that sphingo-
myelinase enzymes may play a significant role in the
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pathogenesis of type 2 diabetes and are therefore a potential
therapeutic target.

(3) The ganglioside GM3 as a potential mediator of insulin
resistance Another class of ceramide-derived sphingolipids
that have been implicated as modulators of transmembrane
signalling are the gangliosides. Gangliosides are complex
sialic acid-containing glycosphingolipids consisting of a
ceramide moiety linked to an oligosaccharide chain [87].
One of the gangliosides in particular, GM3 (ganglioside
monosialo 3), has been shown to modulate insulin-
mediated signalling. The synthesis of GM3 involves the
glucosylation of ceramide (see Fig. 1), and important
enzymes in this process include glucosylceramide synthase,
which catalyses the initial glycosylation step, and GM3
synthase, an intracellular sialyltransferase that promotes the
conversion of lactosylceramide to GM3 (Fig. 1).

Data from several studies now suggest that GM3 may be
involved in mediating insulin-desensitising effects and, in
particular, that of pro-inflammatory cytokines such as
TNFx [26, 88, 89]. First, insulin resistance induced by
TNFo in 3T3-L1 adipocytes has been associated with
elevated GM3 levels caused by increased GM3 synthase
abundance and activity [88]. Second, pharmacological
inhibitors of glucosylceramide synthase, which deplete
cellular GM3, can prevent the inhibitory effects of TNFo
on insulin signalling in cultured 3T3-L1 adipocytes [88,
90]. Furthermore, GM3 itself can mimic the effects of
TNF o by inhibiting tyrosine phosphorylation of the insulin
receptor and IRS-1, as well as suppressing insulin-
stimulated glucose uptake [89, 91]. Concomitantly, im-
proved tyrosine phosphorylation of the insulin receptor has

NEFA

TNFa

been reported in response to pharmacological inhibition of
glucosylceramide synthase and in GM3 synthase-deficient
mice [90, 92]. Furthermore, studies by Kabayama et al.
demonstrated that GM3 can directly interact with the
insulin receptor and by doing so, causes its displacement
from caveolae leading to attenuated insulin signalling [93].
This observation implies that GM3 may regulate insulin
signalling via its effects on insulin receptor membrane
localisation and activity [89, 93].

Further supporting a role for GM3 in the development of
insulin resistance in vivo, administration of glucosylcer-
amide synthase inhibitors [N-(5-adamantane-1-yl-methoxy-
pentyl)-deoxynojirimycin (AMP-DNM) and Genz-123346]
has been shown to improve both glucose tolerance and
insulin sensitivity in skeletal muscle and liver of ob/ob mice
and Zucker diabetic rats, as well as in diet-induced obese
mice, without any significant alteration in food intake or
loss of body weight [90, 92]. Similar effects are observed in
mice lacking GM3 (due to GM3 synthase deficiency),
which display protection against high-fat diet-induced
insulin resistance [91]. Interestingly, insulin sensitivity is
found to be improved in mice with elevated production
of the GM3 degrading sialidase Neu3 in liver [94].
However, to our knowledge there are no data showing
whether changes in Neu3 abundance and/or activity is
regulated by obesity.

To date, one pilot study has reported increased circulat-
ing levels of GM3 in obese type 2 diabetic individuals as
well as in individuals displaying hyperglycaemia and/or
hyperlipidaemia [95]. This is in agreement with the
elevated GM3 levels present in skeletal muscle from certain
obese insulin resistant murine models, although as yet there
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is no supporting evidence in tissues obtained from obese or
diabetic humans [88]. Intriguingly, individuals with type I
Gaucher’s disease, a lysosomal storage disorder caused by
an impairment in glucosylceramide breakdown leading to
elevated levels of GM3, are also found to exhibit insulin
resistance [87]. Collectively, these observations open up the
possibility that GM3 may serve as a diagnostic marker for
metabolic-related disorders, and that therapeutic interven-
tions aimed at reducing GM3 levels in vivo may prove to
be a useful strategy for combating insulin resistance.

Summary and concluding remarks

In summary, a number of studies have demonstrated an
inverse relationship between ceramide content and insulin
sensitivity. However, as work in our lab and others has
demonstrated, ceramide should be viewed as one of
multiple factors involved in impaired insulin action. The
reader must also be aware that, although the pharmacolog-
ical and genetic evidence presented in this review strongly
implicates ceramide or its derivatives in the development of
insulin resistance, some counter-evidence exists to suggest
that it may not be the key or sole intermediate involved.
For example, certain studies have reported no significant
differences in human muscle ceramide content in indi-
viduals with varying insulin sensitivity or adiposity [3,
96, 97]. Also, lipid infusion in rodents (depending on lipid
composition) can promote insulin resistance without a
significant change in tissue ceramide content [96, 98]. In
addition, some animal models displaying marked eleva-
tions in hepatic ceramide content do not show a
corresponding impairment of insulin-mediated signalling
in the liver [6, 99].

However, despite the lack of dramatic changes in total
ceramide levels, one cannot rule out the possibility that
alterations in the type of ceramide species present may also
be an important factor in determining insulin sensitivity.
Crucially, it must be noted that the methods used to
determine ceramide content in these studies do not
discriminate between ceramide and biologically inactive
dihydroceramide. Therefore, significant differences in the
levels of the inactive analogue may have a considerable
effect on any results obtained. Another major issue is the
relatively small sample sizes employed in the studies
performed to date.

It is also possible that ceramide may affect whole
body metabolism in other ways. For example, elevated
levels of ceramide, which have been shown to promote
mitochondrial dysfunction, could if sustained over a
period of time, lead to reduced oxidative capacity in
metabolically active tissues such as skeletal muscle [21].
In either case, if ceramide does play a crucial role in the

@ Springer

pathogenesis of the metabolic syndrome, the fact that
ceramide (and its derivatives) can be generated in a
number of different ways suggests that, as outlined in
Fig. 3, targeting multiple pathways may be the most
effective strategy for the treatment of metabolic disorders
and associated complications [78, 80, 100].
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