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Abstract Gastric inhibitory polypeptide (GIP) is a physio-
logical gut peptide secreted from the intestinal K-cells with
well documented insulin-releasing actions. However, the GIP
receptor is widely distributed in peripheral organs, including
the pancreas, gut, adipose tissue, heart, adrenal cortex and
brain, suggesting that it may have other functions. The
presence of functional GIP receptors on adipocytes and the
key role played by GIP in lipid metabolism and fat deposition
suggest a possible beneficial effect of compromised GIP
action in obesity and insulin resistance. Several key observa-
tions in animal models of obesity-related diabetes with
chemically or genetically mediated biological GIP deficiency
support this concept. Thus, obese diabetic animals with
compromised GIP action due to peptide-based GIP receptor
antagonists, small molecular weight GIP receptor antagonists,
vaccination against GIP, genetic knockout of GIP receptor or
targeted K-cell destruction are protected against obesity and
associated metabolic disturbances. In addition, by causing
preferential oxidation of fat, blockade of GIP signalling clears
triacylglycerol deposits from liver and muscle, thereby
restoring mechanisms for suppression of hepatic glucose
output and improving insulin sensitivity. Emerging evidence
also suggests that rapid cure of diabetes in grossly obese
patients undergoing bypass surgery is mediated, in part, by
surgical removal of GIP-secreting K-cells in the upper small
intestine.
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Introduction

Gastric inhibitory polypeptide (GIP) is a 42 amino acid
peptide hormone released from the proximal small intestine
(duodenum and jejunum) in response to feeding [1]
(Fig. 1). GIP is synthesised in intestinal K-cells and its
secretion is regulated largely by the ingestion of carbohy-
drate and fat [2]. As such, GIP is widely recognised as a
physiological incretin hormone, which potently stimulates
insulin release in a glucose-dependent manner [3]. More
recently, GIP has been shown to exert other effects on the
pancreatic beta cell, including stimulation of proinsulin
gene transcription and translation plus enhancement of beta
cell growth, differentiation, proliferation and survival [4].
However, the demonstrated presence of GIP receptors
outside the pancreas and stomach, and specifically on
adipocytes [5], has prompted renewed awareness of GIP-
mediated effects on lipid metabolism and fat deposition [6].
There is substantial, growing evidence to suggest that GIP
receptor-mediated effects are a key link between consump-
tion of energy-rich high-fat diets and the development of
obesity, insulin resistance and type 2 diabetes (Fig. 1; [6]).
Thus, inhibition of GIP signalling could be a potential
avenue for the treatment of obesity and associated compli-
cations. Accordingly, several preclinical studies have now
revealed beneficial metabolic effects of sustained functional
deficiency of GIP [see below]. This short review focuses on
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aspects of experimentally induced deficiency of GIP
receptor-mediated actions and evidence of beneficial effects
in obese insulin-resistant states. The potential of emerging
therapeutic avenues and apparent parallels with bypass
surgery for treatment of gross obesity are also discussed.

GIP receptor antagonism with (Proline3)GIP

(Proline3 [Pro3])GIP is a stable and specific antagonist of
the GIP receptor and has been shown to effectively
antagonise the acute insulinotropic effect of GIP in vitro
and in vivo, resulting in acute impairment of glucose

tolerance [7, 8]. In normal mice, sustained chemical
knockout of GIP receptor signalling results in mild
impairment of insulin secretion and glucose homeostasis
[9]. However, the metabolic and hormonal disarray of
obesity-related diabetes generates an entirely different
scenario following long-term disruption of GIP signalling.
Thus, as opposed to marginal impairment of glucose
homeostasis, the effects of GIP receptor blockade on lipid
metabolism and fat deposition significantly improve meta-
bolic status in obesity-related insulin-resistant states. For
example, daily administration of (Pro3)GIP for just 11 days
to ob/ob mice resulted in significant reduction of hyper-
glycaemia plus HbA1c and marked improvement of insulin
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Fig. 1 Simplified scheme showing physiological roles of GIP in
glucose and lipid metabolism, together with possible involvement in
pathophysiology and treatment of obesity, insulin resistance and
diabetes. Key physiological roles of GIP secretion in response to
feeding include stimulation of insulin secretion (together with the
other incretin hormone GLP-1) and promotion of fat storage mediated
through adipocyte GIP receptors (GIP-R). In pathophysiology,
consumption of energy-rich high-fat diet (powerful stimulus for
GIP), together with positive energy balance, leads to obesity and
harmful lipid deposition in liver, muscle and islet cells, giving rise to
mounting insulin resistance and major disturbances in the secretion of
insulin and glucagon. This scenario promotes glucose intolerance and

ultimately culminates in type 2 diabetes. The benefits of compromised
GIP action in obesity-related diabetes are envisaged to follow from
diminished signalling at the adipocyte GIP-R. Any negative effect on
beta cell GIP-Rs and insulin secretion in obesity-related diabetes is
compensated by various factors including: (1) improved insulin
sensitivity and diminished insulin demand; (2) alleviation of beta cell
dysfunction; and (3) compensation by upregulation of the GLP-1
component of the enteroinsular axis. In addition, the insulinotropic
action of GIP has been shown to be severely diminished in patients
with untreated type 2 diabetes. For further discussion of these
concepts, see text and Fig. 2
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resistance, glucose tolerance and both beta cell morphology
and insulin secretion [10]. Furthermore, once-daily admin-
istration of the antagonist to young ob/ob mice indicated
that compromised GIP action could prevent the onset of
hyperglycaemia and associated metabolic abnormalities
prior to any effect on body weight [11].

Studies in wild-type mice with diet-induced obesity-related
diabetes illustrate strikingly similar consequences of biolog-
ical GIP deficiency induced by (Pro3)GIP [12, 13]. Thus,
antagonism of GIP receptor by daily injection of (Pro3)GIP
was able to essentially reverse or prevent obesity, together
with many of the metabolic abnormalities associated with
high-fat feeding, e.g. hyperglycaemia, impaired glucose
tolerance and dyslipidaemia [6, 12, 13]. A key aspect of
these observations was the rapid and significant restoration
of insulin sensitivity and depletion of triacylglycerol deposits
in liver and muscle. The latter represents a key pathogenic
factor, given the well established link between development
of insulin resistance and spill over of lipid accumulation at
these sites [14]. Lowered glucagon levels could account for
part of these observations, but no changes in serum glucagon
levels were observed in high-fat fed mice or mice chronically
treated with (Pro3)GIP [11–13].

Further refinement of peptide chemistry may make it
possible to increase the potency and duration of action of
(Pro3)GIP as a potential biological molecule to induce
compromised GIP action. However, there is already little
doubt that specific biological GIP receptor antagonists,
based on N-terminal modifications of GIP, potentially
represent an exciting new class of drugs to combat the
obesity-related diabetes epidemic. Studies in human
patients will be required to delineate the promise of GIP
receptor antagonists. However, the value of therapeutic
peptides is well illustrated by the use of insulin for the
treatment of type 1 diabetes and their advantage of acting at
specific receptors on defined target cells. The main
disadvantage is the need for administration by injection.

GIP receptor antagonism using low molecular weight
molecules

The potential of low molecular weight receptor ligands for
oral administration has often been examined with a view to
improving the therapeutic benefit of peptide-based pharma-
ceuticals and avoiding parenteral administration [15].
Although only reported in preliminary form to date, one
study has assessed the metabolic effects of sustained
downregulation of GIP signalling using a small molecule
GIP receptor antagonist, SKL-14959. Administration of
SKL-14959 to high-fat fed mice for 14 weeks significantly
reduced body weight gain without affecting food intake
[16]. Importantly, and in harmony with studies using (Pro3)

GIP, SKL-14959 administration was associated with de-
pressed triacylglycerol accumulation in liver and muscle
tissue in high-fat fed mice [16]. In a parallel study using
diabetic KKAy mice, 4 weeks oral administration of SLK-
14959 significantly decreased plasma glucose and HbA1c

levels and ameliorated insulin resistance. These observa-
tions were also accompanied by depressed triacylglycerol
accumulation in liver [16]. Thus, it appears that chemical
GIP receptor blockade using (Pro3)GIP or SLK-14959 is
able to clear triacylglycerol deposits from liver of mice that
lack GIP effect, thereby restoring mechanisms for suppres-
sion of hepatic glucose output. Comparatively very high
doses of the small molecule antagonist are needed to induce
these effects. Accordingly, further details of specificity,
toxicity and chemical identity of SLK-14959 are needed to
evaluate the potential therapeutic applicability of this
approach, but these early results are encouraging.

GIP vaccination

Another approach to inhibition of GIP signalling by
chemical means is the induction or administration of GIP-
specific neutralising antibodies. Two independent ‘proof of
concept’ studies have confirmed the therapeutic attractive-
ness of such approaches for obesity-related diabetes [17,
18]. In a study by Fulurija and colleagues, high titres of
specific GIP antibodies were generated by covalent attach-
ment of GIP peptides to virus-like particles followed by
subcutaneous vaccination in high-fat fed mice. This
resulted in production of GIP antibodies and protection
against diet-induced obesity with significantly reduced
body fat stores [17]. These observations are similar to
those produced by specific chemical GIP receptor blockade
in mice with diet-induced obesity [12, 13]. Surprisingly, no
benefit on glycaemic control was noted by Fulurija and
colleagues, but active GIP immunisation was shown to
produce a significant improvement of glucose tolerance and
circulating glucose in a separate study in genetically obese
ob/ob mice [18]. Thus, vaccination against GIP resulting in
antibody production appears to be a practical means of
countering the metabolic abnormalities associated with diet-
or genetically induced obesity-related diabetes. However
further preclinical safety and toxicology studies will be
required before the therapeutic concept can be considered
in humans.

Inhibition or targeted destruction of GIP-secreting
K-cells

An alternative way to downregulate GIP receptor signalling
is to inhibit hormone release from intestinal K cells. A
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potential advantage of this approach is that drugs may be
able to target K-cells directly from the intestinal lumen,
rather than using systemic delivery of GIP-based peptides
or immunogens with the possibility of unwanted side
effects at various sites. However, relatively little is known
about K-cell signal transduction mechanisms; moreover,
given the many similarities with glucagon-like peptide-1
(GLP-1) secretion from L-cells and insulin secretion from
beta cells, this approach is unlikely to prove sufficiently
specific. For example, although inhibition may be possible
by antagonism of G-protein-coupled lipid receptors
(GPCR) (i.e. GPCR119, GPCR120 or GPCR40) [19], the
promiscuity of GIP receptors [20], plus stimulatory effects
by other classes of nutrients on GIP secretion represent
major obstacles. In addition, the K-cell has also been
reported to produce xenin, a hormone that may be involved
in glucose regulation and has recently been shown to
possess potent inhibitory effects on feeding behaviour in
rodents [21]. It is therefore questionable whether such
theoretical approaches for GIP blockade are applicable.
Notwithstanding this, specific K-cell destruction in trans-
genic mice with regulatory elements of the GIP promoter/
gene expressing an attenuated diphtheria toxin A was
shown to protect against diet-induced obesity and amelio-
rate insulin resistance [22]. Thus, the basic observations
with chemical or genetic GIP receptor blockade (see next
section) are essentially replicated by targeted knockout of
GIP-secreting K-cells in mice fed high-fat diet [22].
Although valuable to reinforce the concept of beneficial
effects of compromised GIP action, it seems unlikely that
the development of specific K-cell cytotoxic drugs will
prove exploitable for therapeutic purposes.

GIP receptor knockout mice

Transgenic mice with knockout of the GIP receptor have
been particularly useful in elucidating mechanisms that
underlie beneficial effects of compromised GIP action on
diet-induced obesity [23, 24]. GIP receptor knockout in
mice fed normal diet had little effect, other than small
impairment of glucose tolerance and insulin secretion [25].
However, genetic knockout of the GIP receptor in normal
or ob/ob mice fed a high-fat diet was shown to decrease
respiratory quotient and increase oxygen consumption [23,
24]. This indicates that increased energy expenditure and
preferential oxidation of fat as an energy source is key in
the beneficial anti-obesity action seen in these animals [23,
24, 26]. This is generally in keeping with the well-known
anabolic effects of GIP on lipid metabolism and fat
deposition. Thus, inhibition of GIP receptor function in
GIP receptor knockout mice fed a high-fat diet resulted in
suppression of body weight gain, reduced adiposity,

decreased tissue triacylglycerol stores, reduced insulin
resistance and marked improvement of glucose tolerance
[23, 24]. These observations are very similar to those
encountered with chemical GIP receptor blockade. Other
indications of altered energy metabolism in GIP receptor
knockout mice include increased uncoupling protein-1 and
decreased beta-3 adrenergic receptor levels in brown and
white adipose tissue, respectively [24]. These data suggest
that GIP antagonism enhances energy expenditure in
situations of excessive dietary fat intake.

In agreement with these initial observations, a recent
study has shown that genetic GIP receptor knockout
prevented ovariectomy-induced obesity in mice, extending
the same basic observations to distinctly different metabolic
settings [27]. It is clear from studies to date using chemical
blockade or genetic knockout of GIP signalling that
amelioration of insulin resistance is the key element
underlying the improvement of metabolic status [10, 13,
16, 23, 24]. Indeed, genetic compromise of GIP signalling
has been shown to prevent the development of ageing-
associated insulin resistance in mice through changes in
body composition and energy expenditure [28]. This is
further reinforced by observations that genetic disruption of
GIP signalling increased adiponectin levels under condi-
tions of high-fat feeding [29]. Thus, high-fat fed mice
exhibited increased fat oxidation in peripheral tissues and
decreased triacylglycerol deposition in liver and muscle,
together with improved insulin sensitivity [26, 29].

Lessons from animal models

As indicated above, there is now a substantial body of
evidence directly linking GIP to the efficient storage of
ingested fat, thus conferring a pivotal role for GIP in the
development of obesity due to chronic overnutrition with
high-fat diets. This contrasts strongly with GLP-1, which
does not interact with specific receptors on adipocytes, but
exerts glucose-lowering effects through stimulation of
insulin secretion and suppression of glucagon, gastric
emptying and feeding [30]. Accordingly, inhibition of GIP
receptor signalling appears to represent a novel therapeutic
strategy for obesity-related diabetes, acting at various sites
to improve insulin resistance and pancreatic beta cell
function, and to promote depletion of adipose tissue mass
(Fig. 1). Importantly, in concurrence with this concept, the
complete absence of GIP signalling does not appear to
result in any serious adverse effects. Despite the obvious
negative effect on the insulinotropic GIP-mediated incretin
effect, the beneficial effects of sustained GIP receptor
blockade on lipid metabolism and fat deposition consider-
ably offset any such impediments [6]. Moreover, clinical
studies have shown that the insulinotropic effect of GIP is
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already compromised in obesity-related diabetes [31] and
the possibility of upregulation of GLP-1 or neural arms of
the enteroinsular axis in GIP receptor knockout mice has
been indicated [32]. Improvement of insulin resistance is
also linked to lower circulating insulin levels and beta cell
rest [10, 11], thereby rendering the loss of any stimulatory
effects of GIP on insulin synthesis and beta cell mass, as
observed in cellular models [4, 33], less important.

Clearly, further studies are warranted to evaluate the
clinical potential of GIP receptor antagonism for human
obesity-related diabetes. To date there are no reports of the
metabolic consequence of longer-term specific GIP receptor
blockade in the clinical setting, although various pharma-
ceutical companies are involved with the above-mentioned
preclinical studies. However, lessons may come from
patients undergoing bypass surgery with surgical diversion
of nutrient passage away from GIP-secreting K-cells in the
upper small intestine [6, 34].

Evidence from human bypass surgery

Gastric bypass procedures are associated with dramatic
early (1–4 weeks) post-operative improvements of glycae-
mic control and insulin sensitivity, importantly even before
substantial weight loss [35–39]. Explanations of why
bypass surgery, as opposed to restriction surgery (e.g.
gastric band), achieves greater glucose-lowering efficacy
and rapid amelioration of insulin resistance are very much
sought after [40], with the precise mechanisms for the
prominent and almost immediate restoration of glycaemic
control and insulin sensitivity remaining unclear. Restric-
tive surgery reduces the amount of food passing through the
whole small intestine, whereas bypass surgery directs all
food to the jejunum [34, 35]. Rapid delivery of nutrients to
the distal small intestine and bowel will upregulate GLP-1
secretion and partly explain dramatic improvements in
insulin secretion and pancreatic beta cell function both
within weeks and long after surgery [36, 37]. Increase of
GLP-1 and peptide YY, which is also secreted from L-cells,
may additionally promote satiety and dietary compliance
(Fig. 2). However, in our view elevated GLP-1 levels are
unlikely to account for the rapid improvement of insulin
sensitivity and the alleviation of diabetes observed in
patients. Thus, patients with type 2 diabetes treated with
twice daily injections of exendin-4 or liraglutide had
upregulation of beta cell function and blood glucose
control, but without major effects on insulin resistance
[41, 42]. However, endogenously released GLP-1, as
opposed to injected GLP-1 mimetics, may interact with
afferent nerves at the site of release (small intestine) and
project ‘insulin sensitivity signals’ through the central

nervous system. Further, the possible role of other
gastrointestinal peptide mediators such as ghrelin, obestatin
and glucagon should not be overlooked. Indeed, the
culmination of subtle changes in circulating levels of
various regulatory hormones could be fundamental in the
beneficial effects of bypass surgery.

It has been hypothesised that exclusion of nutrient transit
from the upper small intestine results in inhibited secretion
of a hormone promoting insulin resistance and deposition
of fat stores [35]. Clearly, given the aforementioned array of
beneficial effects following GIP receptor blockade in
obesity-related diabetes, a reduction in circulating GIP
levels by surgical exclusion of the K-cell abundant
proximal small intestine could be a key factor in the
success of these surgeries [40]. Consistent with this view,
several recent studies have shown that GIP is decreased
rapidly, in the fasting and most notably postprandial states,
following Roux-en-Y and biliopancreatic diversion bypass
surgery in humans [34–37, 43]. Interestingly, in some
studies GIP levels were lowered significantly in diabetic,
rather than non-diabetic obese patients [35, 36], highlight-
ing the significant role of GIP-mediated actions in this
metabolic scenario. In consequence, this kind of surgery
can be viewed to reproduce many of the beneficial effects
noted in animal models of compromised GIP action,
including rapid improvement of insulin resistance and beta
cell function (Fig. 2). Nonetheless, it is possible that other
important effects are mediated through mechanisms other
than GIP, including the surgical ‘knockout’ of an as yet
undiscovered hormone from the upper gastrointestinal tract
[37]. Interestingly, there appears to be no reduction of GIP
levels in other studies, possibly reflecting subtle variations
in technique, timing of sample collection, nutritional status
and degree of surgical bypass [44, 45].

It is noteworthy that the rapid depletion of hepatic and
myocytic triacylglycerol stores for improved metabolic
control in bypass surgery patients has been highlighted
elsewhere, but attributed to dietary restriction alone [14].
Although severe energy restriction is clearly an important
contributor following these surgical procedures [46], this
variable seems unlikely to account for the superior
metabolic results of bypass as opposed to restrictive
surgery. Nevertheless, it should be remembered that in
many cases the gastric band is not adjusted until after
several weeks, meaning that energy restriction may be less
immediate after this procedure than after bypass surgery.
Accordingly, the underlying principles outlined in the
current review give credence to the idea that blockade of
GIP receptor action offers promise as a new and potentially
important approach to obesity-related diabetes. This could
be particularly so in obese patients in whom surgery is
contraindicated. Indeed given the expense, potential
hazards and need for long-term patient management,
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alternatives to surgery are essential in the management of
the obesity-related diabetes epidemic.

Conclusion

Growing evidence supports the view that compromise of GIP
action serves to protect against development of obesity and
associated metabolic disturbances in times of excessive
caloric intake [6]. Thus, GIP appears to directly link
overnutrition to obesity and is a potential novel target for
anti-obesity-related diabetes drugs. The strikingly similar
beneficial effect induced by a wide range of genetic and
chemical approaches to impairment of GIP receptor signal-
ling strengthens this belief. Interesting parallels also exist in

clinically obese patients undergoing bypass surgery, with
diversion of nutrient passage away from the gut section
containing GIP-secreting cells. These patients display an
unprecedented correction of hyperglycaemia and insulin
sensitivity on a par with and possibly even greater than that
observed in animal models with disruption of GIP receptor
signalling. Further studies are needed to dissect the under-
lying mechanisms in these patients and to fully delineate the
clinical potential of methods of GIP receptor blockade used
to date and their possible application in man.
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resulting in removal of triacylglycerol from liver, muscle and
pancreatic beta cells is regarded as key to the improvements in the
action and secretion of insulin. Significant weight loss follows as the
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