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Abstract
Aims/hypothesis The aim of the study was to determine the
association between IRS1 G972R polymorphism and type 2
diabetes; published data concerning this association have been
conflicting. To obtain further insight into this topic, we
performed ameta-analysis of all available case–control studies.
Methods We performed a meta-analysis of 32 studies
(12,076 cases and 11,285 controls).
Results The relatively infrequent R972 variant was not
significantly associated with type 2 diabetes (OR 1.09, 95%
CI 0.96–1.23, p=0.184 under a dominant model). Some
evidence of heterogeneity was observed across studies
(p=0.1). In the 14 studies (9,713 individuals) in which the
mean age at type 2 diabetes diagnosis was available, this
variable explained 52% of the heterogeneity (p=0.03). When
these studies were subdivided into tertiles of mean age at
diagnosis, the OR for diabetes was 1.48 (95% CI 1.17–1.87),

1.22 (95% CI 0.97–1.53) and 0.88 (95% CI 0.68–1.13) in
the youngest, intermediate and oldest tertile, respectively
(p=0.0022 for trend of ORs).
Conclusions/interpretation Our findings illustrate the
difficulties of ascertaining the contribution of ‘low-
frequency–low-risk’ variants to type 2 diabetes suscep-
tibility. In the specific context of the R972 variant,
~200,000 study individuals would be needed to have
80% power to identify a 9% increase in diabetes risk at
a genome-wide significance level. Under these circum-
stances, a strategy aimed at improving outcome defini-
tion and decreasing its heterogeneity may critically
enhance our ability to detect genetic effects, thereby
decreasing the required sample size. Our data suggest
that focusing on early-onset diabetes, which is charac-
terised by a stronger genetic background, may be part
of such a strategy.
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Introduction

Despite the recent advances resulting from genome-wide
association studies (GWAS), most of the genetic factors
contributing to type 2 diabetes remain undetermined [1].
IRS-1 is an important member of a protein family
phosphorylated by the insulin receptor upon its binding
with insulin [2]. Tissue-specific knockout mice have shown
that IRS-1 is necessary for in vivo insulin action and
secretion [2]. A relatively infrequent glycine to arginine
substitution at position 972 of IRS1 (G972R or rs1801278,
minor allele frequency [MAF] ranging from 0.02 to 0.10 in
the four different population samples available from
HapMap) has been extensively investigated as a determi-
nant of type 2 diabetes susceptibility. In vitro studies have
shown that the R972 allele results in a loss of IRS-1
function, which impairs insulin signalling in several target
tissues, including skeletal muscle, fat and pancreatic beta
cells [2–4]. In vivo studies have reported an association
between IRS1 R972 variant and both insulin resistance

[2, 5] and reduced insulin secretion [2, 6]. The deleterious
role of the R972 variant on in vivo insulin action and
glucose homeostasis has been recently confirmed by studies
in transgenic mice [7]. In spite of such strong evidence for a
functional role, the data concerning the association of this
variant with type 2 diabetes have been, thus far, conflicting.
An initial meta-analyses of 27 studies indicated that R972
carriers had a 25% increase in type 2 diabetes risk [8], but
subsequent large case–control studies have failed to
replicate this association (in Table 1 of the Electronic
supplementary material [ESM] see Zeggini et al. [9], Florez
et al. [10] and van Dam et al. [11]). Unfortunately, neither
the G972R variant nor good proxies in linkage disequilib-
rium with it (i.e. r2>0.5) were included in the publicly
available GWAS meta-analysis DIAGRAM [12].

To obtain further insight into the role of R972 in type 2
diabetes, we performed an updated meta-analysis of all
case–control studies available to date (ESM Table 1). BMI
and age at diabetes onset were analysed as covariates in
meta-regression.

Methods

Study design All case–control studies reported in previ-
ous meta-analyses [8] and all papers found in the PubMed
database as of January 2009 by using ‘insulin receptor
substrate-1’, ‘IRS-1’, ‘Gly972Arg’, ‘G972R’, ‘diabetes’,
‘variant’, ‘polymorphism’ and ‘genotype’ as keywords,
were analysed. In addition, we included five unpublished
case–control studies in which all study participants were
self-reported whites: four sets from the Genetics of Type 2
Diabetes in Italy and the United States (GENIUS T2D)
Consortium [13] (N. Abate, A. Doria, G. Sesti and
V. Trischitta) and one set recruited in Chieti, Italy (ESM
Table 1; Cama A. sample) (S. Mammarella and A. Cama).
Three of the published studies were excluded because they
were subsets of these unpublished sets: in ESM Table 1
see Sigal et al. [14] of the GENIUS Boston sample,
Mammarella et al. [15] and Esposito et al. [16] of the
Cama A. sample.

Study individuals in unpublished samples Controls in all
unpublished samples were non-diabetic individuals with
fasting plasma glucose <6.9 mmol/l and absence of drug
treatment known to affect glucose metabolism. Cases were
patients with type 2 diabetes defined according to the 2003
American Diabetes Association criteria.

DNA extraction and genotyping DNA from the unpub-
lished sets was extracted from whole blood by standard
methods. Genotyping details are described in the methods
section of the ESM.
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Statistical methods Cases and controls of all studies were
tested for Hardy–Weinberg equilibrium (HWE) by means
of an exact χ2 test. Between-study heterogeneity and the
possible presence of publication bias were assessed by
Cochran’s Q test and Macaskill’s inverse pooled variance
weighting method [17], respectively. Random-effects meta-
analysis and meta-regression were used to estimate OR and
to explore heterogeneity [18]. Where appropriate,
permutation-resampling p values were calculated to address
the risk of spurious significant results [19]. All the analyses
were performed using SAS Statistical Package Release 9.1
(SAS Institute, Cary, NC, USA).

Results

Of the 35 available studies, only those 32 that did not show
significant deviations (exact p<0.05) from HWE in cases or

controls were considered in the meta-analysis (ESM
Table 1). Given the small number of RR individuals (i.e.
homozygous for the R972 variant) in 12 studies and their
absence in the other 20 (a finding that could seriously bias
the results of both additive and recessive models), we
investigated only the dominant model, by comparing
GR+RR (these latter when available) with GG individuals.
Figure 1 shows the individual results from the 32 case–
control studies, along with those of the meta-analysis,
which included 12,076 cases and 11,285 controls. As for
any meta-analysis performed on published genetic data, we
cannot exclude the possibility that some sample overlap has
occurred; however, by carefully reading the description of
samples analysed in each study, this seems to be an unlikely
event. No evidence of publication bias was observed
(p=0.27). The ORs for association between R972 and type
2 diabetes ranged from 0.55 to 4.75. In the meta-analysis,
the R972 variant did not show a significant association with

Study OR Lower limit Upper limit p value

Almind et al. (1993) [25] 3.20 0.85 12.10 0.086
Hager et al. (1993) [26] 1.69 0.77 3.72 0.194
Imai et al. (1994) [27] 2.04 0.53 7.83 0.298
Shimokawa et al. (1994) [28] 0.78 0.28 2.20 0.643
Hitman et al. (1995) [29] 2.07 0.71 6.02 0.182
Hitman et al. (1995) [29] 1.05 0.20 5.56 0.950
Mori et al. (1995) [30] 1.73 0.21 13.99 0.608
Chuang et al. (1996) [31] 0.92 0.06 14.96 0.953
Ura et al. (1997) [32] 1.18 0.27 5.09 0.829
Zhang et al. (1996) [33] 0.59 0.28 1.22 0.151
Panz et al. (1997) [34] 4.75 0.38 60.14 0.229
Panz et al. (1997) [34] 2.25 0.27 18.93 0.455
Lepetre et al. (1998) [35] 0.60 0.18 1.97 0.397
Yamada et al. (1998) [36] 1.46 0.84 2.56 0.182
Ito et al. (1999) [37] 0.62 0.35 1.10 0.101
Hart et al. (1999) [38] 1.32 0.67 2.59 0.423

Lei et al. (1999) [39] 1.05 0.72 1.55 0.786
Celi et al. (2000) [40] 0.55 0.09 3.58 0.533
Celi et al. (2000) [40] 1.89 0.69 5.20 0.216
Rosskopf et al. (2000) [41] 1.82 1.30 2.56 0.0005
Zeggini et al. (2004) [9] 0.96 0.65 1.40 0.822
Zeggini et al. (2004) [9] 1.24 0.89 1.71 0.199
Florez et al. (2004) [10] 0.79 0.62 1.00 0.055
Florez et al. (2004) [10] 1.10 0.83 1.46 0.493
Florez et al. (2004) [10] 1.00 0.84 1.20 0.974
van Dam et al. (2004) [11] 0.81 0.51 1.27 0.352
Orkunoglu Suer et al. (2005) [42] 1.26 0.54 2.91 0.596
GENIUS from Boston (unpublished) 1.37 0.92 2.03 0.118

GENIUS from SGR (unpublished) 1.10 0.82 1.47 0.515
Cama A. (unpublished) 0.73 0.44 1.22 0.230

1.09 0.96 1.23 0.184
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Hart et al. (1999) [38] 274 0.95 0.31 2.89 0.920

GENIUS from Dallas (unpublished) 472 1.14 0.58 2.26 0.700

Fig. 1 Meta-analysis of 30 case–control studies. The cumulative
effect of 32 published (ordered by publication date) and unpublished
studies on the association between IRS1 G972R polymorphism and
type 2 diabetes was tested by a random-effects model. A borderline
significant heterogeneity was observed across studies (Cochran’s

Q test p=0.1). ORs and 95% CIs for dominant genetic model are
shown. Sizes of OR symbols are proportional to the study sample size.
95% CIs have arrowheads when they exceed the figure limits. SGR,
San Giovanni Rotondo, Italy
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type 2 diabetes (OR 1.09, 95% CI 0.96–1.23, p=0.184).
Some evidence of heterogeneity was observed across studies
(Cochran’s Q test p=0.1). In a meta-regression analysis,
neither the mean BMI of cases nor that of controls (available
in 23 studies corresponding to 20,114 individuals) signifi-
cantly explained such heterogeneity (p=0.58 and p=0.84,
respectively). Similar data were obtained when analyses
were carried after stratifying for BMI status (i.e. <30 kg/m2

or ≥30 kg/m2) (p=0.77). Also no effect of ethnicity (i.e.
either white [19,075 individuals from 20 studies], Asian
[2,699 individuals from eight studies] or other [1,587
individuals from four studies]) was observed (p=0.91).
Also, when only studies whose sample size was >500
individuals were analysed, a similar OR to that obtained in
the whole meta-analysis was observed (OR 1.08, 95%
CI 0.93–1.24). By contrast, the mean age at type 2 diabetes
diagnosis (available in 14 studies corresponding to 9,713
individuals) was significantly correlated with the magnitude
of the genetic effect, explaining 52% of the heterogeneity
(p=0.03) (Fig. 2a). When these studies were subdivided into
tertiles of mean age at diagnosis, the summary OR of type 2
diabetes was 1.48 (95% CI 1.17–1.87) for studies in the
youngest tertile (39–44.9 years), 1.22 (95% CI 0.97–1.53)
for studies in the intermediate tertile (45–50.9 years), and

0.88 (95% CI 0.68–1.13) for studies in the oldest tertile (51–
58 years) (Fig. 2b). The standard p value for the decreasing
trend of ORs with increasing mean age at diagnosis was
0.0022 and the permutation p value was 0.014.

Discussion

Our findings illustrate the difficulties of ascertaining
contributions to type 2 diabetes susceptibility by ‘low-
frequency–low-risk’ variants. Despite the fact that this
study included more than 23,000 individuals, the power to
identify a 9% increase in type 2 diabetes risk associated
with a variant having 0.06 frequency was only 58% at
nominal significance levels (α=0.05) and virtually zero at
genome-wide significance levels a ¼ 5� 10�8

� �
. One can

estimate that a total of ~40,000 and ~200,000 individuals
would have been required to have 80% power at α=0.05
and a ¼ 5� 10�8

� �
, respectively. Under these circum-

stances, improving the outcome definition and decreasing
its heterogeneity may have critical effects on our ability to
identify genetic effects.

In our meta-analysis, studies in which the mean age at
type 2 diabetes diagnosis was <45 years showed an OR for
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Fig. 2 Relationship between
OR of type 2 diabetes and age at
type 2 diabetes diagnosis in the
14 studies for which this infor-
mation was available (n=9,713
individuals). a Meta-regression
of mean age at diagnosis of
type 2 diabetes and log OR for
type 2 diabetes of the R972
variant according to a dominant
genetic model. Sizes of OR
symbols are proportional to the
study sample size. There was a
significant correlation (p=0.03)
explaining 52% of between-
study heterogeneity. b Summary
ORs of type 2 diabetes accord-
ing to tertiles of age at type 2
diabetes diagnosis. The ranges
of age at type 2 diabetes diag-
nosis were 39–44.9 years (five
studies, n=3,234 individuals),
45–50.9 years (five studies,
n=4,228 individuals) and 51–
58 years (four studies, n=2,251
individuals) in tertile 1, 2 and 3,
respectively

Diabetologia (2009) 52:1852–1857 1855



type 2 diabetes of 1.48, an effect size that a sample of ‘only’
~8,500 individuals would have 80% power to detect with
genome-wide significance. Similar data, indicating a stronger
effect on early abnormality of glucose homeostasis, were
recently reported for TCF7L2 [20] and for TRIB3 [10].
Unfortunately, no data on the combined effect of several
single-nucleotide polymorphisms (SNPs) that are singly
associated with early glucose abnormalities are so far
available. Overall, focusing on forms of diabetes diagnosed
relatively early in life, which are known to have a stronger
genetic component [21, 22], may be a useful strategy to
facilitate the identification of SNPs associated with type 2
diabetes that are otherwise difficult to find, either because of
their moderate effect or because of their low allelic
frequency, or because of both factors, as in the case of
IRS1 G972R. The usefulness of this approach may also
extend to truly rare variants (MAF<0.01), such as those that
are believed to underlie the linkage peaks that are not
explained by the common variants identified through
GWAS. Indeed, in the linkage screen of the Diabetes UK
Warren 2 sib pair collection, all seven linkage signals that
were identified were stronger in families with an average age
at diagnosis <55 years than in the families diagnosed at an
older age [23].

In conclusion, the study of early-onset forms is emerging
as a critical tool to reach the ‘high-hanging’ fruits of type 2
diabetes genetics and mirrors the approach taken with other
complex disorders such as coronary artery disease [24].
Thus, both adequately powered new studies specifically
targeted to early-onset cases and further analyses of
available GWAS data after stratification by age at onset
are needed.

Acknowledgements This work was partly supported by the Italian
Ministry of Health (Ricerca Corrente 2007 to S. Prudente and 2009 to
S. Prudente and V. Trischitta) and by the NIH (grants HL073168,
DK055523 and DK036836 to A. Doria and the Genetics Core of the
Diabetes and Endocrinology Research Center at the Joslin Diabetes
Center).

Duality of interest The authors declare that there is no duality of
interest associated with this manuscript.

References

1. Doria A, Patti ME, Kahn CR (2008) The emerging genetic
architecture of type 2 diabetes. Cell Metab 8:186–200

2. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R
(2001) Defects of the insulin receptor substrate (IRS) system in
human metabolic disorders. FASEB J 15:2099–2111

3. Almind K, Inoue G, Pedersen O, Kahn CR (1996) A common
amino acid polymorphism in insulin receptor substrate-1 causes
impaired insulin signaling. Evidence from transfection studies.
J Clin Invest 97:2569–2575

4. Marchetti P, Lupi R, Federici M et al (2002) Insulin secretory
function is impaired in isolated human islets carrying the
Gly9723Arg IRS-1 polymorphism. Diabetes 51:1419–1424

5. Clausen JO, Hansen T, Bjørbaek C et al (1995) Insulin resistance:
interactions between obesity and a common variant of insulin
receptor substrate-1. Lancet 346:397–402

6. Stumvoll M, Fritsche A, Volk A et al (2001) The Gly972Arg
polymorphism in the insulin receptor substrate-1 gene contributes
to the variation in insulin secretion in normal glucose-tolerant
humans. Diabetes 50:882–885

7. Hribal ML, Tornei F, Pujol A et al (2008) Transgenic mice
overexpressing human G972R IRS-1 show impaired insulin action
and insulin secretion. J Cell Mol Med 12:2096–2106

8. Jellema A, Zeegers MP, Feskens EJ, Dagnelie PC, Mensink RP
(2003) Gly972Arg variant in the insulin receptor substrate-1 gene
and association with type 2 diabetes: a meta-analysis of 27
studies. Diabetologia 46:990–995

9. Zeggini E, Parkinson J, Halford S et al (2004) Association studies
of insulin receptor substrate 1 gene (IRS1) variants in type 2
diabetes samples enriched for family history and early age of
onset. Diabetes 53:3319–3322

10. Florez JC, Sjögren M, Burtt N et al (2004) Association testing in
9,000 people fails to confirm the association of the insulin
receptor substrate-1 G972R polymorphism with type 2 diabetes.
Diabetes 53:3313–3318

11. van Dam RM, Hoebee B, Seidell JC, Schaap MM, Blaak EE,
Feskens EJ (2004) The insulin receptor substrate-1 Gly972Arg
polymorphism is not associated with Type 2 diabetes mellitus in
two population-based studies. Diabet Med 21:752–758

12. Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of
genome-wide association data and large-scale replication identi-
fies additional susceptibility loci for type 2 diabetes. Nat Genet
40:638–645

13. Prudente S, Scarpelli D, Chandalia M et al (2009) The TRIB3
Q84R polymorphism and risk of early-onset type 2 diabetes.
J Clin Endocrinol Metab 94:190–196

14. Sigal RJ, Doria A, Warram JH, Krolewski AS (1996) Codon 972
polymorphism in the insulin receptor substrate-1 gene, obesity,
and risk of noninsulin-dependent diabetes mellitus. J Clin
Endocrinol Metab 81:1657–1659

15. Mammarella S, Esposito DL, Creati B et al (1996) Mutational
analysis of the insulin receptor substrate-1 in noninsulin depen-
dent diabetes. Diabetologia 39(Suppl 1):A75 Abstract

16. Esposito DL, Li Y, Vanni C et al (2003) A novel T608R missense
mutation in insulin receptor substrate-1 identified in a subject with
type 2 diabetes impairs metabolic insulin signaling. J Clin
Endocrinol Metab 88:1468–1475

17. Macaskill P, Walter SD, Irwig L (2001) A comparison of methods
to detect publication bias in meta-analysis. Stat Med 20:641–654

18. van Houwelingen HC, Arends LR, Stijnen T (2002) Advanced
methods in meta-analysis: multivariate approach and meta-
regression. Stat Med 21:589–624

19. Higgins JP, Thompson SG (2004) Controlling the risk of spurious
findings from meta-regression. Stat Med 23:1663–1682

20. Körner A, Berndt J, Stumvoll M, Kiess W, Kovacs P (2007)
TCF7L2 gene polymorphisms confer an increased risk for early
impairment of glucose metabolism and increased height in obese
children. J Clin Endocrinol Metab 92:1956–1960

21. Weijnen CF, Rich SS, Meigs JB, Krolewski AS, Warram JH
(2002) Risk of diabetes in siblings of index cases with type 2
diabetes: implications for genetic studies. Diabet Med 19:41–50

22. Mitchell BD, Kammerer CM, Reinhart LJ, Stern MP (1994)
NIDDM in Mexican-American families. Heterogeneity by age of
onset. Diabetes Care 17:567–573

23. Frayling TM, Wiltshire S, Hitman GA et al (2003) Young-onset
type 2 diabetes families are the major contributors to genetic loci

1856 Diabetologia (2009) 52:1852–1857



in the Diabetes UK Warren 2 genome scan and identify putative
novel loci on chromosomes 8q21, 21q22, and 22q11. Diabetes
52:1857–1863

24. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight
BF et al (2009) Genome-wide association of early-onset myocar-
dial infarction with single nucleotide polymorphisms and copy
number variants. Nat Genet 41:334–341

25. Almind K, Bjørbaek C, Vestergaard H, Hansen T, Echwald S,
Pedersen O (1993) Amino acid polymorphisms of insulin receptor
substrate-1 in non-insulin-dependent diabetes mellitus. Lancet
342:828–832

26. Hager J, Zouali H, Velho G, Froguel P (1993) Insulin receptor
substrate (IRS-1) gene polymorphisms in French NIDDM fami-
lies. Lancet 342:1430

27. Imai Y, Fusco A, Suzuki Y et al (1994) Variant sequences of
insulin receptor substrate-1 in patients with noninsulin-dependent
diabetes mellitus. J Clin Endocrinol Metab 79:1655–1658

28. Shimokawa K, Kadowaki H, Sakura H et al (1994) Molecular
scanning of the glycogen synthase and insulin receptor substrate-1
genes in Japanese subjects with non-insulin-dependent diabetes
mellitus. Biochem Biophys Res Commun 202:463–469

29. Hitman GA, Hawrami K, McCarthy MI et al (1995) Insulin
receptor substrate-1 gene mutations in NIDDM; implications for
the study of polygenic disease. Diabetologia 38:481–486

30. Mori H, Hashiramoto M, Kishimoto M, Kasuga M (1995) Amino
acid polymorphisms of the insulin receptor substrate-1 in Japanese
noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab
80:2822–2826

31. Chuang LM, Lai CS, Yeh JI, Wu HP, Tai TY, Lin BJ (1996) No
association between the Gly971Arg variant of the insulin receptor
substrate 1 gene and NIDDM in the Taiwanese population.
Diabetes Care 19:446–449

32. Ura S, Araki E, Kishikawa H et al (1996) Molecular scanning of
the insulin receptor substrate-1 (IRS-1) gene in Japanese patients
with NIDDM: identification of five novel polymorphisms.
Diabetologia 39:600–608

33. Zhang Y, Stratton IM, Warren-Perry MG, Orho M, Groop L,
Turner RC (1996) UKPDS 19: heterogeneity in NIDDM:

separate contributions of IRS-1 and beta3-adrenergic-receptor
mutations to insulin resistance and obesity respectively with no
evidence for glycogen synthase gene mutations. Diabetologia
39:1505–1511

34. Panz VR, Raal FJ, O’Rahilly S, Kedda MA, Joffe BI (1997)
Insulin receptor substrate-1 gene variants in lipoatrophic diabetes
mellitus and non-insulin-dependent diabetes mellitus: a study of
South African black and white subjects. Hum Genet 101:118–119

35. Lepretre F, Vionnet N, Budhan S et al (1998) Genetic studies of
polymorphisms in ten non-insulin-dependent diabetes mellitus
candidate genes in Tamil Indians from Pondicherry. Diabetes
Metab 24:244–250

36. Yamada K, Yuan X, Ishiyama S et al (1998) Codon 972
polymorphism of the insulin receptor substrate-1 gene in impaired
glucose tolerance and late-onset NIDDM. Diabetes Care 21:753–756

37. Ito K, Katsuki A, Furuta M et al (1999) Insulin sensitivity is not
affected by mutation of codon 972 of the human IRS-1 gene.
Horm Res 52:230–234

38. Hart LM, Stolk RP, Dekker JM et al (1999) Prevalence of variants
in candidate genes for type 2 diabetes mellitus in the Netherlands:
the Rotterdam study and the Hoorn study. J Clin Endocrinol
Metab 84:1002–1006

39. Lei HH, Coresh J, Shuldiner AR, Boerwinkle E, Brancati FL
(1999) Variants of the insulin receptor substrate-1 and fatty acid
binding protein 2 genes and the risk of type 2 diabetes, obesity,
and hyperinsulinemia in African-Americans: the atherosclerosis
risk in communities study. Diabetes 48:1868–1872

40. Celi FS, Negri C, Tanner K et al (2000) Molecular scanning for
mutations in the insulin receptor substrate-1 (IRS-1) gene in
Mexican Americans with type 2 diabetes mellitus. Diabetes Metab
Res Rev 16:370–377

41. Rosskopf D, Frey U, Eckhardt S et al (2000) Interaction of the G
protein beta 3 subunit T825 allele and the IRS-1 Arg972 variant in
type 2 diabetes. Eur J Med Res 5:484–490

42. Orkunoglu Suer FE, Mergen H, Bolu E, Ozata M (2005)
Molecular scanning for mutations in the insulin receptor
substrate-1 (IRS-1) gene in Turkish with type 2 diabetes mellitus.
Endocr J 52:593–598

Diabetologia (2009) 52:1852–1857 1857


	IRS1...
	Abstract
	Abstract
	Abstract
	Abstract
	Abstract
	Introduction
	Methods
	Results
	Discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


